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Interactions among discrete oscillatory units (e.g., cells) can result in partially synchronized states
when some of the units exhibit phase locking and others phase slipping. Such states are typically
characterized by a global order parameter that expresses the extent of synchrony in the system.
Here we show that such states carry data-rich information of the system behavior, and a local order
parameter analysis reveals universal relations through a semicircle representation. The universal
relations are derived from thermodynamic limit analysis of a globally coupled Kuramoto-type phase
oscillator model. The relations are confirmed with the partially synchronized states in numerical
simulations with a model of circadian cells, and in laboratory experiments with chemical oscilla-
tors. The application of the theory allows direct approximation of coupling strength, the natural
frequency of oscillations, and the phase lag parameter without extensive nonlinear fits as well as a
self-consistency check for presence of network interactions and higher harmonic components in the
phase model.

Synchronization of rhythmic processes is an important
phenomenon [1–5] that underlies the functioning of many
essential physiological processes, e.g., in cardiac pace-
maker cells [6] and circadian clock neurons [7]. The in-
terpretation of data often relies on Kuramoto-Sakaguchi
model [8] type of phase equations, which formulate the
instantaneous frequencies (time derivative of the phases)
as a function of the phase difference between the oscilla-
tions [9]. In fact, this model is relevant to any globally
(all-to-all) coupled oscillator system provided the oscil-
lators are in the regime close to the onset of oscillations
through a Hopf bifurcation and the interaction between
them is weak. Other applications where validity of this
model was rigorously justified include Josephson junc-
tions arrays [10, 11] and electrical circuit oscillators [12–
14].

The oscillatory units (e.g., cells with periodic gene ex-
pressions) are often partially synchronized: the oscilla-
tions are neither fully synchronized, nor fully desynchro-
nized, but in a state in-between that provides a balance
for generation of strong rhythm and ability to adapt to
external change. The partially synchronized states can be
described through extensive experiments with changing
the coupling strengths, plotting the order parameter as
a function of the coupling strength, and comparing the
experimental results to the theoretical predictions [15–
19]. The type of behavior depends on the distribution
of natural frequencies, coupling strength, and the oscil-
lation sheer (phase shift in the coupling that can slow
down or speed up weakly coupled oscillators without
phase locking) [20]. Present theoretical approaches fo-
cus on solving the asymptotic behavior of the Kuramoto-
Sakaguchi equation, typically showing the order parame-
ters as a function of coupling strength assuming that the
frequency distribution and the phase shift parameter are
known [21, 22].

Experimental data (in particular in biological systems)
can be often collected only at a given coupling strength,

and a-priori very little is known about the phase shift
parameter or the exact natural frequencies of oscillators.
Therefore, a question arises whether some universal rela-
tions exist for the evolution of the phases in terms of the
Kuramoto-Sakaguchi equation, that could be compared
to the experimental data at the given coupling strength.

In this paper, we show the existence of the univer-
sal properties of the partially synchronized states of
the Kuramoto-Sakaguchi equation in the thermodynamic
limit. A synchronization analysis is developed, which re-
lies on the behavior of the local order parameter. The use
of a semicircle representation is tested in numerical cal-
culations with finite-size phase models and with a model
of circadian gene expressions, as well as in experiments
with chemical oscillators.

I. KURAMOTO-SAKAGUCHI MODEL

The Kuramoto-Sakaguchi model [8]

dθk
dt

= ωk −
K

N

N∑
j=1

sin(θk − θj + α), k = 1, . . . , N, (1)

describes dynamics of N globally coupled phase os-
cillators θk ∈ R mod 2π with the natural frequen-
cies ωk drawn randomly from a specific distribution g(ω).
Given a distribution g(ω) and a phase-lag parameter
α ∈ (−π/2, π/2) and varying coupling strength K from
zero to large positive values one usually observes synchro-
nization transition scenario [23, 24] shown schematically
in Fig. 1. The synchronization is characterized with the
Kuramoto order parameter

r(t) =
1

N

N∑
k=1

eiθk(t), (2)

which measures the synchrony between oscillators such
that |r(t)| = 1 and |r(t)| ≈ 0 stand for the perfectly syn-
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chronous state and for disordered phase configurations
respectively. If coupling K is smaller than a certain
critical value Kc the asynchronous (incoherent) state,
Fig. 1(a), is stable. For larger coupling strengths one ob-
serves the onset of partial synchrony, Fig. 1(b), with |r(t)|
growing with the increase of K. Finally, when K exceeds
another critical value Ks all oscillators get phase-locked,
Fig. 1(c).
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FIG. 1: Synchronization transition in the Kuramoto-
Sakaguchi model (1) with large number of oscillators N . Inco-
herence (a), partial synchrony (b) and phase-locked state (c)
are observed for K < Kc, Kc < K < Ks and K > Ks re-
spectively, where Kc and Ks are threshold values depending
on g(ω) and α. Additional panels show phase snapshots θk
and time-averaged phase velocities < θ̇k > typical for these
states.

Modulus |r(t)| usually exhibits finite size fluctations,
therefore in practice one replaces it with the mean order
parameter

R = 〈|r(t)|〉, (3)

where the angle brackets 〈·〉 denote time average. More-
over, a detailed representation of stationary regimes in
the supercritical region, i.e. for K ≥ Kc, can be obtained
if one records the effective frequencies

Ωk =

〈
dθk
dt

〉
= lim
T→∞

θk(T )− θk(0)

T
. (4)

In this paper, for each oscillator we also define a com-
plex quantity characterizing its mutual entrainment to
the mean field, the local order parameter

ζk =

〈
−ieiθk(t) r(t)

|r(t)|

〉
∈ C, (5)

where r(t) denotes the complex-conjugate of r(t). The
oscillator with |ζk| = 1 is synchronized (or phase-locked)
with respect to the Kuramoto order parameter r(t), while
the oscillator with |ζk| < 1 is desynchronized and drifts
with respect to it. Note that motivation for definition (5)
originates from formula (A15) in Appendix A.

It turns out that in many cases the triplet
(R, {Ωk}, {ζk}) constitutes a unique signature of the
state developed by the system (1). In Section II we show
that the elements of this triplet satisfy some universal
relations.

The universal relations allow a simple approximation of
parameters of the system (1) from partially synchronized
states (Sections III A and III B). Moreover, these rela-
tions allow to demonstrate the non-uniqueness of param-
eter reconstruction for phase-locked states (Section III C)
and identify the Kuramoto-Sakaguchi model among other
Kuramoto-type models (Section III D). In Section IV we
show two examples illustrating the application of univer-
sal relations for primary treatment of the data in cir-
cadian oscillators and experiments with electrochemical
osccillators. Some concluding remarks are given in Sec-
tion V.

Two appendices at the end of the paper summarize
the details of the thermodynamic limit analysis for the
Kuramoto-Sakaguchi model (Appendix A) and describe
the experimental setup for electrochemical oscillators
(Appendix B).

II. UNIVERSAL RELATIONS

In the limit N → ∞ the state of the phase oscil-
lators {θk(t)} can be described by a probability den-
sity function ρ(θ, ω, t) such that ρ(θ, ω, t) dω dθ deter-
mines the probability to find oscillator with (ωk, θk(t)) ∈
[ω, ω+dω]×[θ, θ+dθ] at the time t. The mean-field struc-
ture of Eq. (1) allows to write a nonlinear hyperbolic
integro-differential equation, so called continuity equa-
tion, describing the evolution of ρ(θ, ω, t). This equation
can be analyzed using the method suggested by Ott and
Antonsen in [25, 26]. In particular, it can be shown, see
Appendix A, that all stationary partially synchronized
states of Eq. (1) are represented by a two-parametric fam-
ily of periodic solutions of the continuity equation [50].
Explicit form of these solutions and numerically observed
ergodicity of partially synchronized states result in the
following identities

R = p/K, (6)

ζk = h(sk)e−iα, (7)

Ωk = Ω + pQ(sk), (8)

where

sk =
ωk − Ω

p
, (9)

and (Ω, p) ∈ R × (0,∞) is a pair of numbers parame-
terizing the manifold of partially synchronized states. A
remarkable feature of formulas (7) and (8) is that their
right-hand sides are expressed via the two universal func-
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tions

h(s) =


(
1−
√

1− s−2
)
s for |s| > 1,

s− i
√

1− s2 for |s| ≤ 1,
(10)

and

Q(s) =

{
s
√

1− s−2 for |s| > 1,

0 for |s| ≤ 1,
(11)

which are independent of the particular choice of natural
frequencies ωk and other system parameters K and α,
therefore we call these formulas universal relations. In
Section II A we show that although formulas (6)–(8) are
justified for the limit N → ∞ only, they remain a good
approximation for large but fixed sizes N too.

A. Accuracy of universal relations

In order to test formulas (6)–(8) in the finite-N case we
performed a series of numerical simulations of model (1)
with natural frequencies ωk drawn randomly from the
Gaussian distribution

G(ω) =
1√
2π
e−ω

2/2.

For fixed system size N and fixed parameters K and α
we generated 1000 realizations of the natural frequen-
cies ωk. For each realization we integrated system (1)
using the Runge-Kutta scheme with the constant time
step dt = 0.02. Starting from random initial conditions
and discarding a transient of the length 1000 time units,
we used next T = 1000 time units to calculate the ob-
servables R, ζk and Ωk. More precisely, we used formu-
las (3)–(5) where time averages 〈 . . . 〉 were replaced with
their finite time analogs

〈 . . . 〉T =
1

T

∫ T

0

( . . . ) dt. (12)

Mean field velocity (or rotational velocity of order pa-
rameter) was computed from the formula

Ω =
Arg r(T )−Arg r(0)

T
,

where Arg r(t) denotes the continuously varying argu-
ment of the order parameter r(t).

Given K, ωk, R and Ω we computed p and sk from (6)
and (9). Inserting them into formulas (7) and (8) and
dividing the latter by p = KR we obtained two dimen-
sionless expressions

d
(1)
k =

∣∣∣∣ζk − h(ωk − Ω

KR

)
e−iα

∣∣∣∣ , (13)

d
(2)
k =

∣∣∣∣Ωk − Ω

KR
−Q

(
ωk − Ω

KR

)∣∣∣∣ (14)

measuring the discrepency in each of formulas (7)

and (8). The distribution of discrepencies d
(1)
k and d

(2)
k

was charcterized by the mean values

δ(n) =
1

N

N∑
k=1

d
(n)
k , n = 1, 2,

and the variances

σ(n) =

√√√√ 1

N

N∑
k=1

(
d

(n)
k − δ(n)

)2

, n = 1, 2.

Averaging them over 1000 realizations of the natural fre-

quencies ωk we obtained mean values δ
(n)
m and σ

(n)
m .

Fig. 2(a),(b) shows that formulas (6)–(8) are satisfied
with good accuracy already for moderate system sizes N .
The accuracy is better than 10% already for N ≥ 30
oscillators and the mean discrepency decreases inversely
proportional to the system size N .

Fig. 2(c),(d) explains how the accuracy of formu-
las (6)–(8) depends on the values of the coupling
strength K and the phase lag α. In general, we observe
the following tendency. The accuracy is very good for all
values (K,α) where partially synchronized states exist,
except of the values close to the onset of partial synchro-
nization. In this case interaction between oscillators is
very weak and cannot be identified with satisfactory res-
olution. Taking into account the scaling behavior shown
in Fig. 2(a),(b), one may expect that for increasing sys-
tem size the region of low accuracy of formulas (6)–(8)
becomes smaller and shrinks for N →∞.

III. APPLICATION OF UNIVERSAL
RELATIONS

Now we show some applications of universal rela-
tions (6)–(8). In Section III A we formulate a math-
ematical algorithm allowing to approximate all param-
eters of the Kuramoto-Sakaguchi model (1) from the
triplet (R, {Ωk}, {ζk}) corresponding to a partially syn-
chronized state. The accuracy of this approach is an-
alyzed in Section III B. Next, in Section III C we show
that for phase-locked states the parameter reconstruction
problem has infinitely many solutions constituting a two-
dimensional manifold. Finally, in Section III D we show
how universal relations (6)–(8) can be used to discrimi-
nate between the Kuramoto-Sakaguchi model and more
complicated Kuramoto-type models with inhomogeneous
coupling topology and non-sinusoidal phase interaction
functions.

A. Parameter approximation

Suppose that we observe a stationary partially syn-
chronized state in system (1) and measure the instanta-
neous phases θk(t) of all oscillators over a time interval
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FIG. 2: Accuracy of universal relations (6)–(8) for the Kuramoto-Sakaguchi model (1). Panels (a), (b): Distribution of
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k and d
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k for different system sizes N . Solid lines show mean values δ
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m and δ
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(n)
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m and δ
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m for different values of K

and α. Vertical dotted lines show the onset of synchrony Kc for chosen values of α.

of length T . For sufficiently large T time averages 〈 . . . 〉
in formulas (3)–(5) are well approximated by their finite
time analogs 〈 . . . 〉T , see (12). Thus, we can calculate the
mean order parameter R, the effective frequencies Ωk and
the local order parameters ζk of the oscillators. For a par-
tially synchronized state we must have 0 < R < 1. More-
over, the effective frequencies Ωk cannot be completely
locked, i.e. at least some of them must be different.

For the local order parameters, by definition we have
|ζk| ≤ 1. Moreover, for partially synchronized states, for-
mula (7) implies that points ζk are located at the bound-
ary of a unit semicircle, which is the image of h(s)e−iα

for s ∈ R, see Fig. 3(a). This fact can be used to calculate
the phase lag α from the plot of local order parameters ζk
as follows.

Function h(s) defined by formula (10) satisfies the
equation

s =
h2(s) + 1

2h(s)
∈ R, (15)

therefore, to fit the relation (7) we seek a phase lag pa-
rameter α that minimizes the function

P (α) =

N∑
k=1

[
Im

(
ζ2
ke

2iα + 1

2ζkeiα

)]2

= 2B − 2Re
(
Ae2iα

)
, (16)

where

A =

N∑
k=1

(|ζk|2 − 1)2ζ2
k

16|ζk|4
, B =

N∑
k=1

(|ζk|2 − 1)2

16|ζk|2
.

Simple calculations demonstrate that for |A| 6= 0 func-
tion P (α) has a unique minimum α̂ ∈ (−π/2, π/2) given
by

α̂ = −1

2
argA, (17)

see Fig. 3(b). For infinitely large systems equations (7)
are exact, therefore formula (17) yields true value of
phase lag α in Eq. (1), while for finite size systems we
may expect that α̂ is a good approximation of α. The
latter will be verified in Section III B.

Next, using α̂ we calculate the approximated rescaled
natural frequencies

ŝk = Re

(
ζ2
ke

2iα̂ + 1

2ζkeiα̂

)
. (18)

Because of (8) the points in the (ŝk,Ωk) graph should
follow Ωk = Ω + pQ(ŝk), where p is the frequency scaling
factor and Ω is the frequency of the order parameter r(t),
see Fig. 3(c). Since for partially synchronized states we
have |ŝk| > 1 at least for some fraction of indexes k,
this relationship allows us to formulate a linear fitting
procedure

N∑
k=1

(Ωk − Ω− pQ(ŝk))
2

= min

determining the parameters p and Ω. Its solution can be
written explicitly

p̂ =
NΣΩQ − ΣΩΣQ
NΣQQ − Σ2

Q

, Ω̂ =
1

N
ΣΩ −

p̂

N
ΣQ,
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FIG. 3: Data representation and parameter approximation for numerical simulation data from model (1). (a) Computed values
of ζk (dots) and their semi-circle fit (solid curve). (b) Approximated phase lag α̂ is the minimum of the function P (α), see
formula (16). (c) The best fit (solid curve) of the dependence between Ωk and ŝk (dots). (d) Approximated ω̂k vs. actual ωk
natural frequencies. Parameter approximation quality: (a) C1 = 4.3× 10−5 and (c) 1− C2 = 1.2× 10−5.

where

ΣΩ =

N∑
k=1

Ωk, ΣΩQ =

N∑
k=1

ΩkQ(ŝk),

ΣQ =

N∑
k=1

Q(ŝk), ΣQQ =

N∑
k=1

Q(ŝk)2.

To quantify the correlation between measured
data θk(t) and formulas (6)–(8) one can use two fitting
quality coefficients:

(a) The quality of the semicircle fit is described by the
ratio

C1 =
minP (α)

maxP (α)
=
B − |A|
B + |A|

, (19)

which measures how pronounced is the minimum of func-
tion P (α). Ideally C1 must be close to zero. Large C1 cor-
responds to poor correlation between the input data R,
ζk, Ωk and formulas (6)–(8).

(b) The quality of the linear fit is determined by the
corresponding correlation coefficient

C2 =
NΣΩQ − ΣΩΣQ√

NΣQQ − Σ2
Q

√
NΣΩΩ − Σ2

Ω

, (20)

where ΣΩΩ is defined by analogy with ΣQQ. |C2| values
close to 1 represent good fit.

If the semicircle fit and the linear fit confirm that mea-
sured data agree with formulas (6)–(8), then all parame-
ters of this model can be calculated: the phase shift can
be obtained using Eq. (17), and the effective coupling
strength and the natural frequencies can be calculated
as follows

K̂ = p̂/R and ω̂k = Ω̂ + p̂ŝk. (21)

B. Parameter approximation accuracy

The accuracy of the parameter approximation algo-
rithm from Section III A was tested by applying it to

surrogate data from numerical simulations of model (1).
We used the same protocol as in Section II A. Namely,
for fixed system size N and fixed parameters K and α we
generated 1000 realizations of the Gaussian distributed
natural frequencies ωk. For each realization we inte-
grated system (1) starting from random initial condi-
tions. Discarding a transient of the length 1000 time
units, we used next T = 1000 time units to calculate the
observables R, ζk and Ωk from the formulas (3)–(5) where
time averages 〈 . . . 〉 were replaced with their finite time
analogs 〈 . . . 〉T . The approximation error of the modified
formulas (3)–(5) was computed by

E = max
τ∈[T/2,T ]

|〈 . . . 〉τ − 〈 . . . 〉T | .

(For the chosen averaging time T = 1000 this error was
much smaller than the corresponding mean discrepen-

cies δ
(1,2)
m of universal relations (6)–(8).)

Computed values R, ζk and Ωk were processed us-
ing the parameter approximation algorithm from Sec-
tion III A. For example, Fig. 3 shows how the algorithm
works for model (1) with N = 100, K = 2.5 and α = π/8.

For each realization we calculated two fitting quality
coefficients C1 and C2 defined by (19) and (20) as well
as the reconstruction errors

Eω =
1

N

N∑
k=1

|ω̂k − ωk| , EK =
|K̂ −K|

K
, Eα =

|α̂− α|
π/4

,

where K, α, ωk are input parameters, and K̂, α̂, ω̂k are
their approximated values. A mean error estimate was
calculated by averaging the errors over 1000 realizations.
Note that because of the finite system size N , for a given
natural frequency realization there exists a critical cou-
pling strength Ks such that for K ≥ Ks system (1) has a
global phase-locked state attractor. If in our simulations
we encountered such a realization we discarded it and
generated a new one till we obtain a system (1) exhibit-
ing a partially synchronized state.

Fig. 4 shows the dependence of the parameter approx-
imation accuracy on the system size N , while Fig. 5 ex-
plains how this accuracy depends on the values of the
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FIG. 4: Parameter approximation accuracy for the
Kuramoto-Sakaguchi model (1) with Gaussian frequency dis-
tribution G(ω) and different sizes N . (a) Reconstruction er-
rors of natural frequencies Eω, coupling strength EK and
phase lag Eα. (b) Fitting quality coefficients C1 and C2.

coupling strength K and the phase lag α. Comparing
these results with Fig. 2 we see that the accuracy of the
parameter approximation algorithm varies similarly to
the accuracy of universal relations (6)–(8). In particular,
it decreases inversely proportional to the system size N
and remains nearly constant for all values (K,α) where
partially synchronized states exist, except of the val-
ues close to the onset of partial synchronization. More-
over, the fitting quality coefficients C1 and C2 shown in
Fig. 4(b) and Fig. 5(b),(c) confirm that formulas (6)–(8)
indeed are satisfied with good accuracy in all tests.

C. Parameter approximation for phase-locked
states

For large coupling strengths K system (1) exhibits
phase-locked states characterized by identical effective
frequencies Ωk. In this case all oscillators are entrained
to the mean field, therefore |ζk| = 1 for all k = 1, . . . , N .
Thermodynamic limit analysis shows that formulas (6)–
(8) remain valid for phase-locked states too. However,
the reconstruction algorithm from Section III A does not
give a unique solution for system parameters ωk, K
and α. Indeed, if we look at the graph of local order
parameters ζk of a phase-locked state, see Fig. 6, we
find that there exist two angles α̂min, α̂max ∈ (−π/2, π/2)
such that for every α ∈ [α̂min, α̂max] all points ζk lie on
the semicircle {h(s)e−iα : s ∈ R}. In this case, we
cannot use formula (8) to determine the parameter p,
because for |ζk| = 1 formula (18) yields |ŝk| ≤ 1 and

hence Q(ŝk) = 0. However, if we assume Ω̂ = Ωk (recall
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FIG. 5: Parameter approximation accuracy for the
Kuramoto-Sakaguchi model (1) with Gaussian frequency dis-
tribution G(ω) and different values of K and α. Notations Eω,
EK , Eα, C1 and C2 the same as in Fig. 4. Vertical dotted
lines show the onset of synchrony Kc for chosen values of α.

that all Ωk are identical), then for arbitrary choice of

(α̂, p̂) ∈ [α̂min, α̂max]× (0,∞)

formulas (21) determine parameters K̂ and ω̂k of
the system (1) consistent with the observed triplet
(R, {Ωk}, {ζk}). Thus, the parameter approximation
problem has a two-parametric set of solutions.

D. Identification of the Kuramoto-Sakaguchi model

Partially synchronized states similar to those shown
in Fig. 1(b) can be found not only in the Kuramoto-
Sakaguchi model (1) but also in more complicated
Kuramoto-type models with non-global coupling or phase
interaction which is not purely sinusoidal. To identify
such situations and distinguish them from the case of sim-
pler Kuramoto-Sakaguchi model, one can use additional
mathematical tests based on the universal relations (A19)
and (A20) from Appendix A.
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Non-global coupling. The Kuramoto-Sakaguchi
model (1) is a special case of the model

dθk
dt

= ωk−
Kk

N

N∑
j=1

sin(θk−θj+α), k = 1, . . . , N, (22)

with non-identical coupling strengths Kk. Suppose that
in system (22) we observe a partially synchronized state
with a triplet (R, {Ωk}, {ζk}). Using the reconstruction
algorithm we can erroneously identify this state as a state
in the Kuramoto-Skaguchi model and reconstruct its cou-
pling strength K̂, phase lag α̂ and natural frequencies ω̂k.
To avoid the misinterpretation, we have to calculate N
parameters

K̂k =
ω̂k − Ωk

R Re(ζkeiα̂)
. (23)

According to the formula (A20) from Appendix A, for

the Kuramoto-Sakaguchi model (1) all K̂k must be iden-
tical. In contrast, if coupling topology between oscilla-
tors is non-global then this property is violated. The
L∞-variance is sufficient to characterize this effect:

∆K = max
k

K̂k −min
k
K̂k.

To illustrate the proposed test we consider the
model (22) with coupling strengths Kk evenly distributed
in the interval [K(1− ε),K(1 + ε)] with ε > 0, i.e.

Kk = K

(
1− ε+

2ε(k − 1)

N

)
. (24)

For fixed ε we computed a trajectory of system (22) and
processed it with the parameter approximation algorithm

∆K

ε

 0

 0.5

 0  0.2  0.4

FIG. 7: Variance ∆K for the model (22), (24) with different
widths ε of the coupling strength distribution (24). Param-
eters: N = 100, K = 2.5, α = π/8 and some realization of
Gaussian distributed natural frequences ωk.

from Section III A. Fig. 7 shows the dependence of ∆K
on ε forN = 100, K = 2.5, α = π/8 and a particular real-
ization of Gaussian distributed natural frequences ωk. As
expected, the variance ∆K is negligibly small for ε = 0
and increases monotonously for growing ε. For N = 100,
mean accuracy of the coupling strength reconstruction is
KEK ≈ 0.032, see Fig. 4(a). Hence, every measurement
∆K > 0.032 (above the shaded region in Fig. 7) indi-
cates that the measured triplet (R, {Ωk}, {ζk}) does not
fit the Kuramoto-Sakaguchi model. This means that for
chosen parameters we can reliably detect inhomogenieties
exceeding 7% of K.
Non-sinusoidal phase interaction. Partially synchro-

nized states can also be found in the Kuramoto-type
models with global coupling but non-sinusoidal interac-
tion between osillators. For example, this can be the
Kuramoto-Daido model

dθk
dt

= ωk −
K

N

N∑
j=1

f(θk − θj), (25)

where

f(θ) = sin(θ + α) + γ sin(2θ). (26)

In order to discriminate between the Kuramoto-
Sakaguchi model (1) and more complicated model (25),
we can look at the local order parameters of higer orders

ζ
(n)
k =

〈
(−i)neinθk(t) r(t)

n

|r(t)|n

〉
, n = 2, 3, . . . .

The Ott-Antonsen theory [25] says (see formula (A19) in
Appendix A) that for purely sinusoidal phase interaction,
i.e. γ = 0, all partially synchronized states lie in the

manifold satisfying identities ζ
(n)
k = ζnk where ζk ≡ ζ

(1)
k .

To detect deviations from this property we can monitor
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the expressions

∆n = max
k

∣∣∣∣∣1− ζ
(n)
k

ζnk

∣∣∣∣∣ , n = 2, 3, . . . .

Fig. 8 shows the dependence of ∆2 on γ for N = 100,
K = 2.5, α = π/8 and a particular realization of Gaus-
sian distributed natural frequences ωk. The indicator

∆ 2

γ

 0

 0.7

-1 -0.75 -0.5 -0.25  0  0.25

FIG. 8: Indicator function ∆2 for the Kuramoto-Daido
model (25)–(26) with γ ∈ [−1, 0.25]. Other parameters:
N = 100, K = 2.5, α = π/8 and some realization of Gaussian
distributed natural frequences ωk.

function ∆2 is almost vanishing for γ = 0 and is sepa-
rated from zero for γ 6= 0. To make this criterion pre-

ciser we take into account that the mean discrepency δ
(1)
m ,

see Section II A, can be considered as expected accuracy
of local order parameters ζk. Then the accuracy of ζ2

k

equals 2δ
(1)
m and the accuracy of ∆2 is likely to be 4δ

(1)
m .

Now, if ∆2 > 4δ
(1)
m (shaded region in Fig. 8) then we

can conclude that phase interaction function f(θ) is not
purely sinusoidal but contains higher order harmonics.

IV. PRACTICAL EXAMPLES

In this section we demonstrate the application of the
universal relations (6)–(8) and the reconstruction algo-
rithm from Section III A in two realistic experiments.

A. Circadian oscillators

We consider a population of N = 100 circadian os-
cillators [27]. Each oscillator is described by a three-

dimensional ODE system

dMk

dt
= vs,k

Kn
I

Kn
I + PnN,k

− vm,k
Mk

Km +Mk
, (27)

dPC,k
dt

= ksMk − vd
PC,k

Kd + PC,k
− k1PC,k + k2PN,k,(28)

dPN,k
dt

= k1PC,k − k2PN,k, (29)

where Mk is nuclear mRNA (e.g., Period), PC,k, and
PN,k are the cytosolic and nuclear clock protein concen-
trations in the k-th cell, and the kinetic parameters are
set to n = 4, KI = 1 nM, Km = 0.5 nM, ks = 0.417 1/h,
vd = 1.167 nM/h, Kd = 0.13 nM, k1 = 0.417 nM/h,
k2 = 0.5 nM/h. The inherent heterogeneities of indi-
vidual cells are modelled by choosing parameters vm,k in
Eq. (27) from a Gaussian distribution with a standard de-
viation of 4× 10−3 nM/h and a mean value of 0.5 nM/h.
The coupling between oscillators is global and is defined
by [28]

vs,k(t) = v0 + κ(Mav(t)−Mk(t))

where v0 = 0.83 nM/h, κ = 0.02 1/h and

Mav(t) =
1

100

100∑
k=1

Mk(t).

Physically, the coupling increases the maximum tran-
scription rate of a cell based on the difference between
the mRNA level of the k-th cell and the mean group lev-
els through a multistep, VIP receptors mediated mecha-
nism [28].

The mRNA level of the k-th cell Mk(t) is used to deter-
mine the geometric phase of the corresponding oscillation

φk(t) = arg
(
Mk(t)− 〈Mk(t)〉 − iṀk(t)

)
,

where 〈Mk(t)〉 denotes the time average of Mk(t). Then
we apply formulas of the universal relations, using the
geometric phases φk instead of the unknown physical
phases θk. Fig. 9(a)-(e) shows results for a particular nu-
merical experiment at an intermediate coupling strength
that generates a partially synchronized state. The exper-
imental data fits well the semi-circle, with a tilt that cor-
responds to a large positive phase shift α̂ = 1.260. This
positive phase shift, which corresponds to the speeding
up of the oscillations, was noted in the previous work [28],
and has important consequence on the synchronization
properties. For example, in this given partially syn-
chronized population, all the unsynchronized cells have
large natural frequencies. We note that the large phase
shift could induce chimera states (e.g., co-existence of
coherent and incoherent oscillations even without hetero-
geneities [29–31]) in network topologies of the circadian
oscillator system.

The approximated coupling strength is K̂ = 0.010 and
there is excellent correlation between the approximated
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FIG. 9: Data representation and parameter approximation for numerical simulation data from a model of circadian cells
(panels (a)–(d)), and for two laboratory experiments with chemical oscillators (panels (e)–(l)). Panels (a), (e), (i): Computed
values of ζk (dots) and their semi-circle fit (solid curve). Panels (b), (f), (j): Approximated phase lag α̂ is the minimum of
the function P (α), see formula (16). Panels (c), (g), (k): The best fit (solid curve) of the dependence between Ωk and ŝk
(dots). Panels (d), (h), (l): Approximated ω̂k vs. actual ωk natural frequencies. Reconstruction quality: (a) C1 = 0.002 and
(c) C2 = 0.999, (e) C1 = 0.006 and (g) C2 = 0.983, (i) C1 = 0.005 and (k) C2 = 0.987.

and the actual natural frequencies, as shown in Fig. 9(d).
We note that the two frequencies are not identical; in-
stead, there is an offset of about 0.0090 rad/hour. This
offset exists because the shifted interaction function in
the phase model (1) has non-zero value at zero phase
difference. However, the coupling between the cells oc-
curs through concentration differences, therefore, at zero
phase difference the effect of coupling on the frequen-
cies should be zero. The approximated natural frequen-
cies ω̂k can be considered as dynamical frequencies, which
have the same distribution as the original frequencies, but
could have an offset. If we can assume that the coupling
is through differences, the offset can be approximated as
K̂ sin α̂ = 0.0095 rad/h, which is in excellent agreement
with the offset in the figure (0.009 rad/h).

The numerical simulations with the model thus predict
that the universal relations could exist for the circadian
gene expressions. Experimental implementation can use
imaging of the circadian protein levels of the SCN slice
cell population, e.g., using PER2-luciferase knock-in re-
porter [32]. The SCN cells have high levels of synchrony

(close to phase-locked state) [32], nonetheless, as shown
in Section III C, even in this case a range of the phase
lag parameter could be obtained that should reveal an
important dynamical property of the circadian system.

B. Electrochemical oscillators

We test the existence of universal relations with the ex-
perimental data measured for a system of N = 80 chem-
ical oscillatory units. The experimental systems consists
of oscillatory nickel dissolution on a multi-electrode ar-
ray [15]. (See Appendix B for detailed description of the
experimental setup.) On the surface on each of the elec-
trodes in the array, an oscillatory chemical reaction takes
place (nickel electrodissolution). At constant circuit po-
tential the rate of dissolution can be measured as the
current, and the phases of the oscillations can be recon-
structed with the Hilbert transform method [15]. Global
coupling among the oscillators occurs when the electrodes
are coupled to a potentiostat through a common (shunt)
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resistance. When the coupling is sufficiently strong, a
partially synchronized states occur that was attributed to
a Kuramoto transition by careful analysis of the order pa-
rameter as a function of coupling strength [15]. Now we
use only a single data set to analyze the partially synchro-
nized state. Fig. 9(e)-(h) shows that complex parame-
ters ζk and effective frequencies Ωk (dots) do concentrate
around the curves corresponding to universal relations
predicted by the thermodynamic limit. This permits us
to determine the values of all natural frequencies ω̂k, see
Fig. 9(h), as well as coupling strength K̂ = 0.181 and
phase lag parameter α̂ = −0.009. The nearly zero value
of α̂ confirms the results of independent experiments that
for coupling through resistance the phase shift parameter
is nearly zero [33].

We also performed experiments in which a small ca-
pacitance was attached in parallel with the coupling re-
sistance. In such scenario, the coupling signal cannot be
described with difference of variables, but instead occurs
through a mediating dynamical variable (potential drop
over the RC circuit). As shown in Fig. 9(i)–(l), the uni-

versal relations still hold well and gave K̂ = 0.115 and a
negative phase shift α̂ = −0.719. The experiments thus
confirm that the universal relations arise for complex cou-
pling mechanism that can be effectively described with a
phase lag in the interaction function.

Note that the phases of electrochemical oscillators
above were obtained via the Hilbert transform of the cor-
responding current signals [15], therefore the phases used
in the parameter approximation algorithm not necessar-
ily were physical phases of these oscillators. Although
in our experiments we did not detect any loss of the pa-
rameter approximation accuracy, this can be different in
other situations where the choice of unsuitable phase may
result in uncontrolled systematic errors of the parameter
approximation algorithm. In such cases, to avoid the
problem one has to employ the protophase transforma-
tion [20, 34, 35].

V. CONCLUSIONS

We showed that the local order parameter plot of a
partially synchronized system exhibits universal features
that can be interpreted with the Kuramoto-Sakaguchi
model. The semicircle fit representation of the partially
synchronized state is thus a promising diagnostic tool
that can be used to investigate the dynamics of coupled
oscillators. In particular, the non-invasive nature of the
method makes it suitable for data obtained from living
or engineered systems, where intervention (e.g., chang-
ing coupling strengths) could be costly or dangerous.
The existence of the universal relations allows an initial
approximation of coupling strength, phase-lag parame-
ter, and the natural frequency of the oscillators. Similar
techniques rely on fitting of the instantaneous frequen-
cies to model equations [36, 37]. The universal relations
provide alternative means to such parameter reconstruc-

tions. An advantage of using our parameter approxima-
tions is that they provide a simple visual representation
through a semi-circle fit, they rely on formulas containing
time-averaged quantities, and the accuracy of the approx-
imation improves for large system size. (With the fitting
technique the accuracy typically decreases with increas-
ing system size [36].) Moreover, the universal relations
provided a range of self-consistency checks, e.g., for pres-
ence of network interactions and higher order terms in
the interaction functions. With full (instead of partial)
synchronization, an upper and lower bound for the phase
shift parameters can be defined, and a two-parametric
set of approximated natural frequencies and coupling
strengths can be calculated. If the experimental data
is found to be consistent with the Kuramoto-Sakaguchi
model, then a large array of techniques, based on phase
model machinery, can be used for predictions and design
of the system behavior, e.g., for desynchronization [4],
optimal network architecture [38], or patterns induced
by external entrainment [39]. Furthermore, the univer-
sal relations allow decomposition of extent of partially
synchronized states in three contributing factors: (i) het-
erogeneity of natural frequencies, (ii) coupling strength,
(iii) coupling phase lag (e.g., delay). Such decomposition
could greatly aid revealing the underpinning of collective
behavior in large oscillator arrays, e.g., in densely con-
nected brain regions responsible for generation of epilep-
tic seizures [40].

We note that while the coupling among the oscillators
was assumed global (all-to-all), this may not restrict the
applications to situation where there is a physical link
among every single node pairs in the network. A more
common form of global coupling occurs through external
constraints, where small change in one node dynamics
is compensated globally to keep averaged quantity (e.g.,
temperature) constant. In fact, in the electrochemical
experiments the potentiostat provided constant circuit
potential (or driving force) for the reactions, which is a
source of the global interactions.

In Section III D we explained that universal rela-
tions (6)–(8) only allow to judge whether a given sys-
tem is of the Kuramoto-Sakaguchi type or not and, in
the case of positive answer, to estimate its parameters.
But, what can one do if the answer is negative? A possi-
ble way to avoid such situation is to develop the concept
of universal relations for a more general class of phase
oscillator models. For example, relations similar to (7)
were already reported for a Kuramoto-type model with
distributed natural frequencies, coupling strengths and
phase lags [41–43]. Equipping them with analogs of for-
mulas (6) and (8) one may hope to extend the applicabil-
ity of universal relations at least in this particular direc-
tion. Other models, for which explicit universal relations
can be derived using Ott-Antonsen approach, include
coupled theta-neurons [44] and Winfree model [45]. Even
for some Kuramoto models with non-sinusoidal phase in-
teraction functions there is a chance to obtain explicit
universal relations using the self-consistency analysis pro-
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posed in [46]. We plan to address some of these issues in
our next publications.
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Appendix A: Thermodynamic limit theory for the
Kuramoto model

Phase reduction is a universal approach to reduce
mathematical complexity of a system of nearly identi-
cal weakly coupled limit cycle oscillators independently
of their nature. In the case of N globally (e.g. all-to-
all) coupled oscillators it yields an N dimensional ODE
system for phases θk ∈ R

dθk
dt

= ωk −
K

N

N∑
j=1

f(θk − θj), k = 1, . . . , N, (A1)

where ωk ∈ R are natural frequencies of the oscillators
and f : R→ R is a 2π-periodic interaction function.

In many practical cases one can assume that frequen-
cies ωk are drawn randomly from a specific distribu-
tion g(ω) and that function f is well approximated by
the leading Fourier harmonics only, i.e. f(θ) = sin(θ+α)
where α ∈ (−π/2, π/2). Thus one obtains the Kuramoto-
Sakaguchi model [8]

dθk
dt

= ωk−
K

N

N∑
j=1

sin(θk−θj+α), k = 1, . . . , N, (A2)

which we discuss below.
In the limit N → ∞ the state of the phase oscilla-

tors {θk(t)} in system (A2) can be described by a prob-
ability density function ρ(θ, ω, t), which obeys the conti-
nuity equation

∂ρ

∂t
+

∂

∂θ
(ρv) = 0, (A3)

where

v(θ, ω, t) = ω +
K

2i

(
e−iαr(t)e−iθ − eiαr(t)eiθ

)
(A4)

is the continuum version of the velocity field in Eq. (A2),
and

r(t) =

∫ ∞
−∞

dω

∫ 2π

0

ρ(ω, θ, t)eiθdθ (A5)

is the Kuramoto order parameter [47]. Moreover, for
any complex variable a we use a to denote its complex-
conjugate.

It is well-known [25] that long time dynamics of solu-
tions to Eq. (A3) have tendency to settle down at the so
called Ott-Antonsen manifold consisting of the distribu-
tions of the form

ρ(θ, ω, t) =
g(ω)

2π

(
1 +

∞∑
n=1

[
zn(ω, t)einθ + zn(ω, t)e−inθ

])
,

(A6)
where z(ω, t) satisfies the inequality |z| ≤ 1 and solves
the differential equation

dz

dt
= iωz(ω, t) +

K

2
e−iαGz − K

2
eiαz2(ω, t)Gz (A7)

with Gz denoting the integral operator

(Gz)(t) =

∫ ∞
−∞

g(ω)z(ω, t)dω. (A8)

From (A6) it follows that

z(ω, t) =

∫ 2π

0

ρ(θ, ω, t)

g(ω)
eiθdθ. (A9)

For coupled oscillator system (A2) the integral in the
right-hand side of (A9) is approximately equivalent to
the sum

1

#{k : ωk ≈ ω}
∑

k :ωk≈ω

eiθk

that resembles the definition of the Kuramoto order pa-
rameter (2) with summation carried out over oscillators
with ωk ≈ ω only. This means that function z(ω, t) is a
local synchrony characteristics with values depending on
natural frequencies ω, therefore we call it the local order
parameter.

Considering Eq. (A7) one usually is interested in the
existence and stability of the following two types of so-
lutions: (i) completely incoherent state z(ω, t) = 0, and
(ii) partially synchronized states:

z(ω, t) = a(ω)eiΩt, (A10)

where for different values of ω ∈ supp g one has either
|a(ω)| = 1 (coherence) or |a(ω)| < 1 (incoherence).

In [21, 22] it has been shown that independent of the
choice of distribution g(ω), the amplitude a(ω) of a sta-
ble partially synchronized state is always given by the
formula

a(ω) = h

(
ω − Ω

p

)
, (A11)

where

h(s) =


(
1−
√

1− s−2
)
s for |s| > 1,

s− i
√

1− s2 for |s| ≤ 1
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is a universal function, and (Ω, p) ∈ R× (0,∞) is a pair
of numbers satisfying the self-consistency equation

1

K
eiα =

i

p

∫ ∞
−∞

g(ω)h

(
ω − Ω

p

)
dω. (A12)

In other words stationary partially synchronized so-
lutions of Eq. (A3) constitute a two-parametric family
with explicitly known distribution ρ(θ, ω, t). The latter
is obtained if we insert (A10) and (A11) into (A6).

Using this distribution we can compute various av-
eraged quantities. For example, inserting ρ(θ, ω, t)
into (A5) and taking into account the self-consistency
equation (A12) we obtain

r(t) = − p

K
ieiαeiΩt,

and hence

|r(t)| = p/K. (A13)

Next, we can calculate the mean phase velocity of the
oscillators with natural frequencies ωk ≈ ω. This will be

1

#{k : ωk ≈ ω}
∑

k :ωk≈ω

v(θk, ωk, t).

For a given distribution ρ(θ, ω, t) we can replace the latter
averaging with the formula∫ 2π

0

ρ(θ, ω, t)

g(ω)
v(θ, ω, t)dθ.

Note, since we take into account only oscillators with
ωk ≈ ω we average only over the phase variable θ
and use in the integrand conditional probability distri-
bution ρ(θ, ω, t)/g(ω) instead of the bivariate distribu-
tion ρ(θ, ω, t). Omitting computation details, which can
be found in [22, Section 3.3], in the result we obtain

Ψ(ω) =

∫ 2π

0

ρ(θ, ω, t)

g(ω)
v(θ, ω, t)dθ

= ω − Re

[
p h

(
ω − Ω

p

)]

= Ω + p Q

(
ω − Ω

p

)
, (A14)

where

Q(s) =

{
s
√

1− s−2 for |s| > 1,

0 for |s| ≤ 1

is another universal function.
Similarly, for every positive integer n we can calculate

another quantity

ζ(n)(ω) =
1

#{k : ωk ≈ ω}
∑

k :ωk≈ω

(−i)neinθk(t) r(t)
n

|r(t)|n
,

which is relevant to the amplitude a(ω) of the local or-
der parameter (A10). Indeed, by analogy with the mean
phase velocity we obtain

ζ(n)(ω) =

∫ 2π

0

ρ(θ, ω, t)

g(ω)
(−i)neinθ r(t)

n

|r(t)|n
dθ

=

(
h

(
ω − Ω

p

)
e−iα

)n
, (A15)

hence ζ(n)(ω) = (a(ω)e−iα)n.
Numerical simulations suggest that in the thermody-

namic limit N → ∞ partially synchronized states of
Eq. (A2) have the ergodicity property such that ensem-
ble averages (A14) and (A15) can be calculated as time-
averages for fixed choice of ω. Therefore we obtain

Ψ(ωk) = ωk − Re

[
p h

(
ωk − Ω

p

)]

= Ω + p Q

(
ωk − Ω

p

)
, (A16)

ζ(n)(ωk) =

(
h

(
ωk − Ω

p

)
e−iα

)n
. (A17)

Moreover, if R denotes the time-average of |r(t)|, then
according to (A13) we should have

R = p/K. (A18)

Combining formulas (A16)–(A18) we also obtain other
relations. For example, formula (A17) implies

ζ(n)(ωk) =
(
ζ(1)(ωk)

)n
. (A19)

Furthermore, expressing p from (A18) and h((ωk−Ω)/p)
from (A17) and inserting them into (A16) we obtain

Ψ(ωk) = ωk −KR Re
[
ζ(1)(ωk)eiα

]
. (A20)

Formulas (A16)–(A20) are exact forN →∞ only, how-
ever they seem to be a good approximation for large but
fixed N too. Their accuracy is studied in the main text of
the paper. There we also discuss some of their practical
applications.

Appendix B: Experimental Setup

A standard three electrode electrochemical cell is used
for the experiments where the reference electrode is
Hg/Hg2SO4/sat. K2SO4, the counter electrode is a plat-
inum coated titanium rod, and the working electrode is
an array of 80 nickel wires embedded in epoxy such that
only the 1.00 mm diameter surface is exposed to the 3 M
H2SO4 electrolyte (see Fig. 10). The temperature is held
at 10 oC with a circulating bath.
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FIG. 10: Diagram of the experimental setup. C: Counter
electrode, R: reference electrode, W: working electrode. The
individual resistances and capacitances are filled while the
collective resistance and capacitance are hollow.

A constant circuit potential (V = 1120 mV) is applied
with a potentiostat (ACM Instruments GillAC), and the
smooth current oscillations are collected at a rate of 200
Hz.

Each nickel electrode is connected to the potentiostat
through the collective (Rcol) and individual resistances
(Rind) as shown in Fig. 10. The collective (shunt) re-
sistance introduces global coupling among the electrode
potentials of the electrodes [15]. With Rcol = 0.5 Ohm
and Rind = 1 kOhm a partially synchronized state was
observed in the experiments.

Non-isochronicity is introduced into the system by
the addition of capacitance parallel to both resistances;
collective capacitance (Ccol) and individual capacitance
(Cind). The level of non-isochronicity induced by the ca-
pacitance was studied previously [33]. In the experiments
with phase shift in the interaction function, Ccol = 1.1
mF and Cind = 220 µF were applied.
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