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A theoretical investigation on the modulational instability (MI) in a composite system with non-
local response function is presented. A composite system of silver nanoparticles in acetone is chosen,
whose nonlinearity can be delicately varied by controlling the volume fraction of the constituents,
thus enabling the possibility of nonlinearity management. A pump-probe counter propagation con-
figuration has been assumed and the interplay between the competing nonlinearities and the non-
localities in the MI dynamics is systematically explored. Different class of nonlocalities have been
considered and the study reveals that the nonlocality critically depends on the kind of nonlocal
function. However, the general behaviour is that the strength of nonlocality suppresses the MI gain,
while for rectangular function it assists the emergence of new spectral windows. We also show that
the cross coupling effects are significant in enhancing MI, especially in the defocusing nonlinearity.
We also emphasize the impact of the relative strength of the nonlinearities in the MI dynamics at
different settings of competing nonlinearities. Thus, we emphasize the importance of the different
class of nonlocal response in the MI dynamics, and explored the interplay between the higher order
nonlinear effects and nonlocalities in the counter propagating configurations.

PACS numbers: 42.65.Wi,42.65.Tg,42.65.-k,42.81.Dp

I. INTRODUCTION

Advancement in material chemistry and photonic
technologies have opened new frontiers in research on
plasmonics and nanophotonics. Of late, particularly,
“composites” with interesting controllable physical
properties played a vital role in the development of novel
plasmonic applications. A composite is a material made
from two or more constituent materials with distinct
physical/chemical properties, that when combined
produce a material with different characteristics from
individual components. Commonly used composites are
of two types (i) spatially separated metal nanoparticles
embedded in a dielectric host and (ii) fractal aggregates
of metal nanoparticles [1]. For systems containing metal-
lic nanoparticle, the surface plasmon resonance (SPR)
plays an important role, modifying, for instance, lin-
ear and nonlinear optical properties of the material [2, 3].

In the development of the novel materials aiming
photonic applications, colloidal systems containing
metal nanoparticles are very promising owing to the
enhancements of the nonlinear absorption and nonlinear
refractive index observed in such systems [4, 5]. These
changes on the nonlinear optical properties of a colloid
can be mainly attributed to two different origins: Local
field effect and large nonlinear response of metals.
Thermal properties of metal nanocomposites critically
depend on the concentration of nanoparticles and play
an important role in the determination of the colloid
characteristics of the composite structure. For example,

it was found in a colloidal system of gold nanoparticles
in castor oil, that, even though the laser wavelength was
not resonant with the surface plasmon absorption band,
significant enhancement of electronic and thermal non-
linearities were observed. The presence of nanoparticles
enhanced both local (electronic) and nonlocal (thermal)
nonlinear response of the colloids. The electronic part
of the nonlinearity was enhanced by at least two orders
of magnitude depending on the particle filling fraction.
On the other hand the thermo-optical properties of the
colloidal systems is rather more sensitive and changes
dramatically as the filling fraction was increased [6].

During the last century or so, optical properties of
nanoparticles have extensively been studied and metal-
dielectric nanocomposites (MDNCs) have found various
applications in different fields of science and technology.
Since the optical properties of metal nanoparticles are
typically governed by SPR, they are strongly dependent
on the nanoparticles size, shape, concentration and
spatial distribution as well as on the properties of the
surrounding matrix. Control over these parameters
enables such MDNC to become promising media for the
development of novel non-linear materials, nanodevices
and optical elements [7]. Especially, in the context
of nonlinear plasmonics, the MDNCs are promising
contenders and plays an indispensable role in realizing
system endowed with nonlinearity management [8]. The
emergence of nonlinear plasmonics has developed a
renewed interest in the studies related to higher-order
nonlinearities (HON). MDNC happened to be an ideal
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candidate to serve the purpose of delicate management
of nonlinearity by appropriate ratio of the volume
fraction of nanoparticles to that of the host. This
way of controlling the nonlinearity of the system is
advantageous indeed, as it would enable “on demand”
control on each order of nonlinear susceptibility in
the system. For instance, by a proper choice of the
volume fraction of nanoparticles, one can even nullify
the cubic nonlinearity while the quintic or septimal
nonlinearities can still be finite [9]. This enables one
to tailor-made the effective nonlinearity making MDNC
as a potential choice for nonlinear management. In the
recent past, competing nonlinearities also have drawn
much attention. Such nonlinearities occur in media
where a few different physical processes contribute to the
overall nonlinear response. A few examples to mention
are, Bose-Einstein condensates with simultaneous local
and long range interactions [10] and nematic liquid
crystals with comparable thermal and orientational
nonlinearities [11].

Another interesting feature typical to the systems like
MDNC is the nonlocal nonlinearity, meaning that the
nonlinearity is a nonlocal function of the incident field.
Even though there are a lot of studies on nonlocal
nonlinearities in the soliton context, most of them are
related to the studies on propagation in the fibers and
BECs [12–14]. For instance, in the case of single dark
spatial solitons, nonlocality tends to expand the width of
the solitons. Spatial nonlocality provides stabilization of
bright solitons and induces their attraction, even if they
are out of phase and in case of dark solitons, attraction
induced by nonlocality can lead to the formation of
their band states and in case of vortices nonlocality can
stabilize the vortex propagation [15].

One of the intriguing manifestation in the propagation
dynamics of any nonlinear media is the so-called modu-
lation instability (MI). MI is a nonlinear phenomenon,
where a continuous wave (CW) or a quasi-CW undergoes
a modulation of its amplitude or phase in the presence of
noise or any other weak perturbations. The modulation
process may eventually grow and lead to the breakdown
of the wave into a train of short pulses or filaments. The
phenomenon of MI has been studied in a wide variety
of physical systems like fluid dynamics [16, 17], plasma
physics [18, 19], nonlinear fiber optics [20], Bose-Einstein
Condensates [21–23], liquid crystals [24–26], and also in
various plasmonic systems [27–29]. It has been shown
that MI is strongly affected by various mechanisms in
the nonlinear system [30–33], and in particular, the
nonlocality in nonlinear response [34, 35] is one another
intriguing effect that plays a substantial role in the
dynamics of the system.

Recently, Reyna et al reported an experimental study
on a composite system made up of silver nanoparticles
suspended in acetone. In this important work, the

authors successfully realized a composite system with
flexible nonlinearity management where the effective
Kerr nonlinearity can be controlled at will, by merely
changing the volume fraction of the silver nanoparticles.
Through this way, they demonstrated different aspects
of nonlinearity management and one interesting case
would be the zero cubic nonlinearity with finite quintic
nonlinearity. Indeed, this particular case is interesting,
as it is not possible in the conventional system. In a
similar context, they also studied the dynamics of spatial
MI at different settings in the limit of effective local
nonlinear response. In principle, in composite systems
as in Ref.[36], the nonlinearity is not strictly local and
the effective nonlinearity is a nonlocal function of the
incident field. This is particularly true because of the
strong confinement of electric field due to the formation
of plasmonic modes in metal nanoparticles, which can
enhance the nonlinear effects whose strength crucially
depends on the particular function of nonlocality.
Therefore in order to accurately model the dynamics,
one has to incorporate the nonlocality in the nonlinear
response. Of late, there had been a few studies on MI
in nonlocal nonlinear media. To mention a few includes,
Krolikowski et al has studied MI in nonlocal nonlinear
Kerr media with different kind of nonlocalities like weak,
strong and general nonlocal effects [37]. Wang et al has
studied MI in nonlocal Kerr media with sine-oscillatory
response[38]. Tiofack et al has studied the effect of com-
peting cubic-quintic nonlinearities on MI in non-Kerr
type media showing equal nonlocal response functions
[39], also MI in media with a local quintic and a nonlocal
cubic nonlinearities was studied in Ref. [40].

Most cases of nonlocal MI studies are primarily based
on single optical beam and such kind of MI is termed as
scalar MI. The co-propagation(or counter-propagation)
of two or more optical beams can lead to interesting
and peculiar phenomena which could not be realized
in the single beam case [41, 42]. As a matter of fact,
one of the breakthroughs in MI is the realization of
MI in normal dispersion (or diffraction) regime. [41].
As it is known the normal group velocity dispersion
(GVD) regime is not subject to the MI process, due to
the lack of phase matching between the dispersion and
nonlinear components of the system. But the nonlinear
coupling between the two co-propagating beams due
to the cross-phase modulation (XPM) (i.e., refractive
index seen by one wave depends on the intensity of
the co-propagating wave through the XPM coefficient)
destabilize the steady state leading to frequency modu-
lation even in the normal GVD regime [41, 42]. These
interesting results set the benchmark for the extensive
work on two-color light propagation in the optical system.

Motivated by the interesting nonlinear properties associ-
ated with the composite structure, and the physical im-
portance of coupled nonlinear system in MI process, in
what follows, we study the XPM induced spatial MI in
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a composite system with a nonlocal nonlinear response.
Taking the advantage of the recent experimentally real-
ized composite system made up of silver nanoparticles
suspended in acetone by Reyna et al, our study focus on
the coupled system in the same settings, with particular
emphasize on the different functional form of nonlinear
responses. The paper is organized as follows: section
2 describes the theoretical model and the propagation
equation. In Section 3 we have applied linear stability
analysis followed by the study of modulation instabil-
ity with various nonlocal response functions for different
competing nonlinearities in section 4. Further section 5
includes the conclusions.

II. THEORETICAL MODEL

The counter propagation of pump-probe beams in the
composite medium is governed by the modified coupled
nonlinear Schrodinger equation (CNLSE) of the form

(−1)ji
∂Aj
∂ξ

+
1

2

∂2Aj
∂ρ2

+ α1(|Aj |2 + 2|A3−j |2)Aj

+α2(|Aj |4 + 6|Aj |2|A3−j |2 + 3|A3−j |4)Aj = 0. (1)

where Aj with j=1,2 is the amplitude of the pump and
probe beams in the composite medium respectively.
Here the spatial coordinates have been normalized to
K−1 = λ

2πn0
, where n0 is the linear refractive index of

the host medium and λ is the wavelength of the laser
pump. ξ is the dimensionless direction of propagation
which is defined as ξ = zK and the dimensionless
transverse coordinate ρ is given by ρ = xK. α1 and α2

are the strengths of the competing cubic and quintic
nonlinearities respectively and it take positive (negative)
sign for self-focusing (defocusing) nonlinearities.

Reyna et al proposed this model for light propagation
in MDNC and studied the nonlinearity management and
spatial modulation instability for cubic quintic nonlinear-
ity [36], the two dimensional solitons for a quintic septi-
mal medium [9] and the spatial phase modulation in the
medium with quintic septic nonlinearity [43].The theoret-
ical model was developed using the generalized Maxwell-
Garnet model under the assumption of a homogenous,
isotropic medium with the nanoparticles uniformly dis-
tributed. The particle size a is smaller than the interpar-
ticle distance b which is smaller than the incident light
wavelength λ.
Spatial nonlocality comes into the picture when the non-
linear refractive index at a given point is determined not
only by the light intensity at that point but also by the
intensity near that point. A phenomenological generic
form of nonlocal nonlinear response induced by an opti-
cal beam of intensity I(ρ, ξ) [37] is given by

∆n(I) = S

∫ ∞
−∞

R(ρ− ρ′)I(ρ′, ξ)dρ′ (2)

where ∆n(I) is the intensity dependent change in
refractive index of the medium and RHS gives a spatial
convolution integral with R(ρ) as the nonlocal response
function, defining the nonlocal character of the nonlin-
earity and its width (compared to the spatial extent of
the beam) determines the degree of nonlocality with
S representing the strength and sign of the nonlinear
contribution. In the limiting case of R(ρ) = δ(ρ) the
Eq. (2) describes the local response [39, 44, 45]. Even
though the nonlocality model mentioned by Eq. (2) is
phenomenological, it very well describes the features of
nonlocal media. Typical nonlocal systems involve media
with transport processes as ballistic atomic transport or
heat diffusion as in atomic vapours or charge transport
in photorefractive crystals or charge separation in
thermal media or plasma. Also long range interactions
are responsible for nonlocal responses in liquid crystals
or dipolar BECs [15, 46].

The coupled NLSE with the phenomenological generic
model of competing nonlocal nonlinear responses is given
by [36, 39]

(−1)ji
∂Aj
∂ξ

+
1

2

∂2Aj
∂ρ2

+ α1

∫ ∞
−∞

R1(ρ− ρ′)(|Aj |2+

2|A3−j |2)Ajdρ′+ α2

∫ ∞
−∞

R2(ρ− ρ′)(|Aj |4 + 6

|Aj |2|A3−j |2 + 3|A3−j |4)Ajdρ′ = 0; j = 1, 2; (3)

The model Eq (3) refers to the evolution of pump-probe
pulses in the MDNC media where we have incorporated
the phenomenological generic model of nonlocal response
of nonlinearity. The response function

∫∞
−∞R(ρ − ρ′)

shows the surrounding spatial region/range/domain of
homogenous isotropic MDNC medium responding to the
refractive index change due to the intense pump pulse
intensity at a point ρ′ in the medium. We take the inten-
sity profile I(ρ′) and the width of the nonlocal response
function R(ρ−ρ′) comparable, owing to the general non-
local nonlinear response.The cause of nonlocal non-
linear response in the composite can be due to the
phenomenon of advection or the thermal nonlin-
earity due to the presence of metal nanoparticles
as descirbed by Souza et.al [6]. The nonlinear re-
sponse of the composite medium is given by various non-
local response functions. Here we study the influence
of various response functions on MI for different cases
of nolocal nonlinearities. The functions can be conve-
niently put into two classes based on whether the spec-
trum corresponding to the function is positive definite or
not. The exponential and Gaussian functions belongs to
positive definite while rectangular and sine-oscillatory are
not characterized by positive definite spectrum. For the
detailed study of the MI phenomenon, we specifically use
the Gaussian and the rectangular response functions as
the two representative categories. The various response
functions and their Fourier transforms are tabulated in
Table 1 and graphically represented as a function of κ
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vector in fig 1.

FIG. 1: (Color online) Various response functions in the κ
space.

TABLE I: Various nonlocal response functions and
there fourier transforms

function R(ρ) R̂(κ)

Exponential 1
2σ
exp(−|ρ|

σ
) 1

1+σ2κ2

Gaussian 1
σ
√
π
exp(−ρ

2

σ2 ) exp(−σ
2κ2

4
)

Rectangular

{
1
2σ

−σ ≤ ρ ≤ σ

0 otherwise

sin(κσ)
κσ

Sine−Oscillatory 1
2σ
sin(−|ρ|

σ
) 1

1−σ2κ2

III. LINEAR STABILITY ANALYSIS

The stability of the steady-state solution against small
perturbation for the propagation equation is studied us-
ing linear stability analysis. To be more realistic, we
assume the asymmetric plane wave solutions whose in-
tensity of probe-pump beams are in the ratio 1:10 with
a pump power of 31 KW and probe beam power of 3.1
KW [43].The steady state solution of Eq. (3) is given by,

Aj(ρ, ξ) =
√
Pj exp(i φj ξ); j = 1, 2; (4)

where Pj is the normalized pump and probe beam pow-
ers for j=1,2. Perturbing the plane wave solution in its
amplitude with the complex perturbations and further
linearizing, we get the model equation in terms of the

perturbations aj(ρ, ξ) and a3−j(ρ, ξ) as,∫ ∞
−∞

√
Pj(2a3−j(ρ′, ξ)

√
P3−j(r1α1 + 3(Pj + P3−j)r2α2)

+aj(ρ′, ξ)
√
Pj(r1α1 + 2(Pj + 3P3−j)r2α2)+√

Pj(r1α1 + 2(Pj + 3P3−j)r2α2)a∗j (ρ′, ξ)+

2
√
P3−j(r1α1 + 3(Pj + P3−j)r2α2)a∗3−j(ρ′, ξ))dρ′+

1

2

∂2aj(ρ, ξ)

∂ρ2
+ (−1)ji

∂aj(ρ, ξ)

∂ξ
= 0; (5)

where r1= R1(ρ−ρ′) and r2=R2(ρ−ρ′). We assume the
following form of perturbation

aj(ρ, ξ) = aj1(ρ, ξ) + i aj2(ρ, ξ); j = 1, 2; (6)

where aj1(ρ, ξ) and aj2(ρ, ξ) are the real and the imagi-
nary parts of the pertubation with a∗j (ρ, ξ) as its complex
conjugate.Substituting Eq (6) into Eq (5) and separating
the real and imaginary parts from the linearized equa-
tion, we get,

∂aj1(ρ, ξ)

∂ξ
+

(−1)j

2

∂2aj2(ρ, ξ)

∂ρ2
= 0,∫ ∞

−∞
((2Pjr1α1 + 2(Pj + 3P3−j)r2α2)aj1(ρ′, ξ)+

4
√
Pj

√
P3−j(r1α1 + 3(Pj + P3−j)r2α2)a(3−j)1(ρ′, ξ))dρ′+

(−1)j+1 ∂aj2(ρ, ξ)

∂ξ
+

1

2

∂2aj1(ρ, ξ)

∂ρ2
= 0; j = 1, 2; (7)

Applying the convolution theorem and using the Fourier
transform [37] of the following form,

âj(κ, ξ) =

∫ ∞
−∞

aj(ρ, ξ)e
iκρdρ,

R̂(κ) =

∫ ∞
−∞

R(ρ)eiκρdρ. (8)

We have the set of four differential equations as follows,

∂âj1
∂ξ

+ (−1)j
(iκ)2

2

∂âj2
∂ρ2

= 0

2P1(R̂1α1 + 2(Pj + 3P3−j)R̂2α2)âj1+

4
√
Pj

√
Pj−1(R̂1α1 + 3(Pj + P3−j)R̂2α2)â(3−j)1

+(−1)j+1 ∂âj2(ρ, ξ)

∂ξ
+

(iκ)2

2

∂2âj1
∂ρ2

= 0; j = 1, 2; (9)

The coefficient matrix of the above equation can be ob-
tained as; 

0 −κ
2

2 0 0

m1 0 −m2 0

0 0 0 κ2

2

m2 0 m3 0


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where,

m1 =
1

2
(κ2 − 4P1R̂1α1 − 8P1(P1 + 3P2)R̂2α2)

m2 = 4
√
P1

√
P2(R̂1α1 + 3(P1 + P2)R̂2α2)

m3 =
1

2
(−κ2 + 4P2R̂1α1 + 8P2(3P1 + P2)R̂2α2)

We consider λ as the eigien value of the above matrix and
one can write the characteristic equation of the above
matrix as

|A− λI| = 0 (10)

Hence the eigen value λ [37] of the coefficient matrix is
given by

λ = ±1

2

√
λa ± λb; (11)

where

λa = (−κ4 + 2κ2P2R̂1α1 + 4κ2P 2
1 R̂2α2 + 4κ2P 2

2 R̂2α2

+2κ2P1(R̂1α1 + 12P2R̂2α2)); (12)

and

λb = 2κ2
√

(4P 4
1 R̂

2
2α

2
2 + P 2

2 (R̂1α1 + 2P2R̂2α2)2 + 4P 3
1 R̂2α2

(R̂1α1 + 36P2R̂2α2) + 2P1P2(7R̂2
1α

2
1 + 46P2R̂1R̂2α1α2+

72P 2
2 R̂

2
2α

2
2) + P 2

1 (R̂2
1α

2
1 + 92P2R̂1R̂2α1α2 + 280P 2

2 R̂
2
2α

2
2));

(13)

Hence λ has 4 different values.The MI gain is given by

G(κ) = Re λ (14)

We note that MI is possible only for the eigien value
λ = + 1

2

√
λa + λb where both λa and λb are real

for the condition 4R̂2
2α

2
2(P 4

1 + P 4
2 + 36P 3

1P2 + 36P 2
2 +

70P 2
1P

2
2 ) + R̂2

1α
2
1(P 2

2 + 14P1P2 + P 2
1 ) > 4(P 2

2 + P 3
1 +

23P 2
1P2)R̂1R̂2α1α2. The spatial frequency corresponding

to the maximum MI gain gives the optimum modulation
frequency which is given by

dG(κ)

dκ
= 0 (15)

IV. MODULATIONAL INSTABILITY

As described earlier, one of the most sought feature of the
composite system is its ability to tailor the effective non-
linearity of the system, which can enable one to naively
control the plasmonic effect of the system. By assuming
different combination of cubic and quintic nonlinearity in
the regime of non-local response, we study various fea-
tures of MI. In similar lines to the studies on MI, we first

study the effect of power on MI due to non-local nonlin-
earity. Further keeping the cubic nonlinearity constant,
we vary the coefficient of the quintic nonlinearity and
study the role of non-local responses on MI for various
combination of nonlinearities and strength of nonlocali-
ties. We also consider an intriguing special case relevant
to composite system, where the cubic nonlinearity of the
composite is null, while the effective nonlinearity can take
finite values. For uniformity, we have used dotted lines
to represent the rectangular response function and solid
lines to represent Gaussian response function.

A. Effect of power

To start with, it is customary to understand the influ-
ence of pump power on MI for different kinds of nonlinear
response functions. We have considered three represen-
tative combination of powers composing both symmet-
ric and asymmetric solutions. (i)P1 =1 , P2 = 0.1 and
(ii)P1 = 4 , P2 = 0.4 are the choice of powers for asym-
metric case, while (iii) P1 = 1, P2 = 1 corresponds to
symmetric solution. We have plotted the Gaussian and
the rectangular response functions separately with the
nonlinear coefficients as α1 = 1 and α2 = 0.1 in Fig2(a)
and 2(b), respectively. It is noted from Fig2(a) and
Fig2(b) that MI gain increases with power for both the
response functions as expected. The rectangular response
function showed increase in the MI gain and number of
bands with power. For Gaussian response function, MI
gain increases with power for all cases of nonlinearities.
In Fig2(c), where we have considered Gaussian response
function with symmetric power and the strength of non-
linearities as α1 = 1 and α2 = −0.1 an anomaly noted
is, here MI gain decreases for P1 = P2= 1 to P1 = P2=
2. At a power of 2 there is absolutely no MI and a fur-
ther increase in power increases the MI gain. Apart from
this, the symmetric solution in particular doesn’t have
any distinguished effect on MI from the asymmetric so-
lution. Hence for the further discussions, we consider
only the asymmetric solutions.

B. Effect of non-local strength

As the nonlocality play a crucial role in the dynamics of
MI, in Fig. 3 we show the contour Map of MI spectra as
a function of nonlocal strength. A general behaviour no-
ticeable in the MI spectrum is that, the nonlocal strength
monotonously decreases both the gain and bandwidth of
the MI bands Fig. 3(a) and 3(b). Thus the nonlocal
effect suppresses the MI. Interestingly, the rectangular
response function show additional sidebands at higher κ,
whose gain show unusual increase with σ as shown in the
Fig. 3(b). The MI features due to different non-local
response would be highlighted and comprehensively ana-
lyzed at different settings of nonlinearity in the following
sections.
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(a)

(b)

(c)

FIG. 2: (Color online) The variation of MI gain spectra with
power for the focusing nonlinearity with (a) gaussian response
function and (b) rectangular response function varying power
as P1 = 1, P2 = 0.1; P1 = 1, P2 = 1 and P1 = 4, P2 = 0.4
and the strength of nonlocality is σ= 10 and the strength of
nonlinearity as: (a) α1 = 1, α2 = 0.1(b)α1 = 1, α2 = 0.1 (c)
α1 = 1, α2 = −0.1 and the power varying symmetrically as
P1=P2= 1, 2, 3 and 4 for the Gaussian response function.

C. MI at different settings of nonlinear response

The study of MI in the regime of higher order nonlin-
earity (HON) is interesting as it would lead to many
new features, which would otherwise be impossible in the
conventional system only with cubic nonlinearity. For
instance, the quintic nonlinearity can either enhance or
suppress MI and also at some parametric conditions can
promote new sidebands. In what follows, we consider

(a)

(b)

FIG. 3: (Color online) The MI gain spectra as a func-
tion of strength of nonlocality for the (a) Gaussian response
(b) rectangular response for P1 = 1, P2=1 and α1 = 1, α2 =
−0.1

.

three different regime of nonlinearity based on the sign
of cubic nonlinearity and study MI with a particular em-
phasize on the non-local nonlinear response and quintic
nonlinearity.

1. Focusing nonlinearity (α1 > 0)

This is a typical case of spatial MI, where MI is generally
possible owing to the phase matching between the pos-
itive nonlinearity and diffraction. Two distinct types of
non-local response namely, Gaussian and rectangular re-
sponse function have been considered and the MI is stud-
ied for different combination of cubic and quintic nonlin-
earities as portrayed in Fig 4. With proper understand-
ing of the effect of non-local strength from the previous
section, to highlight other interesting features due to in-
terplay between HON and non-locality, we choose two
representative values of σ = 5 and 10. Fig. 4(a) repre-
sent the case of α1 > 0 and α2 > 0, where both nonlinear
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(a)

(b)

FIG. 4: (Color online) The MI gain spectra for the fo-
cussing nonlinearity with different nonlocal response func-
tion and varying the strength of nonlocality as σ= 5,10
and the strength of nonlinearity as: (a) α1 = 1, α2 = 0.1
(b)α1 = 1, α2 = −0.1 with other parameters as P1= 1 and
P2= 0.1

effects constructively reinforce to cause MI through phase
matching with diffraction effects, as in the case of con-
ventional scalar MI. This case is characterized by higher
gain due to the enhancement of the effective nonlinearity
as a result of the accumulated nonlinearity due to cubic
and quintic effects. The rectangular function behaves
qualitatively different leading to the emergence of new
spectral sidebands which we refer as secondary bands.
Whilst, the Gaussian response behaves quite similar to
conventional MI. Fig. 4(b) corresponds to the case of
α1 > 0 and α2 < 0, where both nonlinear effects com-
pete due to its opposite sign and the resulting instability
spectrum show MI bands with reduced gain, regardless of
the nature of non-locality. In this case, both the Gaussian
(solid line) and rectangular function behaves quite close,
except the fact that the gain of primary band of the rect-
angular function is more, and conversely the bandwidth
is lesser than the Gaussian function. It is also apparent
from the Fig. 4, that the increase in the strength of the
non-locality decreases the gain of MI, and in particular,
new spectral bands originate for higher values of σ.

2. Zero cubic nonlinearity (α1 = 0)

(a)

(b)

FIG. 5: (Color online) The MI gain spectra for the absence of
cubic nonlinearity with varying the strength of nonlocality as
σ=5,10 and the strength of nonlinearity as: (a)α1 = 0, α2 =
0.1(b)α1 = 0, α2=-0.1 with other parameter as P1= 1 and
P2= 0.1

This is particularly an intriguing situation (α1 = 0 and
α2 6= 0) typically characteristic to the composite struc-
tures. Here, by proper choice of the volume fraction of
the nanoparticles in the composite, one can delicately
nullify the lower order nonlinear effects (cubic nonlinear-
ity in the present setting), leaving only the next higher
order effects to take control on the nonlinear effects of the
system. Taking advantage of this unique feature, we con-
sider different combination of quintic nonlinearity based
on its sign. Fig. 5(a) represents the instability spectra
for α1 = 0 and α2 > 0, where the much needed phase
matching condition for the MI process is satisfied by the
positive (focusing) quintic nonlinearity, a process quite
similar to the conventional MI with cubic nonlinearity.
Fig. 5(b) is the situation where the quintic nonlinear-
ity takes negative value, still MI is made possible due
to XPM effects because of the destabilization of steady
state by XPM. It should be noted that, once the XPM
effects are ignored this particular case is implausible for
MI. In both the cases of quintic nonlinearity, the rectan-
gular function dominates the gain, with additional side-
bands for the case of α2 < 0. The effect of non-local
strength in this case is rather interesting, such that the
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(a)

(b)

FIG. 6: (Color online) The MI gain spectra for the varying
strength of quintic nonlinearity for the (a) rectangular and
(b)gaussian response functions with the other parameters as
σ=10, α1=0 P1=1 and P2=0.1

secondary spectral bands register a higher gain whose
peak gain is more than twice the gain of the primary
band. This is attributed to that fact the quintic nonlin-
earity generally promotes higher order spectral bands and
with increase in the strength of the non-locality, both col-
lectively acts to enhance the gain. As this case is partic-
ularly dominated by quintic nonlinearity, it is interesting
to understand the strength of quintic nonlinearity in MI
spectrum. Fig. 6 shows the evolution of spectral bands
with strength of quintic nonlinearity for both the case
of non-local functions. In both the cases, |α2| enhance
MI by increasing the gain of MI as well as the number
of sidebands. Particularly, the effect of α2 is more pro-
nounced in rectangular function with additional spectral
bands of higher gain (Fig. 6(a)), while the Gaussian func-
tion behaves rather in a straightforward way indicating
monotonous increase of gain with α2 as shown in Fig.
6(b).

3. Defocusing nonlinearity (α1 < 0)

(a)

(b)

FIG. 7: (Color online)The MI gain spectra for the defocus-
ing nonlinearity with different nonlocal response function and
varying the strength of nonlocality as σ=5,10 and the strength
of nonlinearity as: (a) α1 = −1, α2 = 0.1 (b)α1 = −1, α2 =
−0.1 and P1= 1, P2= 0.1

The defocusing nonlinearity is characterized by the nega-
tive values of the cubic nonlinearity and therefore, the MI
can be realized either by virtue of quintic nonlinearity or
through the XPM effects. Like in the previous section,
two different combinations of cubic and quintic nonlin-
earity given by different signs of α2 are considered. Fig.
7(a) represents the MI spectra corresponding to α1 < 0
and α2 > 0. In this case MI is possible by means of
the focusing quintic nonlinearity and crucially depends
on the relative strength of α1 and α2, as both are in the
opposite sign. One interesting feature of this particular
case is the emergence of the additional sidebands even for
lower value of σ for the rectangular response function.
This emphasize the relevance of the quintic nonlinear-
ity in the promotion of additional sidebands. Also, the
relative secondary to primary peak gain is higher than
the previous case of zero cubic nonlinearity. This quite
clearly establish the constructive interplay between quin-
tic nonlinearity and the non-local strength in the emer-
gence of higher order sidebands. The Gaussian response
shows a monotonous variation with strength of nonlocal-
ity as predicted in other cases. However the registered MI
gain is lower than the focusing cubic nonlinearity, this is
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(a) (b) (c)

FIG. 8: (Color online) The MI gain spectra for the scalar NLS equation with the strength of nonlinearity as: (a) α1= 1 (b)α1=
0 (c)α1= -1 and with other parameter as P1= 1, P2= 0 σ=10 and α2 having values 0.1 and -0.1 in each case.

FIG. 9: (Color online) The MI gain spectra for different non-
local response function with the various parameters as σ= 10,
α1 = 1, α2 = 0.1, P1= 1 and P2= 0.1.

clearly due to the weakened quintic nonlinearity of choice
in this present case.

Fig. 7(b) is the case of α1 < 0 and α2 < 0 where both the
nonlinearity are defocusing and the MI is realized purely
by means of XPM effects and when the cross coupling
effects are turned off, there is no instability in the case.
So, XPM plays a critical role in the origin of MI in this
regime. In this case, the nonlinearities only enhance the
gain and not fundamental to the existence of instability.
As in the previous case, the nonlocal strength decreases
the MI gain, but for the choice of the parameters no
higher order sidebands are noticed.

D. Results and Discussions

For a comprehensive picture and to make discussion
self-explanatory, we reproduce some of the results corre-
sponding to the scalar spatial MI [39, 40] and compare
with the present results on counter-propagating coupled
system. Fig. 8 show the MI spectra for three different
cases of cubic nonlinearity as discussed before. As the

spectrum is symmetric G(−κ) = G(κ), we content to
show only the positive spectrum. To facilitate compari-
son with the previous discussion on counter propagating
case, we ideally choose the same configuration of signs
of α1 and α2 as before. Fig. 8(a) shows the MI of the
focusing cubic media, where the solid line represents
the Gaussian response, while dashed line is the case of
rectangular nonlocal response. Two choice of quintic
nonlinearity have been considered depending on the sign
of α2. The Fig. 8(a) corresponds to the conventional

(a)

(b)

FIG. 10: (Color online) The direct simulation of the evolu-
tion of the (a) pump and the (b) probe beams with the the
nonlocal response function as the gaussian function and the
other parameters as α1= 0,α2=0.1, σ=10, A10=1, A20=0.1
and ω0=0.5

MI, which has been studied extensively and an extensive
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(a)

(b)

FIG. 11: (Color online) The direct simulation of the evolution
of the (a) pump and the (b) probe beams with the the non-
local response function as the rectangular function and the
other parameters as α1= 0,α2=0.1, σ=10, A10=1, A20=0.1
and ω0=0.5

discussion is needless here. It is apparent that the MI
gain is significantly lower than the gain corresponding
to Fig. 4, which agree with the results reported in
the MI with local nonlinear response [42]. The case
of zero cubic nonlinearity shown in Fig. 8(b) clearly
show the absence of MI when α2 < 0, this is due to
the lack of phase matching between diffraction and
defocusing nonlinear effect. However, for the present
problem on counter propagation case as described by
the Fig.5, MI has been realized regardless of the sign
of the quintic nonlinearity. The last is the case of
defocusing cubic nonlinearity, in this case the origin of
MI critically depends on the relative strength of α1 and
α2. Defocusing quintic nonlinearity(8(c)) is generally
not feasible for MI, however for the case of rectangular
non-local function, a secondary spectral band at higher
κ is noted, while Gaussian function is not unstable and
no MI is noticed. This observation is different from Fig.
7 of coupled system, where regardless of the combination
of signs α1 and α2 the instabilities are inevitably noticed.

For the better insight and to give a global picture on the
effect of various forms of popular nonlocal responses in
the MI of composite system, we plot in the Fig. 9 the
MI spectrum for different forms of available non-local
functions. As discussed earlier, the various nonlocal
functions are broadly classified into two classes, namely
definite and indefinite positive spectrum. So far, our

whole study was based on a representative case of non-
local functions from each categories, namely Gaussian
and rectangular functions. It is quite evident that
both class of nonlocal functions behaves qualitatively
different, which is also evident from the Fig. 9.

The solid curve corresponds to exponential and Gaussian
responses belonging to positive definite spectrum, where
the behaviour of MI bands are similar to the local
nonlinear system, difference being the magnitude of MI
gain as a result of change in the effective nonlinearity.
Whereas, the non-local response without positive defi-
nite spectrum such as rectangular and sine-oscillatory is
infact interesting for MI, as it would lead to increased
gain and additional instability window at higher κ as
represented by dashed lines in the Fig. 9. The strength
of nonlinearity also plays an important role, especially
for the case of rectangular function, as new spectral
spectral bands originates, which is found to be sensitive
to σ (refer Fig.9).

Moreover, it should be noted that in-addition to the non-
locality, the relative strength of the nonlinearity (α1/α2)
and the cross coupling effects are decisive in the origin
and the control of MI dynamics. For instance, there are
cases like zero cubic and defocusing quintic nonlinearity
(Fig. 5(b)) and defocusing cubic and quinitic (Fig. 7(b)),
the MI is attributed to the XPM effects, which destabi-
lize the steady state solution to cause MI (refer Figs.
5(b) and 7(b)). While in the case of focusing quintic
nonlinearity, regardless of the sign of cubic nonlinearity,
the phase matching for MI is satisfied through defocusing
quintic nonlinearity (Figs. 5(a) and 7(a)). Apart from
XPM effects, the relative strength of nonlinearity play a
substantial role in the emergence of additional sidebands
in MI, which is particularly true for rectangular func-
tions. It is noticed that depending on the value of the
relative strength of nonlinearity, more number of addi-
tional bands are observed. Interestingly for zero cubic
and defocusing cubic, for the parameter of choice, the
MI gain of the secondary bands dominates, whose gain
is nearly double than the conventional band.

For numerical appreciation, we numerically simulate Eq.
3 we choose the perturbed solution as, A1 = A2 =
Aj0 + a0Cos(ω0ρ), where Aj0 is the amplitude of the
propagating pump-probe beams and a0 = 10−4 is the
small perturbation in the amplitude ω0 is the optimum
modulation frequency. ξ = 2000 is the dimensionless
length of beam propagation, such that z = ξK−1 gives
0.121 cm as the length in units and ρ is the dimensionless
transverse direction in the range -200 to 200. We con-
sider the strength of nonlocality as σ = 10. Fig. 10 and
11 shows the qualitative results of the numerical simula-
tion showing the instability as the wave propagates along
z direction.
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V. CONCLUSION

We have theoretically studied the modulational instabil-
ity of a composite system showing nonlocal nonlinear re-
sponse. For our purpose, we have chosen the recent ex-
perimentally realized composite system of silver nanopar-
ticels in acetone. Such system enable to realize a desired
nonlinearity by properly choosing the volume fraction of
the nanoparticles in the composite. This striking fea-
ture of such system is particularly attractive for nonlinear
management. Taking advantage of this feature we have
assumed different combinations of signs of nonlinearity,
and systematically studied the dynamics of MI with par-
ticular emphasize on nonlocal nonlinearity. To generalize
the impact of nonlocality, the commonly available form
of nonlocal response functions have been considered. It is
quite obvious from our study that the nonlocal response
decreases the gain and bandwidth of MI, while at partic-
ular combination of the quintic nonlinearity it can even
promotes new spectral bands. The rectangular response
function is particularly attractive in MI dynamics, as it
enables additional instability windows, whose width and
numbers crucially depends on the strength of nonlocal-
ity. As far as cross coupling effects are concerned, the
MI is typically enhanced by XPM and especially in the
defocusing nonlinearity, the XPM effects are found to be
fundamental to the origin of MI. The relative strength of

nonlinearity is another factor playing a substantial role
either by increasing the gain or by promoting new spec-
tral bands. We also noticed, the choice of the nonlocal
response is indeed crucial, and the interplay with the non-
linearity accordingly impacts the MI dynamics. Thus we
comprehensively studied the MI dynamics in the compos-
ite system with competing nonlinearities with a particu-
lar emphasize on nonlocal nonlinear response. As there
are few works in the fabrication of composite systems, we
believe our theoretical results could simulate new exper-
iments especially in the context of nonlinear plasmonics.

Acknowledgments

K.P. thanks agencies DST, CSIR, NBHM, IFCPAR and
DST-FCT, funded by the Government of India, for the
financial support through major projects. KN acknowl-
edgs CNRS for post doctoral fellowship at the Univer-
site de Bourgogne, Dijon, and Agence Nationale de la
Recherche (ANR) for the research fellowship at Univer-
site de Grenoble-Alpes, Grenoble, France.

References

[1] N. Lepeshkin, W. Kim, V. Safonov, J. Zhu, R. Arm-
strong, C. White, R. Zuhr, and V. Shalaev, Journal of
Nonlinear Optical Physics and Materials 8, 191 (1999).

[2] X. Jiang, K. Guo, G. Liu, T. Yang, and Y. Yang, Super-
lattices and Microstructures 105, 56 (2017).

[3] Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami,
Nanotechnology 22, 275203 (2011).

[4] P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De,
Journal of Applied Physics 96, 6717 (2004).

[5] Y. X. Zhang and Y. H. Wang, RSC Advances 7, 45129
(2017).

[6] R. Souza, M. Alencar, E. Da Silva, M. Meneghetti, and
J. Hickmann, Appl. Phys. Lett. 92, 201902 (2008).

[7] A. Stalmashonak, G. Seifert, and A. Abdolvand, Op-
tical Properties of Nanocomposites Containing Metal
Nanoparticles (Springer International Publishing, Hei-
delberg, 2013), pp. 5–15.

[8] Z. A. V. Kauranen, Martti, Nat Photon 5, 737748 (2012).
[9] A. S. Reyna, K. C. Jorge, and C. B. de Araújo, Phys.
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