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We propose a cascade model of wave turbulence designed to simplify the study of this phenomenon
in the way that shell models simplify the study of Navier-Stokes turbulence. The model consists
of resonant quartets, in which some modes are driven and damped, and others shared by pairs of
quartets and transferring energy between them, mimicking the natural energy transfer mechanism
in weakly-turbulent waves. A set of detailed-balance conditions singles out the case of the cascade
model in equilibrium, for which we can explicitly derive a Gaussian equilibrium measure and a
maximum-entropy principle using a Kolmogorov forward equation. Away from equilibrium, we can
approximate the second-moment dynamics of the mode amplitudes using kinetic equations. In a
non-equilibrium steady state, we can also approximate the higher moments of the driven-damped
mode amplitudes, and characterize the distribution of the shared-mode amplitudes as Gaussian. For
this latter distribution, we find an information-theoretic argument, akin to entropy maximization,
which lets us conclude that arbitrary initial shared-mode amplitude distributions approach Gaussian
form in forward time. The cascade model may provide insight into mechanisms governing weakly-
turbulent wave systems and perhaps afford computational savings as compared to direct numerical
simulations of the corresponding wave-like equations.
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I. INTRODUCTION

Turbulence presents one of the most challenging prob-
lems in theoretical and computational physics and ap-
plied mathematics. One property of turbulent systems
in nature that simplifies their study somewhat is that
they frequently absorb and dissipate energy at vastly dif-
ferent spatial and temporal scales, and thus create an
inertial range that emerges between the well-separated
forcing and dissipation ranges in the wavenumber do-
main. In this intermediate range, since their behavior is
close to that of a weakly-perturbed Hamiltonian system,
turbulent phenomena can be approximated by Hamilto-
nian dynamics. Because of the typically chaotic nature
of these dynamics, a statistical description is more suit-
able for studying turbulent phenomena than attempts
at resolving individual system trajectories. One promi-
nent facet of the statistical description is represented
by the energy spectrum, which, in the inertial range,
sometimes satisfies a simple scaling law. For example,
in fully-developed hydrodynamic turbulence, i.e., in the
high Reynolds number limit, the energy spectrum obeys
Kolmogorov’s −5/3 power law [1]. While many advances
were made since Kolmogorov’s discovery of this law, nu-
merous important questions concerning the theoretical
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understanding of fluid turbulence still remain open [2, 3].

Direct numerical simulations of the incompressible
Navier-Stokes (NS) equations in the turbulent regime,
i.e., when the Reynolds number is extremely high,
present a great computational challenge. This is be-
cause the number of degrees of freedom necessary to de-
scribe the flow increases dramatically with the increas-
ing Reynolds number [4]. The associated computational
difficulties have provided the impetus for the develop-
ment and investigation of simplified reductions of the NS
equations. Some of these reductions have been designed
under the assumption that certain important statistical
properties, such as intermittency, need not depend on the
details of the system dynamics, provided they share the
overall symmetry properties with these dynamics [3].

Shell models [5–8] form such a reduced class of model
equations, which unlike the NS equations are not partial
differential equations (PDEs), but are instead systems of
ordinary differential equations (ODEs). They are usu-
ally constructed by dividing the Fourier space into shells
and taking into account only a few dynamical variables
per shell [5–8]. Typically, each shell is taken to be an-
nular in shape, and the radii of neighboring shells are
equidistantly distributed on the logarithmic scale. The
form of the terms describing the interaction between the
two sets of variables in neighboring shells is designed to
reproduce some chosen features of the NS equations. De-
spite resulting in a drastic reduction of the original dy-
namics, the shell model has advanced our understand-
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ing of the universal scaling laws governing the energy
spectra in inertial ranges, and has revealed several hid-
den structures of turbulent dynamics, such as intermit-
tency corrections to the Kolmogorov scaling [9] and to
the Obukhov-Corrsin scaling for the advection of a pas-
sive scalar [10]. Importantly, it is considerably easier to
perform numerical simulations of the shell model than
those of the NS equations, which makes the shell model
suitable for conducting detailed computational studies.
Therefore, shell and related kinds of reduced models can
be useful for providing insight into the behavior of fully-
developed turbulence, as long as their analysis is based
on a clear understanding of the resemblance and the dif-
ferences between the simplified model and the original
NS equations.

In contrast to hydrodynamic turbulence, the interac-
tions among different spatial scales in many dispersive-
wave systems can be analyzed in the context of the
weakly-nonlinear limit. In this case, an effective time-
scale separation together with a near-Gaussianity as-
sumption allows for a systematic treatment of the statis-
tical behavior, which results in the weak-turbulence the-

ory for describing wave turbulence using kinetic equa-
tions [11]. The goal of the present paper is to apply prin-
ciples resembling those involved in devising shell models
to wave turbulence, and study possible energy transfer
mechanisms among the waves, some of which may under-
lie the behavior captured by the weak turbulence theory.
As it is well known that the energy transfer among the
scales in a wave system occurs largely through resonant
sets, typically triads or quartets [12, 13], one is compelled
to choose these sets as building blocks for the reduced
subsystems when constructing a shell-model analog in
wave turbulence. We use a single quartet or multiple
quartets to develop such a model, which we have designed
to share a number of important features with the much
more complicated physical or model systems exhibiting
wave turbulence. For example, the four waves in a sin-
gle quartet interact with one-another in the same way as
those in a resonant quartet observed in typical nonlinear
dispersive wave systems, such as the MMT model [14], in
the long-time, small-amplitude asymptotic limit. In the
case of multiple quartets, a hierarchical structure among
the quartets causes energy transfer from one quartet to
another, and allows for the existence of a mode with-
out forcing and dissipation, which resembles waves in an
inertial range. Furthermore, our cascade model enjoys
certain theoretical advantages over the original wave-
turbulence models in that because our model consists
of a system of stochastic differential equations (SDEs),
the probability distribution of the dynamical variables it
comprises can be studied directly using the Kolmogorov
forward equation (KFE), which is not case for the kinetic
theory of wave turbulence. We remark that our choice
of quartets for the building blocks of the cascade model
is arbitrary; we could as well have chosen triads, and
obtained analogous results.

We have studied the cascade model both in equilibrium

and also in non-equilibrium statistical steady state. We
have determined that the equilibrium case satisfies a set
of conditions that correspond to detailed balance in the
thermodynamic equilibrium of turbulent wave systems.
A complete statistical description of the equilibrium case
of the cascade model by a Gaussian equilibrium mea-
sure derived from a corresponding Kolmogorov forward
equation is possible, which also satisfies the condition
of zero probability flux and the maximum-entropy prin-
ciple, again in agreement with wave turbulence. Away
from equilibrium, we have derived kinetic equations for
the second moments of the wave-amplitudes in the cas-
cade model, and, in examples, numerically computed
their fixed points corresponding to solutions with non-
zero probability flux in a statistical steady state. We have
also been able to approximate the higher moments of the
driven and damped modes in such a state. Finally, we
have characterized the Gaussian nature of the marginal
distribution of the undriven-undamped wave-mode am-
plitudes for the cascade model in a non-equilibrium
steady state, and presented an information-theoretic ar-
gument resembling a maximum-entropy principle that
explains why other initial marginal distributions should
tend to this marginal distribution in forward time.

The remainder of the paper is organized as follows.
In Section II, we construct a system of four-wave reso-
nance equations, in which some wave-modes are driven
and damped to generate an energy cascade. We derive
equations for resonant four-wave interactions governing
energy transfer among the modes of two prototypical ex-
amples of one-dimensional wave-like models, and then
summarize them in a minimal general quartet model
in Section IIA. We then posit the cascade model in
Section II B, and recast it as systems of stochastic dif-
ferential equations in rectangular and polar coordinates
in Section II C. In Section III we study the statistics
of the cascade system in equilibrium. We derive the
Kolmogorov forward equations for the cascade system
and the equilibrium conditions and distributions in Sec-
tion IIIA, and present the macroscopic view of these
equations in Section III B. In particular, we derive a
maximum-entropy principle for the equilibrium distribu-
tions in Section III B 1 and find a probability flux that
vanishes along those distributions in Section III B 2. In
Section III C, we discuss the analogies of the equilibrium
cascade model with and its implications for the weak tur-
bulence theory. In Section IV, we study the statistics of
the cascade system in a non-equilibrium steady state. We
derive the kinetic equations, numerically compute their
fixed points in representative examples, and predict the
moments of the wave-mode amplitudes in Section IVA.
In Section IVB, we determine the stationary distribu-
tion of the shared-mode amplitude in a non-equilibrium
steady state, and in Section IVC, we again use an argu-
ment akin to an entropy maximization principle to study
how the statistics of the shared-mode amplitude relax to-
wards this state. We summarize the results and present
the conclusions in Section V.
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II. CASCADE MODEL

As mentioned in the introduction, energy transfer
among different scales is largely facilitated by resonant
sets, which in one spatial dimension tend to be quar-
tets [14]. In this section, we describe how such quar-
tets arise in the small-amplitude, long-time limit of a
pair of prototypical, wave-like dynamical systems in one
spatial dimension. After extracting the general form of
the equation describing energy transfer through resonant
quartets, we use it to construct a cascade model that de-
scribes this transfer through a sequence of such quartets.
Each quartet consists of two or three modes that receive
white-noise driving and linear damping, and one or two
modes without the driving and damping that it shares
with neighboring quartets. The energy transfer from one
quartet to another proceeds via these latter modes.

A. Equations governing the dynamics of a resonant

quartet

In this section, we describe how equations describ-
ing energy transfer through excited resonant quartets of
wave-modes are obtained in two typical, one-dimensional
wave-like example systems. We then present a general
equation that captures the salient features shared by all
such equations in specific cases, and also discuss how
these equations should be interpreted to relate to the
energy transfer in some underlying wave-like systems.

1. MMT system

For many nonlinear dispersive waves, both the linear
dispersion relation of each wave and also the manner in
which different waves interact with each other are rather
complicated. Fortunately, under certain circumstances,
both these processes can be approximately described us-
ing simple scaling laws. The MMT model [14] provides
an example of the effective simplification afforded by such
laws. The equation for the wave profile ψ(x, t) in this dy-
namical system in one spatial dimension is given by

i∂tψ = |∂x|αψ ± |∂x|
β
4

(∣∣∣|∂x|
β
4 ψ
∣∣∣
2

|∂x|
β
4 ψ

)
, (1)

containing two parameters α, β (> 0). Equivalently, for

the wave amplitude ψ̂k(t) in the Fourier space, Eq. (1)
becomes [14–16]

i∂tψ̂k = |k|αψ̂k

±
∫

|k1k2k3k|
β
4 ψ̂k1

ψ̂k2
ψ̂∗
k3
δ (k1 + k2 − k3 − k) dk1dk2dk3.

(2)

Here, |∂x| denotes the pseudo-differential operator, de-
fined by

(
|∂x|λψ

)
(x) :=

∫
|k|λψ̂ke

ikx dk,

ψ̂k is the Fourier transform of ψ(x), and ∗ denotes the
complex conjugate. While the parameter α controls the
linear dispersion relation |k|α, β controls the strength of
the nonlinearity. The ± sign corresponds to the defo-
cusing and focusing nonlinearities, respectively. Equa-
tions (1) [and (2)] include a number of familiar wave sys-
tems as specific cases. For example, the MMT equation
becomes the nonlinear Schrödinger equation when α = 2,
β = 0, and mimics the scalings present in water waves
when α = 1/2, β = 3.
The (linear) energy of the wave-mode with wavenum-

ber k is defined as Ω(k)|ψ̂k|2, where Ω(k) = |k|α is the
linear frequency of this mode, obtained from the linear
dispersion relation, which we find in the weakly-nonlinear
limit of Eq. (2). For a system with a cubic nonlinearity
such as the MMT model, the dominant exchange of en-
ergy among the modes occurs via the sets of four waves
whose wave numbers {(kq, kq′), (kp, kp′)} and frequencies
Ω(·) satisfy the resonance conditions

kq + kq′ = kp + kp′ , (3a)

Ω(kq) + Ω(kq′ ) = Ω(kp) + Ω(kp′). (3b)

Such a set of four waves is called a resonant quartet
[11–13]. For the linear dispersion relation Ω(k) = |k|α
of system (2), the conditions (3) can be solved non-
trivially (i.e., kq 6= kp, kp′) only when α < 1. If only
one resonant quartet, corresponding to the wave num-
bers {(k1, k2), (k3, k4)}, is initially excited in the MMT
system, the long-time behavior of the waves it comprises
can be captured by seeking an asymptotic expansion of
the form

ψ(x, t) =

4∑

j=1

ǫAj(ǫ
2t)ei(kjx−|kj|

αt) + ǫ3ψ′(x, t) (4)

for small ǫ > 0. (Here, Aj is shorthand notation for
Akj

.) Substituting the trial form (4) into Eq. (1) and
suppressing the secular growth leads to a system of ODEs
given by [14]

i∂ǫ2tAq =± 2|k1k2k3k4|
β
4A∗

q′ApAp′

±


2

4∑

j=1

|kj |
β
2 |Aj |2 − |kq|

β
2 |Aq|2


 |kq|

β
2Aq,

(5)

where we have taken {(q, q′), (p, p′)} = {(1, 2), (3, 4)}.
(We will use this index-pair notation for quartets
throughout the text.) The first term on the right-hand
side of Eq. (5) represents the non-trivial resonant in-
teractions of a wave with the remaining three waves
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in the quartet. The second term represents the self-
interaction of each wave with itself due to the trivial
solution (kq = kp or kq = kp′) of the conditions (3).
As shown in Refs. [17, 18], we can drop this term from
Eq. (5) without causing a qualitative change of the en-
ergy transfer mechanism among the resonant waves.

2. Hyperbolic PDE

Four-wave resonant interactions also govern the wave
dynamics in the one-dimensional hyperbolic PDE

[
∂2t + ω2 (|∂x|)

]
u+ ǫ2u3 = 0. (6)

In the weakly nonlinear limit, ǫ → 0, the frequency ω(·)
gives the linear dispersion relation for the wave ampli-
tudes ûk(t). (Here, ûk(t) again denotes the Fourier trans-
form of the wave profile u(x, t).) As in the MMT model,
the substitution

u(x, t) =

4∑

j=1

Bj

(
ǫx, ǫt, ǫ2t

)
ei[kjx−ω(kj)t] + ǫu′(x, t) (7)

into Eq. (6) yields the equations

i∂ǫ2tBq =
3

ω(kq)
B∗

q′BpBp′

+
3

2ω(kq)


2

4∑

j=1

|Bj |2 − |Bq|2

Bq.

(8)

A detailed derivation of Eq. (8) using multiple time-scale
analysis of Eqs. (6) via the ansatz (7) can be found in
Appendix A. As in the case of the MMT model, the
second term on the right-hand side of Eq. (8) arises from
self-interactions of the wave Bq, and can be removed with
no qualitative loss of information.

3. General structure of a four-wave resonant quartet

As the result of the above considerations, an equation
of the following general form,

i∂taq = Tqa
∗
q′apap′ , (9)

obtained by ignoring the self-interaction terms in either
Eq. (5) or Eq. (8), captures the asymptotic evolution of
the respective wave profiles in a resonant quartet over
the time-scale of order ǫ−2. Here, aq (i.e., shorthand
notation for akq

) is one of the four waves with sub-
scripts {(kq, kq′), (kp, kp′)} satisfying Eq. (3) with the
appropriate frequency Ω(·) depending on the system un-
der study. We note that the interaction tensor Tq =

±2|k1k2k3k4|β/4 in the four-wave resonance equation (5)
of the MMT system is independent of the mode q and
also of the linear dispersion relation |k|α. On the other

hand, the coefficients Tq = 3/ω(kq) in Eq. (8) vary with
the choice of the index q, and are determined by the lin-
ear dispersion relation ω(·). This difference arises due to
the disparate effective time-scales, i.e., Aj in Eq. (4) is a
function of ǫ2t, while Bj in Eq. (7) is a function of ǫt and
ǫ2t. Therefore, it is important to study not only a spe-
cific case but rather the general form of the interaction
tensor Tq in Eq. (9).
As in the two specific examples given above, in gen-

eral, the dynamics of the system (9) mediates the transfer
of the energy Ω (kq) |akq

|2 among the four excited reso-
nant modes in the underlying wave system with the (here
unspecified) dispersion relation Ω(k). In the single and
multiple quartet systems studied in the remainder of this
paper, the term energy transfer will be used in this same
sense.
We should remark that there exist numerous examples,

in one and more dimensions [11, 19], in which energy
is transferred through resonant triads of modes instead
of quartets. In the above two examples, triads are ab-
sent. In particular, in the MMT model (1), they are
absent due to its linear dispersion relation not allowing
for the existence of three-wave resonances analogous to
the four-wave resonances described by Eqs. (3) [14]. In
the hyperbolic PDE, triads are absent because the cubic
nonlinearity implies that all their corresponding coupling
coefficients (the analogs of Tq in Eq. (9) that would mul-
tiply products of two rather than three wave profiles)
vanish. We do not consider examples of energy transfer
through resonant triads, or triads themselves, here, but
again emphasize that all our results below could equally
well be developed for resonant triads.

B. Cascade of resonant quartets with driving and

damping

A single mode in wave turbulence exchanges energy
with other modes in the system, including possibly some
that are not resolved by the assumed mode expansion,
in a chaotic fashion. Frequently, the influence of unre-
solved modes or subgrid-scale effects on a given mode
can be approximated by white-noise driving and linear
damping [20]. In this section, we present a set of model
equations for a quartet of such modes, and then general-
ize it to two and more quartets that are coupled through
a (cascade of) shared mode(s).

1. Single quartet

In the case of a single resonant quartet, using Eq. (9)
and two sets of parameters, σq and νq(> 0), we find that
the model equation for (any) one of its driven-damped
wave-modes, as mentioned above, can be written in the
form

i∂taq = Tqa
∗
q′apap′ − iνqaq + σqẆq, (10)
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where Ẇq denotes complex-valued Gaussian white noise,
whose realizations are independent among different val-
ues of the wavenumber q. This scenario is illustrated
in the left panel of Fig. 1, where the crossed bars de-
note interactions among the four wave-modes governed
by Eq. (9), and the two-sided vertical arrows for each
wave denote the corresponding forcing and dissipation
described in Eq. (10).

We here mention that, when Tq = 0, i.e., in the absence
of any resonant interactions among the waves, Eq. (10)
reduces to a description of the Ornstein-Uhlenbeck pro-
cess [21, 22]. We also mention that, if the parameters Tq
are all equal and if two modes (kq, kq′) are driven by white
noise of equal strength (σq = σq′ 6= 0) without damp-
ing (νq = νq′ = 0) and two modes (kp, kp′) are equally
damped (νp = νp′ 6= 0) without driving (σp = σp′ = 0),
then this single quartet reduces to the resonant duet
model (aq and ap), introduced in [17, 18]. There, for
a fixed value of the driving parameter σq , the statisti-
cal behavior of the duet exhibits a transition from near-
Gaussian to highly intermittent behavior as the dissipa-
tion controlled by the damping parameter νp increases
from weak to strong.

Below, we will proceed by building models describing
multiple quartets, coupled through shared wave-modes
that have no external driving-damping.

2. Double quartets

We next consider a pair of resonant quartets whose
wave numbers are given by {(k1, k2), (k3, k4′)} and
{(k4′ , k5), (k6, k7)}, which share a wave, a4′ . (We use
the notation a4′ in order to distinguish this shared mode
from the mode a4 in a single quartet.) We construct
a dynamical system consisting of these two quartets, in
which the waves are forced by white noise and linearly
dissipated, except for the shared mode which mediates
the interaction between the two quartets, as illustrated
in the right panel of Fig. 1. While the equations for the
non-shared waves are the same as Eq. (10), the equation
for the shared wave is given by

i∂ta4′ = T4′a
∗
3a1a2 + T ′

4′a
∗
5a6a7, (11)

where T4′ and T ′
4′ denote the interaction tensors of the

mode a4′ in the resonant quartets {(k1, k2), (k3, k4′)} and
{(k4′ , k5), (k6, k7)}, respectively. This shared mode be-
haves very much like the waves in an inertial range of
a general nonlinear dispersive wave system in that the
statistics of the mode a4′ are determined by the nature of
the energy transfer from other modes through this mode.
Therefore, the statistical behavior of this type of waves
is of particular interest to our investigation.
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FIG. 1: Left panel: single quartet. Right panel: double quar-
tets shared by one mode.
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FIG. 2: An example of hierarchical resonant quartets.

3. Hierarchical cascade of quartets

Using more than two quartets, we can construct a hi-
erarchical set of four-wave resonant quartets, with each
pair of quartets in the hierarchy sharing one mode, and
in which all the waves except the shared ones are driven-
damped, as shown in Fig. 2. We refer to the model con-
structed in this way as the cascade model.

We have designed our cascade model so as to provide
insight into possible energy transfer mechanisms in wave
turbulence, and have utilized in its construction certain
parallels with principles used in designing shell models
in fluid turbulence. Thus, although the equations of
motion in these two model types appear very different,
they do share one common design feature: both com-
prise a hierarchy of modes in an inertial range, with the
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energy transfer through these modes occurring via the
interactions between the nearest neighbors in the hier-
archy. However, one of their key differences is that, in
contrast to shell models in fluid turbulence, in which the
modes are ordered according to the size of the associ-
ated wave numbers and thus strictly local interactions in
the Fourier space are postulated, there is no such order-
ing among the elements of the hierarchy in our cascade
model of wave turbulence. Therefore, non-local inter-
actions within a resonant quartet can be described by
our cascade model of wave turbulence. For example,
{(k1, k2), (k3, k4)} = {(400, 25), (441,−16)} gives one so-
lution of the conditions (3) for the MMT system with
α = 1/2.
We should here re-iterate that we only consider white-

noise forcing for the cascade model in this paper. This is
because our intent is to mimic energy transfer among
modes in the inertial ranges of weakly-turbulent sys-
tems, in which the influence of the unresolved (including
directly-forced) modes should be well modeled by white
noise [20].

C. Coordinate representations of the cascade

model

In this section, we rewrite the cascade models we
posited above in terms of real coordinates, which will en-
able us to perform further analysis of these models using
stochastic and statistical-mechanical methods.

1. Rectangular coordinates

When we represent the complex-valued wave ampli-
tude as aq = xq + iyq using its real-valued components
xq and yq, the SDEs in Eq. (10) can be written in terms
of these components as stochastic differential equations

dxq = µxq
dt+

σq√
2
dBxq

,

dyq = µyq
dt+

σq√
2
dByq

,
(12)

in which the coefficients µxq
and µyq

are given by the
expressions

µxq
≡ −νqxq + TqIm(a∗q′apap′),

µyq
≡ −νqyq − TqRe(a

∗
q′apap′).

(13)

Here, and throughout the text, we let BX denote the
Brownian motion driving the dynamical variable X , and
assume that BX and BY are independent when X 6= Y .
Likewise, for the system of double quartets, Eq. (11)

for the shared mode a4′ = x4′ + iy4′ is rewritten as the
pair of equations

dx4′ = µx
4′
dt,

dy4′ = µy
4′
dt,

(14)

in which the coefficients µx
4′

and µy
4′

are given by the
expressions

µx
4′
≡ T4′Im(a∗3a1a2) + T ′

4′Im(a∗5a6a7),

µy
4′
≡ −T4′Re(a∗3a1a2)− T ′

4′Re(a
∗
5a6a7).

(15)

We can also readily obtain the corresponding SDEs for
dynamical systems consisting of more than two quartets
such as the one shown in Fig. 2.

2. Polar coordinates

The eight variables, {xj , yj | j = 1, . . . , 4}, used to
describe the system consisting of a single quartet in
Eq. (12), can be reduced in number by transforming
Eq. (12) to the polar-coordinate representation, aj =
ρje

iθj . In this representation, only five variables, {ρj , φ |
j = 1, . . . , 4}, where φ ≡ θ4 + θ3 − θ2 − θ1 is the reso-
nant linear combination of the phases θj , are necessary
to determine the dynamics of the corresponding equa-
tions in formula (10) due to their phase symmetry. The
corresponding SDEs for the radii and the resonant angle,
{ρj, φ}, are given by

dρq = µρq
dt+

σq√
2
dBρq

, (16a)

dφ = µφdt+

√√√√
4∑

j=1

(
σ2
j

2ρ2j

)
dBφ, (16b)

where the coefficients µρq
and µφ are expressed as

µρq
≡

σ2
q

4ρq
− νqρq + Tqρq′ρpρp′ sin(θp′ + θp − θq′ − θq)

=
σ2
q

4ρq
− νqρq ± Tqρq′ρpρp′ sin(φ),

µφ ≡
(
T1
ρ21

+
T2
ρ22

− T3
ρ23

− T4
ρ24

)
ρ1ρ2ρ3ρ4 cos(φ).

(17)
In the definition of the variable µρq

, + is used for q = 1, 2
and − is used for q = 3, 4. The non-resonant angles are
absent from the right-had sides of Eqs. (16), and can be
solved for subsequently via quadratures.
Similarly, for the system of double quartets, the four-

teen variables {xj , yj | j = 1, . . . , 7} (we ignore the
prime in 4′ for notational brevity) can be reduced to
the nine variables {ρj , φ′, ϕ | j = 1, . . . , 7} where φ′ ≡
θ4′ + θ3 − θ2 − θ1 and ϕ ≡ θ7 + θ6 − θ5 − θ4′ are the
two resonant angles. In this case, the SDEs are given by
Eq. (16a) for ρj with j 6= 4′, and

dρ4′ = µρ
4′
dt,

dφ′ = µφ′dt+

√√√√
3∑

j=1

(
σ2
j

2ρ2j

)
dBφ′ ,

dϕ = µϕdt+

√√√√
7∑

j=5

(
σ2
j

2ρ2j

)
dBϕ,

(18)
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where

µρ
4′
≡ −T4′ρ1ρ2ρ3 sin(φ′) + T ′

4′ρ5ρ6ρ7 sin(ϕ),

µφ′ ≡
(
T1
ρ21

+
T2
ρ22

− T3
ρ23

− T4′

ρ24′

)
ρ1ρ2ρ3ρ4′ cos(φ

′)

−
(
T ′
4′

ρ24′

)
ρ4′ρ5ρ6ρ7 cos(ϕ),

µϕ ≡
(
T ′
4′

ρ24′
+
T5
ρ25

− T6
ρ26

− T7
ρ27

)
ρ4′ρ5ρ6ρ7 cos(ϕ)

+

(
T4′

ρ24′

)
ρ1ρ2ρ3ρ4′ cos(φ

′).

(19)

Writing down the corresponding SDEs for a hierarchi-
cal system of more than two quartets is a straightforward
generalization of the procedure described above.

III. CASCADE MODEL IN STATISTICAL

EQUILIBRIUM

In this section, we study a class of cascade models that
reaches a statistical equilibrium. We find the proper bal-
ance of the driving-damping parameters that allow for
the existence of this equilibrium by determining when
the Kolmogorov forward equation (KFE) corresponding
to the cascade-model SDEs, presented in the previous
section, possesses a Gaussian stationary solution, which
we show to be the model’s equilibrium measure using a
maximum entropy argument. The model relaxes towards
this measure regardless of its initial condition, and so
the statistical equilibrium is unique. We also derive an
appropriate probability flux that vanishes on the equi-
librium measure. We find that the parameter-balance
condition, which ensures the existence of the statistical
equilibrium in the cascade model, corresponds to con-
ditions in the wave turbulence theory that lead to the
thermodynamic equilibrium. The vanishing of the prob-
ability flux in our model corresponds to the vanishing
of the net energy (and also wave-action) flux through
the system in the thermodynamic equilibrium of wave-
turbulence models.

A. Stationary solution of the Kolmogorov forward

equation

In this section, we derive KFEs that correspond to the
stochastic models of resonant quartets discussed in the
previous section, and find the conditions for the existence
and the form of their Gaussian equilibrium solutions.

1. KFE and equilibrium in rectangular coordinates

For the cascade model consisting of N waves, we de-
note the probability distribution of the variables aj =
xj + iyj by P = P (t, {xj, yj}), j = 1, . . . , N . In the case

of multiple quartets, we ignore the prime in the subscript
of the shared wave. (For example, a4 in a double quartet
is understood as a4′ if N > 4.) We let G be the infinitesi-
mal generator of the SDEs for the general cascade model,
which is given by

G ≡
N∑

j=1

[
µxj

∂xj
+ µyj

∂yj
+
σ2
j

4

(
∂2xj

+ ∂2yj

)]
, (20)

where µxj
and µyj

are defined in as Eqs. (13), (15). Then,
the evolution of the distribution P is governed by the
KFE

∂tP = G†P = −
N∑

j=1

[
∂xj

(
µxj

P −
σ2
j

4
∂xj

P

)

+ ∂yj

(
µyj

P −
σ2
j

4
∂yj

P

)]
,

(21)

where G† denotes the adjoint of G [22]. The boundary
conditions we consider for Eq. (21) are that P , ∂xj

P and
∂yj

P vanish as |xj |, |yj | → ∞.
For the system consisting of a single quartet, we denote

the distribution P by Ps and the infinitesimal generator
G by Gs. For this system, substituting the Gaussian dis-
tribution

P 0
s (xj , yj) ≡

4∏

j=1

γj
π
e−γj(x2

j+y2

j) (22)

into Eq. (21) with N = 4 yields

G†
sP

0
s =

4∑

j=1

(
νj −

σ2
j

2
γj

)
(
∂xj

(
xjP

0
s

)
+ ∂yj

(
yjP

0
s

))

+ 2(T1γ1 + T2γ2 − T3γ3 − T4γ4)Im(a∗1a
∗
2a3a4).

(23)

We find that the Gaussian P 0
s with the parameters γj

satisfying the equations

γj =
2νj
σ2
j

(24)

and the condition

T1γ1 + T2γ2 − T3γ3 − T4γ4 = 0 (25)

becomes a stationary solution of the KFE in Eq. (21).
Note that Eq. (25) is a special condition on the driving-

damping parameters of the single-quartet cascade model,
which thus singles out a particular class of such models.
There are single-quartet models that do not satisfy this
condition, and so do not posses stationary solutions of
the form in Eq. (22). We will study these latter kinds of
cascade models later in Section IV.
As mentioned above, without interactions among the

waves, i.e., when Tj = 0, the SDE (10) of each wave
profile becomes the Ornstein-Uhlenbeck process. In this
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case, the function in Eq. (22) with the parameters γj
satisfying Eq. (24) is the unique time-independent mea-
sure [22]. Eq. (23) reveals that there is no difference
in the statistics of the driven-damped waves in Eq. (10)
between the two cases with and without the nonlinear in-
teractions, once the condition (25) holds for the system
in question. When the wave interactions Tj do not van-
ish, the role they and Eq. (25) play in this scenario is to
select the balance among the relations (24) between the
driving and damping of the individual wave-modes for
which these same statistics persist in the coupled model.
For the system consisting of double quartets, we de-

note the probability distribution of the wave-amplitude
components, P , by Pd and the infinitesimal generator of
the corresponding SDEs, G, by Gd. We again substitute
the Gaussian distribution

P 0
d (xj , yj) ≡

7∏

j=1

γj
π
e−γj(x2

j+y2

j ) (26)

into Eq. (21) with N = 7, to obtain the value of the

adjoint, G†
d, evaluated on it, which is

G†
dP

0
d =

7∑

j=1
j 6=4

(
νj −

σ2
j

2
γj

)
[
∂xj

(
xjP

0
d

)
+ ∂yj

(
yjP

0
d

)]

+ 2(T1γ1 + T2γ2 − T3γ3 − T4′γ4′)Im(a∗1a
∗
2a3a4′)

+ 2(T ′
4′γ4′ + T5γ5 − T6γ6 − T7γ7)Im(a∗4′a

∗
5a6a7).

(27)

The expression in Eq. (27) vanishes when the parame-
ters γj , j 6= 4, are given by Eq. (24), and there exists
a non-zero value of the parameter γ4′ that satisfies the
equations

T1γ1 + T2γ2 − T3γ3 − T4′γ4′ = 0, (28a)

T ′
4′γ4′ + T5γ5 − T6γ6 − T7γ7 = 0. (28b)

This implies that the Gaussian function P 0
d in Eq. (26),

with the parameters γj defined by the equations (24)
when j 6= 4 (i.e., for the driven-damped modes but not
the shared mode), in any special system of double quar-
tets in which all γj satisfy the condition (28), becomes a
stationary solution of the KFE (21) with N = 7. Thus,
again, the condition (28) singles out a special class of
system of double quartets that allow for the existence of
a Gaussian steady state.
Interestingly, the marginal distribution of the shared

mode,

P 0
d (x4′ , y4′) ≡

∫
P 0
d (xj , yj)

7∏

j=1
j 6=4

dxjdyj =
γ4′

π
e−γ

4′
(x2

4′
+y2

4′
),

(29)
is Gaussian, just as for the driven-damped waves. How-
ever, the corresponding randomness it represents is in-
duced by the four-wave resonant interactions and not by
the forcing and dissipation. [Cf. Eq. (11).]

For a system of more than two quartets, it is not too
difficult to verify that the Gaussian distribution

P 0(xj , yj) ≡
N∏

j=1

γj
π
e−γj(x

2

j+y2

j ), (30)

whose parameters γj for the driven-damped modes are
defined by Eq. (24), in the class of systems in which all
γj satisfy conditions analogous to Eq. (25) or Eq. (28), is
a stationary solution of the corresponding KFE (21). As
we will demonstrate below in Section III C, Eqs. (25) and
(28) are the analogs of the detailed-balance conditions
that define the Rayleigh-Jeans spectra corresponding to
the thermodynamic equilibrium in weak turbulence the-
ory.

2. KFE and equilibrium in polar coordinates

An equivalent result can be obtained using the polar
representation of the SDEs describing our cascade model,
for which the probability distribution and the infinitesi-

mal generator will be denoted by P̃ and G̃, respectively.
In this representation, we obtain the KFE

∂tP̃ = G̃†P̃ , (31)

which is equivalent to Eq. (21).
For the system consisting of a single quartet, we again

denote the probability distribution P̃ by P̃s and the in-

finitesimal generator G̃ by G̃s. For the distribution P̃s,
we find the relation

P̃s(t, {ρj , φ}) = Ps(t, {xj , yj})× (2π)3
4∏

j=1

ρj,

where
∏4

j=1 ρj is the Jacobian of the transformation to

polar coordinates, and the normalization constant (2π)3

arises from the reduction of the four phases {θj | j =
1, . . . , 4} to the single resonant phase φ ∈ [0, 2π). We use
Eq. (16) to obtain the form of the infinitesimal generator,

G̃s =

4∑

j=1

[
µρj

∂ρj
+
σ2
j

4
∂2ρj

]
+


µφ∂φ +




4∑

j′=1

σ2
j′

4ρ2j′


 ∂2φ


 ,

(32)
and the KFE

∂tP̃s = G̃†
s P̃s =−

4∑

j=1

[
∂ρj

(
µρj

P̃s −
σ2
j

4
∂ρj

P̃s

)]

− ∂φ


µφP̃s −




4∑

j′=1

σ2
j′

4ρ2j′


 ∂φP̃s


 ,

(33)
where the coefficients µρj

and µφ are defined in Eq. (17).
The boundary conditions we consider for Eq. (33) are
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that P̃s, ∂ρj
P̃s and ∂φP̃s vanish as ρj → ∞, and are

periodic with respect to the phase φ. We see that the
Gaussian distribution

P̃ 0
s (ρj , φ) ≡

1

2π

4∏

j=1

(
2γje

−γjρ
2

jρj

)
, (34)

which does not depend on the variable φ and in which
the parameters γj are defined in Eq. (24), becomes a sta-
tionary solution of Eq. (33), provided that the system
is chosen so that the parameters γj satisfy the condi-
tion (25).
For the system consisting of a pair of quartets, we de-

note the probability distribution P̃ by P̃d and the in-

finitesimal generator G̃ by G̃d. For the function P̃d, we
find the relation

P̃d(t, {ρj , φ′, ϕ}) = Pd(t, {xj , yj})× (2π)
5

7∏

j=1

ρj .

We use Eq. (18) to obtain the form of the infinitesimal
generator

G̃d =

7∑

j=1
j 6=4

[
µρj

∂ρj
+
σ2
j

4
∂2ρj

]
+ µρ

4′
∂ρj

+


µφ′∂φ′ +




3∑

j′=1

σ2
j′

4ρ2j′


 ∂2φ′




+


µϕ∂ϕ +




7∑

j′′=5

σ2
j′′

4ρ2j′′


 ∂2ϕ


 ,

(35)

and the KFE

∂tP̃d =G̃†
dP̃d

=−
7∑

j=1
j 6=4

[
∂ρj

(
µρj

P̃d −
σ2
j

4
∂ρj

P̃d

)]
− ∂ρ

4′

(
µρ

4′
P̃d

)

− ∂φ′


µφ′P̃d −




3∑

j′=1

σ2
j′

4ρ2j′


 ∂φ′P̃d




− ∂ϕ


µϕP̃d −




7∑

j′′=5

σ2
j′′

4ρ2j′′


 ∂ϕP̃d


 ,

(36)
where the coefficients µρj

, j 6= 4, are defined in Eq. (17),
and µρ

4′
, µφ′ and µϕ are defined in Eq. (19). We con-

sider boundary conditions similar to the case of a single
quartet, and find that the Gaussian distribution

P̃ 0
d (ρj , φ

′, ϕ) ≡
(

1

2π

)2 7∏

j=1

(
2γje

−γjρ
2

jρj

)
, (37)

which does not depend on the variables φ′ and ϕ and
whose parameters γj with j 6= 4 are defined by Eq. (24),

becomes a stationary solution of Eq. (36), provided the
system is such that all γj satisfy conditions (28). In this
case, we denote the marginal distribution of the wave
amplitude ρ4′ by

P̃ 0
d (ρ4′) ≡

∫
P̃ 0
d (ρj , φ

′, ϕ)
7∏

j=1
j 6=4

dρjdφ
′dϕ = 2γ4′e

−γ
4′
ρ2

4′ ρ4′ ,

(38)
which agrees with Eq. (29) up to the Jacobian and nor-
malization constant.
For a system of more than two quartets, it is clear how

to obtain the KFE (31) and its Gaussian stationary solu-

tion P̃ 0, provided its driving-damping parameters allow
for conditions analogous to Eq. (25) or Eq. (28) to be
satisfied.
We have thus seen that only a special sub-class of cas-

cade models admits Gaussian-type stationary probability
distributions, namely those whose driving-damping pa-
rameters allow for conditions of the type given in Eq. (25)
or Eq. (28) to be satisfied. In the remainder of the cur-
rent section, we will take a closer look at this sub-class.

B. Macroscopic view of the cascade model

In the previous section, we identified a class of cascade
models that admit a stationary Gaussian probability dis-

tribution P 0 (or P̃ 0) as a solution to the corresponding
KFE. We now expand our finding by showing that, in
this class, the Gaussian distribution we have identified
is in fact the equilibrium measure of the corresponding
cascade model. Moreover, we find an appropriate proba-
bility flux which vanishes along this measure.

1. Maximal entropy principle for equilibrium distribution

Motivated by the knowledge that irreversible evolution
towards the thermodynamic equilibrium is characterized
by a simultaneous increase of entropy [23], we here es-
tablish an entropy maximization argument whose result
shows the distribution P 0 to be at the global maximum
value of the appropriate entropy function. This argument
simultaneously shows that all other solutions of the KFE
for the cascade model relax towards P 0 at large times.
For our cascade model, we consider the relative en-

tropy of an arbitrary distribution P with respect to the
Gaussian distribution P 0,

SEQ

(
P, P 0

)
≡ −

〈
log

(
P

P 0

)〉

= −
∫
P log

(
P

P 0

)
dA,

(39)

where dA =
∏N

j=1 dxjdyj =
∏N

j=1 ρjdρjdθj , and show
that it increases along the trajectories of the SDEs de-
scribing the model and achieves its maximum when P =
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P 0. Here, we denote by 〈·〉 the statistical average over
the distribution P . We remark that, instead of the distri-
butions P and P 0 in the rectangular coordinates, we can
use for the definition of the relative entropy their counter-

parts in the polar coordinates, P̃ and P̃ 0. Namely, since
Eq. (39) is invariant under coordinate transformations,

we see that SEQ(P̃ , P̃
0) is equivalent to SEQ(P, P

0) up
to a constant factor.
For a single quartet, the calculation in Appendix B

shows that the time derivative of Eq. (39) under the dy-
namics of Eqs. (33) is given by the expression

d

dt
SEQ(Ps, P

0
s ) =

4∑

j=1

∫
4ρ2j
σ2
jPs

[(
νjPs +

σ2
j

4ρj
∂ρj

Ps

)2

+

(
σ2
j

4ρ2j
∂θjPs

)2 ]
dA

− 2(T1γ1 + T2γ2 − T3γ3 − T4γ4)

×
∫
ρ1ρ2ρ3ρ4 sin (φ)Ps dA,

(40)

in which the parameters γj are defined in terms of the
driving-damping parameters σj and νj through Eq. (24).
In the class of systems in which condition (25) holds,
the right-hand side of Eq. (40) is positive semi-definite,
and vanishes precisely when Ps = P 0

s , given in Eq. (22),
so that the relative entropy is maximized precisely when
Ps = P 0

s . Therefore, in this class of systems, any initial
distribution of modes relaxes irreversibly to the Gaussian
distribution P 0

s .
For a pair of quartets, a similar calculation using

Eqs. (36) yields the equation

d

dt
SEQ(Pd, P

0
d ) =

7∑

j=1
j 6=4

∫
4ρ2j
σ2
jPd

[(
νjPd +

σ2
j

4ρj
∂ρj

Pd

)2

+

(
σ2
j

4ρ2j
∂θjPd

)2 ]
dA

− 2(T1γ1 + T2γ2 − T3γ3 − T4′γ4′)

×
∫
ρ1ρ2ρ3ρ4′ sin (φ

′)Pd dA

− 2(T ′
4′γ4′ + T5γ5 − T6γ6 − T7γ7)

×
∫
ρ4′ρ5ρ6ρ7 sin (ϕ)Pd dA,

(41)

in which the parameters γj , j 6= 4, are again defined
through Eq. (24). In the class of systems in which con-
ditions (28) hold, the right-hand side of Eq. (41) is pos-
itive semi-definite and vanishes exactly when Pd = P 0

d ,
given in Eq. (26). Therefore, any initial mode distribu-
tion again relaxes irreversibly to the Gaussian distribu-
tion P 0

d .
One can readily obtain the time derivative of the rel-

ative entropy in Eq. (39) for a system of more than two

quartets. This derivative is positive semi-definite and
vanishes precisely when P = P 0, the Gaussian station-
ary distribution given in Eq. (30), with the parameters γj
of the driven-damped modes defined via Eq. (24), in the
class of cascade systems in which all the parameters γj
satisfy equations analogous to Eqs. (25) and (28). There-
fore, in such systems, the relative entropy SEQ(P, P

0)
indeed increases as time evolves, unless the probability
distribution of the cascade model is the distribution P 0,
to which all other distributions relax irreversibly. As a
result, the stationary distribution P 0 is the equilibrium
measure for this class of cascade systems.

2. Probability flux vanishing in equilibrium

Typically, KFEs such as that in Eq. (21) can be written
in the conservation form

∂tP = G†P = −
N∑

j=1

[
∂xj

Jxj
+ ∂yj

Jyj

]
, (42)

expressed in terms of a probability flux J ≡ (Jxj
, Jyj

).
In addition, if the system described by such a KFE pos-
sesses an equilibrium measure, the flux J can be chosen
so that it vanishes on this measure. Below, we find an
appropriate flux for the system of a single quartet. Note
that the vanishing of this flux is the analog of the van-
ishing energy flux in the thermodynamic equilibrium of
weakly-turbulent wave systems. In both cases, we say
that such system has achieved detailed balance.

The first candidate for the probability flux J to give
rise to the KFE (21) is

J ≡ (Jxj
, Jyj

) =

(
µxj

P −
σ2
j

4
∂xj

P, µyj
P −

σ2
j

4
∂yj

P

)
,

(43)
and one would expect that J should vanish when the
probability distribution P becomes the equilibrium Gaus-
sian measure P 0, but this is not the case. For the system
of a single quartet, from Eq. (22), it is easy to conclude
that Jxq

(P 0
s ) = TqIm(a∗q′apap′)P 0

s 6= 0, and Jyq
(P 0

s ) =

−TqRe(a∗q′apap′)P 0
s 6= 0. In fact, no probability distribu-

tion can make the flux J vanish. Namely, if Jxq
(Ps) =

Jyq
(Ps) = 0 for some distribution Ps, then Ps must si-

multaneously be proportional to each of the four func-
tions exp

[(
−2νq(x

2
q + y2q) + (4Tq/σ

2
q)Im

(
a∗qa

∗
q′apap′

))]
,

with the proportionality factors that do not further de-
pend on the variables xq and yq (but could depend on
the other three pairs xp, yp, where p 6= q). However, this
cannot be true for all the wave numbers in a single quar-
tet, because the interaction tensors Tq are distinct and
the term Im

(
a∗qa

∗
q′apap′

)
involves all the variables and

has the opposite signs for q = 1, 2 and q = 3, 4.

The same situation appears at first in the polar coor-
dinates, in which Eq. (33) can be written in the conser-
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vation form

∂tP̃s = G̃†
sP̃s = −

4∑

j=1

[
∂ρj

J̃ρj

]
− ∂φJ̃φ

where

J̃ ≡ (J̃ρj
, J̃φ)

=


µρj

P̃s −
σ2
j

4
∂ρj

P̃s, µφP̃s −
4∑

j=1

σ2
j

4ρ2j
∂φP̃s


 (44)

is the first assumed probability flux. One can again show

that J̃ does not vanish for any probability distribution.
Because the probability flux satisfying the conservation

form is not unique, we instead consider the modified flux

J̃
′ ≡ (J̃ ′

ρj
, J̃ ′

φ)

=

(
J̃ρj

− Iρj
P̃s, J̃φ +

4∑

j=1

∫ φ

π/2

∂ρj

(
Iρj
P̃s

)
dφ

)
(45)

where J̃ is as in Eq. (44) and Iρq
=

±Tqρ1ρ2ρ3ρ4 sin(φ)/ρq (+ is used for q = 1, 2 and
− is used for q = 3, 4). The resulting conservation
equation

∂tP̃s = G̃†
sP̃s = −

4∑

j=1

[
∂ρj

J̃ ′
ρj

]
− ∂φJ̃

′
φ

is again the KFE (33). We can show that this flux van-

ishes on the Gaussian equilibrium measure (34), J̃′(P̃ 0
s ) =

0. This result brings out the fact that, for describing the
cascade model in equilibrium, the physically meaningful

probability flux is more suitably defined (as J̃′) in polar
coordinates.
For a system composed of multiple quartets that ad-

mits the existence of a Gaussian equilibrium measure,
one can appropriately modify the naive guess for the flux
in the polar form, as we did in Eq. (45), so that it van-
ishes on this measure. The better suitability of the polar
representation in describing the cascade model will be
revisited in Section IV.
Because, as we have just shown, cascade systems in

equilibrium achieve detailed balance, we will from here
on refer to conditions in Eq. (25) and Eq. (28), as well
as their counterparts for systems comprising more than
two quartets, as the detailed-balance conditions. As we
will see in the next section, the detailed-balance condi-
tions also determine the thermodynamic equilibrium in
the analogous and/or underlying weakly-turbulent wave
systems.

C. Relation to wave turbulence theory

In this section, we relate the results we have obtained
for the equilibrium cascade model to their counterparts

in wave, or weak, turbulence theory. To properly un-
derstand this relation, we first note that we can recast
the detailed-balance conditions (25), (28) for the cascade
model in terms of the wave spectrum

n0
j ≡

∫
ρ2jP

0 dA =
1

γj
. (46)

In particular, these conditions can be recast as

Tq
n0
q

+
Tq′

n0
q′

− Tp
n0
p

− Tp′

n0
p′

= 0. (47)

Moreover, the entropy-evolution equations, Eq. (40) or
Eq. (41), confirm that the condition (47) is essential for
the cascade model to approach the statistical equilib-
rium.
The form (47), in which we recast the detailed-balance

conditions (25) and (28) in the previous paragraph,
points to the conclusion that our results have not been
obtained by coincidence, but in fact reflect a common
feature of wave-turbulence systems in thermal equilib-
rium [11]. Here, we illustrate this feature on the example
of the MMT model (2). For this model’s wave spectrum,

Nk(t) ≡ 〈|ψ̂k(t)|2〉0, where 〈·〉0 denotes the statistical av-
erage over the initial Gaussian distribution, under the
near-Gaussianity assumption due to the weak nonlinear-
ity, the following kinetic equation was derived [14]:

∂Nk

∂t
= 4π

∫
|k1k2k3k|

β
2 N1N2N3Nk

×
(

1

Nk
+

1

N3
− 1

N2
− 1

N1

)
δ (|k1|α+|k2|α−|k3|α−|k|α)

× δ (k1+k2−k3−k) dk1dk2dk3.

(48)

Using this kinetic equation, we can derive the time
derivative of the wave-system entropy,

S[Nk] ≡
∫

log (Nk) dk, (49)

to be

d

dt
S[Nk] = π

∫
|k1k2k3k|

β
2N1N2N3Nk

×
(

1

Nk
+

1

N3
− 1

N2
− 1

N1

)2

δ (|k1|α+|k2|α−|k3|α−|k|α)

× δ (k1+k2−k3−k) dk1dk2dk3dk ≥ 0.

(50)

Note that, in Eq. (49), the entropy is given in terms
of the wave spectrum instead of the probability distri-
butions of the wave variables, which appears different
from the usual definition using a probability distribu-
tion. However, if we assume that the real and imaginary

parts of the wave amplitude ψ̂k(t) are statistically inde-
pendent, identically-distributed Gaussian random vari-
ables with distributionQk(s), and that all waves with dif-
ferent wavenumbers k are statistically independent from
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one-another, we derive in Appendix C that the entropy
S[Nk] equals −

∫
Qk(s) logQk(s) dk ds, up to an addi-

tive constant, provided we equate Nk to the second mo-

ment of the resulting distribution for ψ̂k(t). In fact, the
wave-system entropy S[Nk] is widely used in the weak-
turbulence theory, in which the probability distribution
of the wave amplitudes is, or at least approaches, near-
Gaussian [14, 24]. It is this near-Gaussianity that there-
fore enables us to use the wave-system entropy for deter-
mining the statistical equilibrium of the MMT model, as
we elaborate in the next paragraph.
The spectrum N0

k ≡ θ/|k|α, where θ denotes the tem-
perature, satisfies the equation

1

N0
k

+
1

N0
3

− 1

N0
2

− 1

N0
1

= 0, (51)

and makes both Eq. (48) and Eq. (50) vanish. It is thus
an equilibrium spectrum that maximizes the entropy. In
fact, this spectrum N0

k is the Rayleigh-Jeans distribu-
tion arising from the Gibbs measure. We emphasize that
Eq. (51) is equivalent to the resonance condition (3) with
Ω(k) = |k|α, and, for the MMT model, to the detailed-
balance condition (47). Namely, in the MMT model, the
interaction tensor Tq = ±2|k1k2k3k4|β/4 is the same for
all four wavenumbers kq, q = 1, . . . , 4, which implies that
Eq. (51) contains the same information as Eq. (47).
The above result also immediately holds for other

wave equations in which the interaction tensor, Tq =
T (k1, k2, k3, k4), is symmetric under permutations of the
wavenumbers k1, k2, k3, and k4. However, the detailed-
balance condition in Eq. (47) also holds for the thermo-
dynamic equilibrium in a more general class of weakly-
turbulent systems without the proper interaction-tensor
symmetry. For such systems, in the kinetic equation (48),
the expression in parentheses is replaced by the left-hand
side of the detailed-balance equation (47) [25]. Find-
ing the corresponding thermodynamic equilibrium thus
entails solving a possibly complicated system of func-
tional equations for the wave spectrum N0

k , consisting of
Eq. (47) together with the resonance conditions (3). One
simple example is the case in which Tq = F (ω(kq)) as for
the hyperbolic PDE in Section IIA 2. In this case, from
the resonance condition (3b) and the detailed-balance
condition (47), we conclude that the Rayleigh-Jeans spec-
trum in the thermodynamic equilibrium is determined
by the equation N0

k ≡ θF (ω(k)) /ω(k), where θ again
denotes the temperature. [Cf. also the kinetic equa-
tions (62), (63) below.]
An immediately recognizable difference between the

cascade model and a turbulent wave system in a detailed-
balance thermal equilibrium is that the former is driven
and damped while the latter evolves freely. However, one
must note that the cascade model in this case does not de-
scribe an entire wave system in detailed balance, but only
one of its sub-systems, with the influence of the rest of
the wave system on this sub-systems’s modes represented
by the white-noise driving and damping. The detailed-
balance conditions of the type described by Eqs. (25)

and (28) thus ensure that this balance does not only ex-
ist among the modes represented explicitly in the cas-
cade model, but also between these and the unresolved
modes represented by the appropriate amounts of driving
and damping determined by these conditions. Moreover,
we should re-emphasize that the functional form of the
detailed-balance conditions in both types of systems is
the same.
We should also again stress the important role of Gaus-

sianity in both systems. In particular, as shown in Sec-
tion III B 1, under the detailed-balance conditions, any
initial distribution of the cascade model will approach
the appropriate Gaussian equilibrium measure at long
times. The same is true in weakly-turbulent systems.
While for the derivation of the appropriate kinetic equa-
tion only the random-phase assumption is needed [11],
the distribution of the long-time wave profiles was shown
to approach Gaussian [24]. (In the MMT model, near-
Gaussianity was verified numerically in [14].) The white-
noise forcing and damping in the cascade model used in
order to mimic a sub-system of a weakly-turbulent sys-
tem in thermal equilibrium is crucial here: without forc-
ing and damping, a (Hamiltonian) system describing a
finite number of interacting waves may exhibit statistics
very different from Gaussian.
As we have just seen, the cascade model in equilibrium

and its equilibrium measure are closely connected with
wave turbulence in thermodynamic equilibrium. There-
fore, it is also natural to expect that the study of the non-
equilibrium dynamics exhibited by our cascade model
may be helpful in understanding such dynamics of wave-
turbulence systems, as well.

IV. CASCADE MODEL IN NON-EQUILIBRIUM

STEADY STATE

In this section, we study the statistical behavior of the
cascade model whose parameters do not allow it to ap-
proach an equilibrium Gaussian invariant measure, but
may admit a non-equilibrium steady state. Such a model
does not satisfy the detailed-balance conditions (25), (28)
(or their analogs for a system consisting of more than
two quartets). Focusing on the systems of single or dou-
ble quartets unless otherwise specified, we resort to the
kinetic theory to approximate an appropriate four-point
correlation function of the wave-modes in order to de-
rive a closed set of kinetic equations for the dynamics of
the second moments of the wave-mode amplitudes. In a
steady state, we use these second moments to approxi-
mate the higher moments of the non-shared modes. For
the shared wave in the double-quartet cascade model,
we demonstrate that it is distributed according to the
Gaussian law in two ways. First, we numerically corrob-
orate that the computed moments of the shared-mode
amplitude agree with the relations satisfied by the mo-
ments of the Gaussian distribution. Second, we construct
an auxiliary model in which the shared mode is driven
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and damped, show that the marginal distributions of its
shared-mode amplitude is Gaussian, and take a distin-
guished limit in which the driving and damping of this
mode vanish to conclude that the Gaussian distribution
also governs the statistics of the shared mode in the
underlying double-quartet cascade model. Finally, we
use an information theoretic argument, akin to entropy
maximization, to indicate that this marginal distribution
should be the long-time asymptotic limit of all other ini-
tial marginal distributions.

A. Kinetic approach to the cascade model

In this section, we derive approximate kinetic equa-
tions governing the second-moment dynamics of the
mode amplitudes in the cascade model. We first deter-
mine the role that a four-point correlation function of
the waves in a quartet plays in characterizing the en-
ergy transfer among these resonant waves. We then use
an effective time-scale separation between the time-scales
governed by the nonlinearity and driving-damping to ap-
proximate this four-point function as a function of the
second moments of the wave amplitudes, which enables
us to derive a closed set of kinetic equations. For the
non-shared wave-mode amplitudes in a statistical steady
state, we can then derive the expressions for all the higher
moments. For the shared wave-mode amplitude, we can-
not derive explicit expressions for its higher moments,
but we can numerically corroborate that the relations
among these moments satisfy the assumption that its dis-
tribution is Gaussian.

1. Four-point correlation function and wave-action flux

When the detailed-balance conditions (25), (28) are
not met, a theoretical analysis of KFE (21), (31) be-
comes significantly less tractable. Therefore, instead of
studying the joint probability distribution of the cascade
model, we turn our attention to the moments of the wave
amplitude, 〈ρmj 〉, where m > 0 is an integer. Under the

assumption that, as ρj → ∞, both P̃ and ∂ρj
P̃ tend to

zero sufficiently fast, so that ρmj P̃ and ρmj ∂ρj
P̃ approach

zero as well, for the system of a single quartet, we derive
the equation

∂t
〈
ρmq
〉
= m

[
m
σ2
q

4

〈
ρm−2
q

〉
− νq

〈
ρmq
〉

± Tq
〈
ρm−2
q ρ1ρ2ρ3ρ4 sin(φ)

〉
] (52)

using Eq. (33) along with integration by parts. Here, +
is used for q = 1, 2 and − is used for q = 3, 4.
When m = 2, Eq. (52) describes the time-evolution of

the second moment, or wave-action, given by

∂t〈ρ2q〉 = σ2
q − 2νq〈ρ2q〉 ± 2Tq〈ρ1ρ2ρ3ρ4 sin(φ)〉. (53)

In a statistical steady-state, Eq. (53) gives rise to an
equation for the stationary power spectra

nq ≡ 〈ρ2q〉 =
σ2
q ± 2TqIs

2νq
(54)

which contains the four-point function

Is ≡ 〈ρ1ρ2ρ3ρ4 sin(φ)〉 = 〈Im(a∗1a
∗
2a3a4)〉. (55)

In the class of systems whose solutions approach the
equilibrium governed by the Gaussian equilibrium mea-

sure P 0
s in Eq. (22) [or, equivalently, P̃ 0

s in Eq. (34)],
which we investigated in Section III, it is easy to derive,
using Eq. (24) and the absence of the resonant phase φ
from the equilibrium measure, that the equilibrium spec-
trum satisfies Eq. (54) with Is = 0. Thus, for a sys-
tem in a non-equilibrium steady state, a non-zero value
of the four-point function Is represents the deviation of
the stationary spectrum (54) from the equilibrium spec-
trum (46).

In the system of double quartets, the four-point func-
tion plays a yet clearer physical role. In particular, in this
system, the moments of the driven-damped modes sat-
isfy an equation similar to Eq. (52), while for the shared-
mode we derive the equation

∂t〈ρm4′ 〉 = m
[
− T4′〈ρm−2

4′ ρ1ρ2ρ3ρ4′ sin(φ
′)〉

+ T ′
4′〈ρm−2

4′ ρ4′ρ5ρ6ρ7 sin(ϕ)〉
] (56)

using Eq. (36) along with integration by parts. Physi-
cally, Eq. (56) indicates that the cascade model can reach
a steady-state only if the shared mode, from which driv-
ing and damping are absent, gains the same amount en-
ergy via the interaction with one quartet as it loses to
the other quartet. In particular, Eq. (56) in the case of
m = 2 reads

∂t〈ρ24′〉 = 2
[
− T4′〈ρ1ρ2ρ3ρ4′ sin(φ′)〉

+ T ′
4′〈ρ4′ρ5ρ6ρ7 sin(ϕ)〉

]
≡ 2(−T4′Id + T ′

4′I ′
d)
(57)

and this equation indicates that the evolution of the sec-
ond moment of the shared mode is determined by the
two four-point functions, Id and I ′

d. Physically, the ex-
pression on the right-hand side of Eq. (57) corresponds
to the wave-action (and thus also energy) flux in and
out of the shared mode. In particular, we see that in
a non-equilibrium statistical steady state, i.e., when the
right-hand side of Eq. (57) vanishes but the four-point
functions do not, and when the sign of T4′Id (or equiv-
alently T ′

4′I ′
d) is negative, there exists an energy cas-

cade from the quartet {(k1, k2), (k3, k4′)} to the quar-
tet {(k4′ , k5), (k6, k7)}, i.e., from the upper to the lower
quartet in the right panel of Fig. 1.
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2. Closed kinetic equations for wave-action

In this section we derive kinetic equations that ap-
proximate the dynamics exhibited by the second mo-
ments nj = 〈ρ2j 〉 of the cascade-model modes in a non-
equilibrium statistical steady state. Our strategy is to de-
rive closures for the equations, such as Eqs. (53) or (57),
that describe the dynamics of these moments. We derive
these closures by approximating the four-point functions,
such as Is, Id, or I ′

d, in terms of the second moments
〈ρ2j〉. By substituting these approximations into Eqs. (53)
and (57), we are led to a system of kinetic ODEs for the
wave spectra.
Approximate descriptions of non-equilibrium wave sys-

tems using kinetic equations can frequently be obtained
via a multiple time-scale analysis. For the cascade model,
this approach to the kinetic description is similar to the
approach used in the kinetic theory of weakly-nonlinear
dispersive waves [11]. More precisely, the evolution of a
dynamical variable in the system described by Eqs. (10),
(11) consists of two parts: one due to the driving and
damping (quantified by σj , νj) and the other due to
the four-wave interactions (quantified by Tj). We have
seen that when the detailed-balance conditions (25) and
(28) hold, the system allows for Gaussian distribution of
modes, the equilibrium distribution purely induced by
the driving-damping, and thus behaves as if there were
no interactions among the waves. When these conditions
do not hold but are nearly satisfied, the nonlinear inter-
actions begin to weakly affect the dynamics of the sys-
tem. As a result, their contribution to the time average
of any dynamical variable is negligible on relatively short
time-intervals and becomes nontrivial only on very long
time-intervals. In other words, the typical time-scale due
to the nonlinear interactions is much longer than that
due to the driving-damping. Invoking the ergodicity as-
sumption to replace the statistical average by the time
average, we use this sharp time-scale separation in the
cascade model to approximate the four-point functions
in terms of the second moments, and thus derive the ki-
netic equation.
For two dynamical variables X and Y that are uncor-

related in equilibrium, the average of their product can
be approximated by the product of the averages of each
variable, i.e.,

〈XY 〉 ≃ 〈X〉〈Y 〉, (58)

due to the assumption of near-Gaussianity. In particular,
we have

〈ρmi ρnj 〉 ≃ 〈ρmi 〉〈ρnj 〉, (59)

for integer m, n (> 0) and i 6= j. The approximation
in Eq. (59) becomes less accurate for large m, n because
the time interval required for obtaining a good approxi-
mation of the statistical average by the time averagemust
be longer. At these longer times, however, the nonlinear
interactions disturb the independent Gaussian distribu-
tions.

Using Eqs. (10), (11) and (58), we obtain the approx-
imation

i∂t
〈
a∗qa

∗
q′apap′

〉

≃ −
〈
Tq|aq′ |2|ap|2|ap′ |2 + Tq′ |aq|2|ap|2|ap′ |2

− Tp|aq|2|aq′ |2|ap′ |2 − Tp′ |aq|2|aq′ |2|ap|2
〉

− i



∑

j

νj


〈a∗qa∗q′apap′

〉
,

(60)

where
∑

j νj denotes the sum of the damping parame-
ters for a given quartet. For example, this sum repre-
sents

∑4
j=1 νj for the system of a single quartet, and∑3

j=1 νj for {(q, q′), (p, p′)} = {(1, 2), (3, 4′)},
∑7

j=5 νj
for {(q, q′), (p, p′)} = {(4′, 5), (6, 7)} for the system of
double quartets. In equilibrium, as described in Sec-
tion III, the left-hand side of Eq. (60) would vanish,
while the two terms of the right-hand side would be fi-
nite. Thus, under the near-Gaussianity assumption, we
may likewise neglect this left-hand side, and use Eq. (59)
to obtain an approximation for the four-point function,

〈ρqρq′ρpρp′ cos(θp′ + θp − θq′ − θq)〉 ≃ 0, (61a)

〈ρqρq′ρpρp′ sin(θp′ + θp − θq′ − θq)〉

≃ 1∑
j νj

[
nqnq′npnp′

(
Tq
nq

+
Tq′

nq′
− Tp
np

− Tp′

np′

)]
,

(61b)

in terms of the spectra nj ≡ 〈ρ2j〉.
Using Eqs. (61), we can derive a closed equation for the

approximate values of the spectra nj . In particular, the
substitution of Eq. (61b) into Eq. (53) yields the kinetic
equation

∂nq(t)

∂t
= σ2

q − 2νqnq

+
2Tq∑
j νj

[
nqnq′npnp′

(
Tq
nq

+
Tq′

nq′
− Tp
np

− Tp′

np′

)]

(62)

for the driven-damped modes. Similarly, Eq. (57) for the
shared-mode spectrum can be approximated as

∂n4′(t)

∂t

= − 2T4′∑3
j=1 νj

[
n1n2n3n4′

(
T1
n1

+
T2
n2

− T3
n3

− T4′

n4′

)]

+
2T ′

4′∑7
j=5 νj

[
n4′n5n6n7

(
T ′
4′

n4′
+
T5
n5

− T6
n6

− T7
n7

)]
.

(63)

One can generalize this derivation of Eq. (62) for the
driven-damped modes and Eq. (63) for the shared modes
(without driving-damping) to cascade systems of more
than two quartets.
The ODEs in Eqs. (62), (63) form a set of kinetic equa-

tions analogous to the kinetic integro-differential equa-
tions derived and studied in the theory of wave turbu-
lence [11, 25–29]. [Cf. Eq. (48) for the MMT model in
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Section III C.] The above derivation shows that, in con-
trast to wave turbulence, the applicability of our kinetic
equations is not limited to the case of weakly-nonlinear
interactions, i.e., the values of the interaction coefficients
Tj do not have to be small as long as the system can
be assumed to reside in the regime of near-Gaussianity.
In cases in which a cascade model with a small number
of quartets would suffice to glean some particular prop-
erty of energy transfer, Eqs. (62), (63) would likely afford
computational savings in studying that property over di-
rect numerical simulations of the wave system.
We should note that both the perturbation methods

used to bring out resonant interactions in the examples
presented in Section II A, as well as the classical deriva-
tions of kinetic equation in continuous models of weak
turbulence [11, 25–27], only include the dominant wave
interaction mechanisms, which, for our examples, were
resonant quartets. Less prominent interaction mecha-
nisms are neglected, or captured at the higher-order in
the perturbation expansion. The cascade model should
be able to capture these mechanisms in its driving and
damping terms, which would leave the form of the kinetic
equations (62) and (63) unchanged. On the other hand,
in discrete systems, such as those obtained in numeri-
cal simulations of weakly turbulent processes, the dom-
inant role is played not by resonant but near-resonant
interactions. While the derivation and the form of the
kinetic equation changes in this case [28, 29], triads or
quartets remain the basic mode-interaction mechanism.
Therefore, our cascade model (or its triad counterpart)
should also perform well at modeling the dominant near-
resonant interactions in discret(iz)e(d) systems.

3. Examples of non-equilibrium steady-state solutions

We are particularly interested in possible stationary
solutions of the kinetic equations (62), (63) for the cas-
cade model. In the case of a single quartet, we only
need to solve a system of four algebraic equations for
four unknowns nj , glanced from the right-hand side of
Eq. (62). A yet better method is to solve just one alge-
braic equation for one unknown, Is, obtained by substi-
tuting Eq. (54) into Eq. (62). Similarly, for the system
of double quartets, one can replace the system obtained
from the right-hand sides of Eqs. (62), (63) for seven un-
knowns nj by a system of two algebraic equations for two
unknowns, Id, n4′ , using Eqs. (54) and (57). This dras-
tic dimensional reduction is extremely helpful not only
in finding a stationary solution of our kinetic equations,
but also when verifying its uniqueness.
We here examine the validity of our kinetic equa-

tion (62), (63) via numerical simulations. We consider
a system of double quartets in which the interaction
tensors T1 = T2 = T3 = T4′ are all equal to 0.1,
and T ′

4′ = T5 = T6 = T7 are all equal to 0.2. We
fix νj as 1.0, and vary the parameter ∆σ satisfying
σ1 = 1.0 + 2.0 × ∆σ, σ2 = 1.0 + 1.2 × ∆σ, σ3 = 1.0,

σ5 = 1.0, σ6 = 1.0− 1.5×∆σ and σ7 = 1.0− 1.7×∆σ.
When both σj and νj are the same for all modes, i.e.,
∆σ = 0, the system is in equilibrium and the four-point
functions Id, I ′

d vanish. Therefore, ∆σ can be used to
measure the deviation from the equilibrium state. As
∆σ > 0 increases, the energy cascade from the upper
quartet to the lower quartet in the right panel of Fig. 1
strengthens.
For a progression of ∆σ values, we numerically inte-

grate Eqs. (10), (11) using the Euler-Maruyama method
with the time step ∆t = 0.0025. We compute the four-
point functions Id, I ′

d and the wave spectra nj =
〈
ρ2j
〉

via averaging over both time and noise realizations. The
time interval for the averaging ranges from 1.0 × 105 to
2.0 × 105 and the number of realizations is chosen as
50. We compare these numerically-measured statistical
quantities with the theoretical predictions from our ki-
netic equation. In all cases, Eqs. (62), (63) allow for a
unique solution, n4′ and Id, for which the spectra nj of
Eq. (54) are positive. Fig. 3 reveals that the theoretical
predictions are in good agreement with the numerically
measured four-point functions, Id, I ′

d, and wave spectra,
n1, n4′ , for a wide range of ∆σ.

4. Higher-order moments of the wave amplitude

In order to compute these moments, we consider the
approximation

i∂t
〈
|aq|m−2

(
a∗qa

∗
q′apap′ ,

)〉
≃ 0 (64)

which holds exactly in the equilibrium case. Using a
method similar to the one presented in the preceding
section, together with Eq. (64), we obtain an analog of
Eq. (61b):

〈
ρm−2
q ρqρq′ρpρp′ sin(θp′ + θp − θq′ − θq)

〉

≃ 1∑
j νj

[
nq′npnp′

(
Tq′

nq′
− Tp
np

− Tp′

np′

)
〈ρmq 〉

+ Tqnq′npnp′〈ρm−2
q 〉

]
.

(65)

When the wave aq is driven-damped, the substitution
of Eq. (65) into Eq. (52) yields the approximation

〈ρm+2
q 〉 ≃

(m+ 2)
σ2

q

4 +
T 2

q∑
j
νj
nq′npnp′

νq − Tq∑
j
νj
nq′npnp′

(
Tq′

nq′
− Tp

np
− Tp′

np′

)〈ρmq 〉

(66)
for a steady-state system. We insert the value of nq ≡
〈ρ2q〉, obtained by solving our kinetic equations (62), (63)
into Eq. (66) with m = 2 to approximate the value of
〈ρ4q〉. This fourth-order moment, in turn, gives us an ap-

proximation of 〈ρ6q〉. By repeating this procedure, we ap-

proximate all even-order moments 〈ρ2mq 〉 using Eq. (66).
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FIG. 3: Top panel: numerically measured Id(circles) and
I′

d(diamonds) as functions of ∆σ for the system of double
quartets. Bottom panel: numerically measured 〈ρ21〉(circles)
and 〈ρ2

4′
〉(diamonds) as functions of ∆σ for the system of dou-

ble quartets. In both cases, the solid lines are the solutions
of Eq. (62), (63)

This recurrence relation can also be used to approxi-
mate the odd-order moments 〈ρ2m−1

q 〉, once the first mo-
ment 〈ρq〉 is available. One of its approximations can

be obtained using 〈ρq〉 ≃ (
√
π/2)〈ρ2q〉1/2 under the near-

Gaussianity assumption.

For the system of double quartets, we compare the
theoretical predictions of the higher-order moments for
the driven-damped modes with the moments estimated
numerically. We continue to use the same setting as in
the previous case and fix ∆σ = 0.20, for which our kinetic
equation yields very accurate predictions. Fig. 4 shows
that the analytical approximations of 〈ρm1 〉 obtained from
the solution of Eq. (62), (63) alongside the relation (66)
are in good agreement with the numerically measured
ones, for any 1 ≤ m ≤ 9. The agreement tends to be
less accurate for the higher-order moments as compared
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4′〉
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FIG. 4: Numerically measured 〈ρm1 〉(circles), 〈ρm
4′
〉(diamonds)

when ∆σ = 0.20, and 〈ρm
4′
〉(squares) when ∆σ = 0.30, as

functions of m for the system of double quartets. The solid
lines are the theoretical predictions using Eq. (66) for 〈ρm1 〉
and Eq. (67) for 〈ρm

4′
〉.

with the lower-order moments, because Eqs. (59), (66)
become less accurate as the power m grows.
Unfortunately, Eq. (66) cannot be applied to approxi-

mate the higher-order moments 〈ρm4′ 〉 of the shared mode
due to the inherent nature of this mode, i.e., the ab-
sence of driving-damping. Thus, the kinetic approach
developed so far can only predict the second moment of
the shared-mode amplitude, and even that only in a lim-
ited parameter regime [see the bottom panel of Fig. (3)].
Since we have designed the shared wave in the cascade
model to be reminiscent of the modes in an inertial range
in wave turbulence, and so are particularly interested in
its statistics, we change tack and first proceed with nu-
merical experiments. As discussed below, we find from
these experiments that the shared-wave amplitude ρ4′ is
distributed according to the Gaussian law also in a non-
equilibrium steady state.
We analyze the outcome of these numerical experi-

ments by noting that, when the marginal distribution
of the amplitude ρ4′ is Gaussian, the relation

〈ρm4′ 〉 = Γ
(m
2

+ 1
)
〈ρ24′〉

m
2 (67)

is known to be satisfied. Here Γ(·) denotes the Gamma
function [30]. When ∆σ = 0.20, we insert the station-
ary solution n4′ ≡ 〈ρ24′〉, obtained from our kinetic equa-
tion (62), (63), into the right-hand side of Eq. (67). In
this way, we theoretically predict moments 〈ρm4′ 〉. Up
to the 9-th order, these predicted moments give excel-
lent agreement with their counterparts computed by di-
rect numerical simulations of Eqs. (10), (11). (Note that
this prediction also includes m = 1.) We also exam-
ine the case of ∆σ = 0.30, for which our kinetic equa-
tion can no longer accurately predict the value of sec-
ond moment 〈ρ24′〉, as seen from Fig. 3. As we there-
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fore possess no analytical tools to accurately approxi-
mate 〈ρ24′〉 in this parameter regime, we instead sub-
stitute its numerically-measured value into Eq. (67) to
compute approximations of the higher moments 〈ρm4′ 〉
based on the near-Gaussianity assumption. Again, as
displayed in Fig. 4, these semi-empirical, Gaussian-based
higher-moment approximations agree very well with the
numerically-measured higher moments at any order m ≤
9. We thus tentatively conclude that the system pos-
sesses a Gaussian stationary marginal distribution of the
shared-mode amplitude. In the next section, we amplify
this result by predicting this marginal distribution via a
complementary approach using the KFE.

B. Marginal distribution of the shared-mode

amplitude

In this section, we apply an alternative approach to
demonstrate that the amplitude of the shared mode in a
cascade system of double quartets in a non-equilibrium
steady state is distributed according to the Gaussian
law. To this end, we first recall the equilibrium case,
i.e., the family of cascade models satisfying the detailed-
balance conditions in Eq. (28), for which the KFE (36)
possesses a joint Gaussian stationary solution described
by Eq. (37). One might expect that it would also be
possible to derive and analyze a second order PDE, sim-
ilar to the KFE, which would govern the marginal dis-

tribution P̃d(t, ρ4′). However, as we will see below, this
attempt is hampered by the fact that the shared wave
is free from driving and damping. The key idea to get
around this intractable point in the theoretical analysis
is to let the shared wave be externally forced and dis-
sipated. We are then allowed to study the statistics of
the shared mode utilizing the KFE of this new, auxil-
iary dynamical system. Finally, we remove both driving
and damping that we had imposed on this mode, by let-
ting them vanish via a distinguished limit taken along a
particular curve in the driving-damping plane, to recover
the cascade model. This roundabout approach provides a
framework that leads us to re-examine the known Gaus-
sian statistics in equilibrium from a different perspective,
and to predict the non-equilibrium stationary distribu-
tion of the shared-mode amplitude.

1. Augmented model

We construct a new, auxiliary model with white noise
forcing and linear dissipation added to the shared wave of
the double-quartets cascade model. We name this class
of systems the augmented model. For instance, the aug-
mented model comprising double quartets is the same as
the one displayed in the right panel of Fig. 1, except that
the wave a4′ is governed by the equation

i∂ta4′ = T4′a
∗
3a1a2 + T ′

4′a
∗
5a6a7 − iν4′a4′ + σ4′Ẇ4′ . (68)

Let P̂d be the probability distribution and Ĝd be the

infinitesimal generator [similar to G̃d in Eq. (35)] of this
new system in polar coordinates. (From now on, it will

be helpful to keep in mind that P̃ is used to denote dis-

tributions in the cascade model and P̂ in the augmented
model.) The SDEs (10), (68) then give rise to the KFE

∂tP̂d(t, {ρj, φ′, ϕ}) = Ĝ†
dP̂d(t, {ρj , φ′, ϕ}) (69)

for the augmented model. The marginal distribution of
the mixed-mode amplitude,

P̂d(t, ρ4′) ≡
∫
P̂d(t, {ρj , φ′, ϕ})

7∏

j=1
j 6=4

dρjdφ
′dϕ,

then satisfies the equation

∂tP̂d(t, ρ4′) =

∫
∂tP̂d(t, {ρj , φ′, ϕ})

7∏

j=1
j 6=4

dρjdφ
′dϕ

=

∫
Ĝ†
dP̂d(t, {ρj, φ′, ϕ})

7∏

j=1
j 6=4

dρjdφ
′dϕ

= −
∫
∂ρ

4′

(
µ′
ρ
4′
P̂d(t, {ρj, φ′, ϕ})

− σ2
4′

4
∂ρ

4′
P̂d(t, {ρj , φ′, ϕ})

)
7∏

j=1
j 6=4

dρjdφ
′dϕ,

(70)

where the coefficient µ′
ρ
4′

is given by the expression

µ′
ρ
4′
≡ σ2

4′

4ρ4′
− ν4′ρ4′

− T4′ρ1ρ2ρ3 sin(φ
′) + T ′

4′ρ5ρ6ρ7 sin(ϕ).

In general, Eq. (70) is not a closed equation. However,
the independence assumption

P̂d(ρj , φ
′, ϕ) = P̂d(ρ4′)P̂d(ρj\ρ4′ , φ′, ϕ) (71)

where ρj\ρ4′ = {ρj | j = 1, . . . , 7; j 6= 4} gives rise to the
closed PDE:

∂tP̂d(t, ρ4′) = ∂ρ
4′

[
σ2
4′

4
∂ρ

4′
P̂d(t, ρ4′)−

(
σ2
4′

4ρ4′
− ν4′ρ4′

− 〈T4′ρ1ρ2ρ3 sin(φ′)− T ′
4′ρ5ρ6ρ7 sin(ϕ)〉′

)
P̂d(t, ρ4′)

]
.

(72)

Here and after, 〈·〉′ denotes the statistical average over
the distribution of the augmented model.
There are two issues that we must address with regard

to the derivation of Eq. (72). First, condition (71) does
not imply that the variable a4′ is independent of the re-
maining variables. That independence would follow from
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assuming P̂d(xj , yj) = P̂d(x4′ , y4′)P̂d(xj\x4′ , yj\y4′),
where xj\x4′ = {xj |j = 1, . . . , 7; j 6= 4} and yj\y4′ =
{yj|j = 1, . . . , 7; j 6= 4}, which would be a stronger as-
sumption. In fact, this issue is closely related to the
discussion in Section III B 2, i.e., the question of why po-
lar coordinates are more appropriate for the description
of the cascade model than rectangular coordinates. Sec-
ond, Eq. (70) is trivial when σ4′ = ν4′ = 0, and therefore
there is no second-order PDE analogous to Eq. (72) for
the cascade model, as we pointed out above.
In what is to follow, we will use a distinguished limit of

this augmented model, in which the driving and damp-
ing of the shared mode are made to vanish along a spe-
cific curve, in order to approach the marginal distribu-
tion of this mode in the limiting cascade system in a
non-equilibrium steady state, and demonstrate that it is
Gaussian.

2. The augmented and cascade models in equilibrium

Starting with a cascade model, we now set up a dis-
tinguished, one-parameter family of augmented models
that will limit on this cascade model. Choosing this fam-
ily so that, for each augmented model in it, the marginal
distribution of the shared mode is the same, we can use
it to characterize the marginal distribution of the shared
mode in the underlying cascade model. For clarity and
illustration purposes, in this section, we first set this dis-
tinguished limit up in the case when the cascade model
can reach a Gaussian equilibrium steady state.
We begin by again considering the augmented model,

described by Eq. (69), letting γj = 2νj/σ
2
j , except for

j = 4, as in Eq. (24), and supposing there exists a positive
value γ̄0 satisfying the pair of equations

T1γ1 + T2γ2 − T3γ3 − T4′ γ̄
0 = 0,

T ′
4′ γ̄

0 + T5γ5 − T6γ6 − T7γ7 = 0.
(73)

If the value of the parameter

γ̄ ≡ 2ν4′

σ2
4′

(74)

equals γ̄0, then one can show that the equilibrium distri-
bution of the augmented model comprising double quar-
tets is given by the expression

P̂ 0
d (ρj , φ

′, ϕ)

≡
(
2γ̄0e−γ̄0ρ2

4′ρ4′
)( 1

2π

)2 7∏

j=1
j 6=4

(
2γje

−γjρ
2

jρj

)
(75)

in a manner similar to what we did in Section III A. This
expression leads to the marginal distribution

P̂ 0
d (ρ4′) ≡

∫
P̂ 0
d (ρj , φ

′, ϕ)

7∏

j=1
j 6=4

dρjdφ
′dϕ = 2γ̄0e−γ̄0ρ2

4′ ρ4′

(76)

of the shared wave-mode amplitude ρ4′ , which is Gaus-
sian. Note that the distribution (75) satisfies the inde-
pendence condition (71), as well as gives rise to the equa-
tion

〈T4′ρ1ρ2ρ3 sin(φ′)〉′ = 〈T ′
4′ρ5ρ6ρ7 sin(ϕ)〉′ = 0. (77)

Consistently, in this case, Eq. (72) possesses the unique
stationary solution given by the expression in Eq. (76).
Let us now consider a cascade model in thermal equi-

librium. As we recall from Section III A, the combina-
tions γj in Eq. (24) of this model’s driving and damp-
ing parameters σj and νj , j = 1, . . . , 7, j 6= 4, together
with some positive number γ4′ , must satisfy the detailed-
balance conditions in Eq. (28). Its equilibrium distri-
bution is, in polar coordinates, given by the function

P̃ 0
d (ρj , φ

′, ϕ) in Eq. (37), and, consequently, the marginal
distribution of its shared-mode amplitude ρ4′ is given

by the Gaussian P̃ 0
d (ρ4′) in Eq. (38). Given this cas-

cade model, let us consider an augmented model instan-
tiated by the exact same parameters, except σ4′ and ν4′
(which do not exists in the cascade model). For this
augmented model, let its parameter combinations γj in
Eq. (24) and γ̄ in Eq. (74) satisfy the detailed-balance
equations (73), so that γ̄ = γ̄0. Furthermore, let γ̄0 = γ4′ ,
so that the detailed-balance conditions in Eq. (28) and
Eq. (73) become identical. Then the two respective sets
of variables and, consequently, the two shared-wave am-
plitudes are distributed identically. In other words, the

two equilibrium distributions, P̂ 0
d (ρj , φ

′, ϕ) in Eq. (75)

and P̃ 0
d (ρj , φ

′, ϕ) in Eq. (37), are given by the same func-
tion, and consequently also the two marginal distribu-

tions, P̃ 0
d (ρ4′) in Eq. (38) and P̂ 0

d (ρ4′) in Eq. (76), are
given by the same function.
To set up the distinguished limit, given a cascade

model in equilibrium, let us pick a family of augmented
models, characterized by the common value of the pa-
rameter γ̄ = γ̄0 = γ4′ and by decreasing parameters
σ4′ and ν4′ . In particular, we consider the limiting case
of this family in which we take the distinguished limit
σ4′ , ν4′ → 0 while still maintaining the same value of
their combination γ̄ in Eq. (74) at γ̄ = γ̄0 = γ4′ . In
other words, we let σ4′ , ν4′ vanish along the curve in the
(σ4′ , ν4′)-plane defined by Eq. (74) with γ̄ = γ̄0 = γ4′ . By
approaching this distinguished limit, we gradually reduce
the randomness originating from the driving-damping of
the shared mode, so that it becomes more and more neg-
ligible and the vast majority of the randomness in the
system becomes induced by the resonant interactions.
Thus, eventually, the augmented models become indis-
tinguishable from, and in the limit σ4′ , ν4′ → 0 turn into,
the given cascade model, for which the statistics of the
shared-mode amplitude ρ4′ are purely determined by the
resonant interactions.
The above distinguished limiting process clearly leaves

the probability distributions P̂ 0
d (ρj , φ

′, ϕ) and P̂ 0
d (ρ4′) of

the augmented model in Eqs. (75) and (76) invariant,
since they only depend on the forcing strengths σj and
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damping strengths νj (including σ4′ and ν4′) through
their combinations γj , j 6= 4, and γ̄, which remain con-
stant. Therefore, in this distinguished limit, we recover

the probability distributions P̃ 0
d (ρj , φ

′, ϕ) and P̃ 0
d (ρ4′) in

Eqs. (37) and (38) with γ4′ ≡ γ̄0, belonging to the cas-
cade system of double quartets we have considered in the
first place. In particular, for the marginal distribution of
the shared-mode amplitude ρ4′ , this distinguished limit
yields the equation

P̃ 0
d (ρ4′) = lim

σ
4′
,ν

4′
→0

2ν
4′
/σ2

4′
=γ̄0

P̂ 0
d (ρ4′) (78)

where, as just mentioned, we use the invariance of the

distribution P̂ 0
d (ρ4′) over the distinguished family.

We should remark that, in the equilibrium case stud-
ied in this section, the above distinguished limiting pro-
cess was trivial. Namely, the probability distributions
for all the variables in both the cascade model and the
associated distinguished family of augmented models in
equilibrium are known explicitly, as is the limit of the
latter distribution onto the former. This will definitely
not be true in the next section, in which we will use a
similar type of distinguished-limit approach to study the
marginal distribution of the shared mode of the double-
quartet cascade model in a non-equilibrium steady state.

3. The augmented and cascade models in non-equilibrium

steady state

In this section, we use the idea we employed in the
preceding section to study the marginal distribution of
the shared-wave amplitude for the double-quartet cas-
cade model in a non-equilibrium steady state via a dis-
tinguished limit of a corresponding family of augmented
models.

Unlike in the equilibrium case, discussed in the pre-
vious section, for which our distinguished limit is only
a means of further highlighting the properties of the
exactly-obtained equilibrium measure, our use of the dis-
tinguished limit in the non-equilibrium steady state of
the cascade model is unavoidable. This is because, as we
pointed out in the last paragraph of Section IVB1, in
such a state, we could find no dynamical equation that
would govern the marginal distribution of the shared-
mode amplitude.

Let us first focus on the augmented model of double
quartets. Even for this model, if the detailed-balance
conditions (73) for the equilibrium do not hold, we can-
not obtain an explicit expression for its non-equilibrium
steady-state distribution. Instead, we derive the steady-
state distribution of its shared-mode amplitude using
properties of its moments. In particular, for the moments
of the shared-mode amplitude ρ4′ , from the KFE (69),

using integration by parts, we compute the equations

∂t〈ρm4′ 〉′ = m

[
m
σ2
4′

4

〈
ρm−2
4′

〉′ − ν4′ 〈ρm4′ 〉
′

− 〈T4′ρm−2
4′ ρ1ρ2ρ3ρ4′ sin(φ

′)

− T ′
4′ρ

m−2
4′ ρ4′ρ5ρ6ρ7 sin(ϕ)〉′

]
.

(79)

[Cf. Eqs. (52) and (56).]
In a statistical steady-state, Eq. (79) with m = 1 gives

rise to the equation

〈T4′ρ1ρ2ρ3 sin(φ′)− T ′
4′ρ5ρ6ρ7 sin(ϕ)〉′

=
σ2
4′

4

〈
ρ−1
4′

〉′ − ν4′ 〈ρ4′〉′ .
(80)

If we again make the independence assumption (71) for

the joint probability distribution P̂d(ρj , φ
′, ϕ) of the aug-

mented model in this state, we note that the Gaussian
distribution

P̂ 1
d (ρ4′) ≡ 2γ̄e−γ̄ρ2

4′ ρ4′ , (81)

where the parameter γ̄ satisfies Eq. (74), makes the right-
hand side of Eq. (80) vanish, which further implies the
equation

〈T4′ρ1ρ2ρ3 sin(φ′)− T ′
4′ρ5ρ6ρ7 sin(ϕ)〉′ = 0. (82)

In turn, when the equation (82) is satisfied for a joint dis-

tribution P̂d(ρj , φ
′, ϕ) that also satisfies the independence

assumption (71), the resulting equation in Eq. (72) al-
lows for the unique stationary solution given by Eq. (81).
Thus, we conclude that any augmented model in a non-
equilibrium steady state, whose corresponding joint dis-

tribution P̂d(ρj , φ
′, ϕ) satisfies the independence assump-

tion (71), necessarily possesses the Gaussian distribution
in Eq. (81) as the marginal distribution of its shared-
mode amplitude ρ4′ .
Turning our attention to the cascade model, we be-

gin by considering a distinguished limit of an appropri-
ate family of augmented models, all of which find them-
selves in a non-equilibrium steady state. In particular, we
choose a family of the augmented models sharing iden-
tical parameter values except for ν4′ and σ4′ ; for these
two parameters, the ratio γ̄ (≡ 2ν4′/σ

2
4′) is identical for

the entire family. In the distinguished limit of vanishing
driving-damping while keeping γ̄ constant, the form of
the marginal Gaussian distribution in Eq. (81) remains
invariant. This invariance, as in the equilibrium case,
allows us to define a formal limit, which we denote by

P̃ 1
d (ρ4′) ≡ lim

σ
4′
,ν

4′
→0

2ν
4′
/σ2

4′
=γ̄

P̂ 1
d (ρ4′). (83)

In order to understand which distinguished family
of augmented models we should associate with a given
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double-quartet cascade model, we notice that, for all
these augmented models, the parameter γ̄ (≡ 2ν4′/σ

2
4′)

in the Gaussian distribution (81) equals the reciprocal of
its second moment. Therefore, the appropriate choice of
the distinguished augmented-model family corresponding
to the chosen cascade model is such that the parameter
γ̄ of this family equals γ, which satisfies the equation

〈ρ24′〉 =
1

γ
. (84)

Here, the stationary second moment 〈ρ24′〉 for the cas-
cade model is obtained as the appropriate component
of the corresponding fixed point of the kinetic-equation
system (62), (63) provided such a fixed point exists. To-
gether with Eq. (84), the formal limit (83) and the Gaus-
sian form (81) provide us with a strong indication that
the stationary shared-mode amplitude distribution of the
given double-quartet cascade model should be given by
the Gaussian form

P̃ 1
d (ρ4′) = 2γe−γρ2

4′ρ4′ . (85)

This indication is amplified by the numerical corrobora-
tion that the higher-moment relations of this distribution
closely agree with the Gaussian prediction in Eq. (67), as
explained at the end of Section IVA4.
We should note here, however, that the above deriva-

tion is formal. Unlike in the equilibrium case, treated
in the previous section, in which all the solutions are
explicitly known and the distinguished limit is therefore
trivial, we made no attempt at proving Eq. (85) rigor-
ously. Moreover, we have not even proven that the dis-
tinguished limiting process gives convergence to a solu-
tion of the cascade model in a continuous fashion in the
case of a non-equilibrium steady state. Nevertheless, we
will be content with the above strong indications that the
shared-mode amplitude distribution of a double-quartet
cascade model in such a state should indeed be the Gaus-
sian in Eq. (85).
We should also note that we use the distinguished limit

of the augmented model here solely to demonstrate the
Gaussianity of the shared-mode amplitude distribution in
a non-equilibrium steady state of a double-quartet cas-
cade model. This limit does not give us a direct way
to compute the width of this distribution, and in fact,
the limit of the augmented model as σ4′ , ν4′ → 0 with-
out satisfying any constraints is singular. Namely, while
we have found that the shared-mode distribution of the
augmented model in a non-equilibrium steady state is
Gaussian, its width can vary widely in the σ4′ , ν4′ → 0
limit depending on the value of the ratio γ̄ = 2ν4′/σ

2
4′ .

In other words, an arbitrarily small addition of driving
and damping to the shared mode in the cascade model
can, in the resulting augmented model, significantly al-
ter the width of this mode’s amplitude distribution in a
non-equilibrium steady state.
Before concluding this section, we should remark on

the physical importance of certain points in the argu-
ments presented above. In particular, it is important

to notice from Eqs. (74) and (81) that the Gaussian
statistics of the shared-mode amplitude in the augmented
model are not caused by the resonant interactions among
the modes, but are instead completely determined by the
forcing and dissipation. (Recall from the previous section
that the same property holds in the equilibrium case.)
We thus emphasize that Eq. (82) can be viewed as a
balance of two resonant interactions, and plays exactly
the same critical role in the non-equilibrium system as
the detailed-balance condition (73) plays in the equilib-
rium system. This role is to ensure that the subsystem
describing the shared mode behaves as if there were no
interactions with other modes, and further possesses a
Gaussian stationary distribution of its amplitude. In this
regard, we also note that Eq. (77), satisfied by the system
in equilibrium, is a special case of Eq. (82).
For the cascade model obtained from the augmented

model via the distinguished limit, the balance condi-
tion (82) formally gives the limiting balance condition

〈T4′ρ1ρ2ρ3 sin(φ′)− T ′
4′ρ5ρ6ρ7 sin(ϕ)〉 = 0. (86)

Alternatively, we can obtain the balance in Eq. (86) di-
rectly from Eq. (56) with m = 1, and in particular with-
out resorting to the independence assumption (71) or its
possible limit in the cascade model. This fact will be im-
portant for the information-theoretic approach presented
in the next section. We here also remark that the relation
between the balance in Eq. (86) and the detailed-balance
condition (28) in the cascade model is analogous to the
relation between the balance in Eq. (82) and the detailed-
balance condition (73) in the augmented model.
We should also note that the balance condition (82)

is closely related to the vanishing of the net wave-action
flux into the shared mode of the augmented model in a
steady state, as we can deduce from the independence
assumption (71), the Gaussian distribution form (81),
and Eq. (79) with m = 2. Its distinguished limit (86) is
the vanishing of the right-hand side of Eq. (57), i.e., the
vanishing of the difference between the wave-action fluxes
into and out of the shared mode of the cascade model in
a steady state, which we have already discussed at the
end of Section IVA1. This is a much less restrictive
condition than the detailed balance condition (28), or its
consequence, the cascade-model limit of Eq. (77), which
imply the vanishing of both the fluxes into and out of the
shared mode separately.
Under the less restrictive balance condition (86), the

wave-action flux through the shared mode in the non-
equilibrium steady state of the cascade model equals
〈T4′ρ1ρ2ρ3 sin(φ′)〉 = 〈T ′

4′ρ5ρ6ρ7 sin(ϕ)〉, and generally
does not vanish. This is reminiscent of the finite-flux,
Kolmogorov-Zakharov solutions of the kinetic equation
for the inverse (or direct) cascade in weak turbulence,
for which the total input flux of either wave-action or
energy into a mode also equals its total output flux. For
the special, power-law type Kolmogorov-Zakharov solu-
tions [11, 27], which appear in systems with scaling sym-
metries, more restricted wave-action (or energy) contri-



21

butions from quadruples of proportional quartets that
share a node must already add up to zero [14]. Mod-
eling of such Kolmogorov-Zakharov solutions that de-
scribes this property would require a more sophisticated
architecture of a coupled-quartet model than our linear
cascade, in order to properly capture the underlying sym-
metry and the resulting self-similarity, which is outside
the scope of this paper.
Finally, we should address the question of when a given

cascade model possesses a statistical steady state. We
know from Sections III A and III B that it possesses an
equilibrium precisely when the detailed-balance condi-
tions Eq. (25), Eq. (28), or their counterparts for cas-
cade systems comprising more than two quartets, hold.
More generally, the kinetic equations (62), (63) provide a
strong indication for the existence or non-existence of a
steady state: a steady state is likely to exist for the corre-
sponding cascade model precisely when these equations
have a fixed point. We will address possible approach of
other initial distributions to such a steady state in the
next section.

C. Information-theoretic approach to relaxation of

shared-mode amplitude

Finally, we discuss the long-time behavior of the
shared-mode amplitude in the cascade model. Recall
that, in a statistical equilibrium, we have addressed the
long-time behavior of the entire system via the maxi-
mal entropy principle discussed in Section III B 1. There,
the key object is the relative entropy SEQ(P, P

0), de-
fined in Eq. (39). For the system of double quartets
satisfying the detailed-balance condition (28), we use
Eq. (41) to show that the time-derivative of the cor-
responding relative entropy SEQ(Pd, P

0
d ) in rectangular

coordinates is positive semi-definite and vanishes if and
only if P = Pd(t, {xj , yj}) = P 0

d (xj , yj), the equilibrium
distribution in Eq. (26). Likewise, we can use a similar

derivation to show that the relative entropy SEQ(P̃d, P̃
0
d )

in polar coordinates is positive semi-definite and van-

ishes if and only if P̃d(t, {ρj, φ′, ϕ}) = P̃ 0
d (ρj , φ

′, ϕ), the
equilibrium distribution in Eq. (37). Formally, we repre-
sent the monotonic growth of the macroscopic quantity

SEQ(P̃d, P̃
0
d ) by the statement:

P̃d(t, {ρj, φ′, ϕ}) → P̃ 0
d (ρj , φ

′, ϕ) as t→ ∞. (87)

We should remark here, however, that we have by
no means proven pointwise convergence of arbitrar(il)y

(rough) distribution functions P̃d towards the equilibrium

distribution P̃ 0
d , given by Eq. (37). Moreover, addressing

any precise manner in which possible functional conver-

gence of solutions of the KFE (36) to the distribution P̃ 0
d

in Eq. (37) might take place is beyond the scope of this
paper.
For non-equilibrium dynamical systems, there also ex-

ist attempts to describe the irreversible relaxation to the

steady state by defining and studying entropy-like quan-
tities [31]. One immediate candidate is obtained by using
a non-equilibrium stationary distribution instead of the
equilibrium distribution, which reads

SSS

(
P̃d(ρj , φ

′, ϕ), P̃ 1
d (ρj , φ

′, ϕ)
)

≡ −
〈
log

(
P̃d(ρj , φ

′, ϕ)

P̃ 1
d (ρj , φ

′, ϕ)

)〉
(88)

in the case of the cascade model. Here, SS stands for

steady-state, and the reference distribution P̃ 1
d (ρj , φ

′, ϕ)
denotes a time-independent solution of Eq. (36), if it ex-

ists, other than P̃ 0
d (ρj , φ

′, ϕ). Naively, one might expect
in the non-equilibrium case to use the evolution of the
“relative entropy” defined in Eq. (88) to reach a conclu-
sion similar to that in Eq. (87) in the equilibrium case.
However, it is known that quantities such as SSS can fail
to correctly predict the relaxation process (see, for in-
stance [32]). Furthermore, in the present case, we are
unable to examine the validity of the maximization of
the relative entropy SSS in Eq. (88) as a means of estab-
lishing long-time convergence to the steady-state distri-

bution P̃ 1
d (ρj , φ

′, ϕ) simply because we do not even know

what P̃ 1
d (ρj , φ

′, ϕ) would be.
We instead conclude this paper by pointing out that

the condition (86) underlies the monotonic growth of the
macroscopic quantity

SSS

(
P̃d(ρ4′), P̃

1
d (ρ4′)

)
= −

〈
log

(
P̃d(ρ4′)

P̃ 1
d (ρ4′)

)〉
(89)

which is maximized when the marginal distribution of
the shared-mode amplitude ρ4′ becomes the Gaussian

function P̃ 1
d (ρ4′) in Eq. (85), just as the detailed-balance

constraint (28) underlies the formal limit (87) in the case
of equilibrium. This result may be interpreted as irre-
versible relaxation of the shared-mode amplitude, ρ4′ , of
the cascade model to a non-equilibrium statistical steady
state, which we formally denote by the statement:

P̃d(t, ρ4′) → P̃ 1
d (ρ4′) as t→ ∞. (90)

In order to study the time-evolution of the macroscopic
quantity SSS in Eq. (89), we again use our distinguished
limit from Sections IVB 2 and IVB3. We employ the
augmented model characterized by the parameter γ̄ = γ
[Cf. Eqs. (74) and (84)], and define the analogous quan-
tity

ŜSS

(
P̂d(ρ4′), P̂

1
d (ρ4′)

)
≡ −

〈
log

(
P̂d(ρ4′)

P̂ 1
d (ρ4′)

)〉′

(91)

where 〈·〉′ denotes the statistical average over the dis-
tribution of the augmented model. Using Eq. (72), a
calculation similar to the one in Appendix B yields the
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time derivative of Eq. (91):

d

dt
ŜSS

(
P̂d(ρ4′), P̂

1
d (ρ4′)

)
=

∫
σ2
4′

4P̂d(ρ4′)

(
∂ρ

4′
P̂d(ρ4′)

−
(

1

ρ4′
− 2γ̄ρ4′

)
P̂d(ρ4′)

)2

dρ4′

− 〈T4′ρ1ρ2ρ3 sin(φ′)− T ′
4′ρ5ρ6ρ7 sin(ϕ)〉′

×
∫ (

1

ρ4′
− 2γ̄ρ4′

)
P̂d(ρ4′) dρ4′

(92)

which is positive semi-definite, and vanishes only when
when the marginal distribution of the shared-mode am-

plitude, ρ4′ , of the cascade model becomes P̂d(ρ4′) =

P̂ 1
d (ρ4′), provided the condition (82) holds. [Eq. (92) can

be regarded as a counterpart of Eq. (41)]. Applying the
distinguished limit as σ4′ , ν4′ → 0 to the result of the aug-
mented model, using the same approach we used in the
previous section, we predict the formal limit in Eq. (90).
We should again emphasize, as we did in the text fol-

lowing Eq (82), that we have derived the balance con-
dition (82) directly and without resorting to any spe-
cial assumptions on the initial distribution in the cascade
model. Therefore, the formal limit should hold regardless
of the initial distribution, provided a statistical steady
state exists the for the cascade model in question. We
discussed the conditions for this existence at the end of
the previous section.

V. CONCLUSIONS

In the spirit of shell models of Navier-Stokes turbu-
lence, we have constructed a cascade model of wave
turbulence. As the backbone of our construction, we
used the natural objects mediating energy transfer in
one-dimensional and many higher-dimensional weakly-
turbulent wave systems, which are resonant interactions
among four waves. The result is a minimal, yet realis-
tically coupled, driven, and damped model that repro-
duces a number of salient features exhibited by physical
systems and their kinetic-theoretic descriptions in wave
turbulence. In particular, in addition to a set of driven
and damped modes, our cascade model incorporates a
coupled sequence of modes free of driving and damping,
which are intended to reflect the properties of the wave-
modes in the inertial range of a weakly-turbulent wave
system.
We first found that the equilibrium case of the cas-

cade model directly corresponds to the thermodynamic
equilibrium in wave turbulence. We have been able to
show that all the wave amplitudes in this case obey
a joint Gaussian distribution law, and also that the
appropriately-chosen energy flux among the wave-modes
vanishes, as is expected in thermodynamic equilibrium.
Moreover, the conditions that need to be imposed on its

parameters for the cascade model to find itself in equilib-
rium ensure detailed balance, just as the equation char-
acterizing the Rayleigh-Jeans spectra in wave turbulence.
Lastly, we derived a maximum-entropy principle for the
equilibrium distribution in the cascade model, which cor-
responds to the maximum-entropy principle for the ther-
modynamic equilibrium in wave turbulence.

The non-equilibrium steady-state case of the cas-
cade model resembles statistical steady states of weakly-
turbulent wave systems in which non-zero energy transfer
takes place, such as perhaps states in which these lat-
ter systems exhibit Kolmogorov-Zakharov spectra [11].
While a closed-form joint distribution of the variables
characterizing the cascade model is impossible to find in
this case, we do find an approximate description by de-
riving a closed set of kinetic ODEs for the second-order
amplitude moments of the wave-modes. These ODEs
parallel, but are significantly simpler than, the corre-
sponding kinetic equations in wave turbulence. We use
the second-order amplitude moments we obtain from the
kinetic equations to further find the higher-order ampli-
tude moments of the driven-damped modes and a Gaus-
sian marginal distribution for the coupled modes not sub-
ject to any external driving or damping, and thus deter-
mine the marginal distributions of all the wave modes
in the cascade model also in a non-equilibrium steady
state. Again, we find an information-theory-based pro-
cess resembling an entropy-maximization principle for
the Gaussian marginal distribution of the modes with-
out driving or damping.

Altogether, the cascade model sheds new light on and
provides details of the energy-transfer mechanisms in
wave turbulence, by closely mimicking and carefully tak-
ing into account the main features of weakly-turbulent
wave systems on the one hand, and being analytically
tractable on the other. One ultimate goal of our simpli-
fied modeling would be to help to better explain system
behavior in realistic wave turbulence, in particular, the
steady-state dynamics of modes in an inertial range of
such systems, based on the knowledge gained from the
non-equilibrium dynamics exhibited by our cascade or
related models.
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Appendix A: Multiple time-scale analysis of a

hyperbolic PDE

First, we derive Eq. (8) from Eqs. (6), (7) by substi-
tuting the formal expansion

u = V (x, ǫx, t, ǫt, ǫ2t) = V0 + ǫV1 + ǫ2V2 + · · · (A1)

into the hyperbolic PDE

[
∂2t + ω2 (|∂x|)

]
u+ ǫ2u3 = 0, (A2)

and employing term-by-term analysis. At the lowest or-
der, the wave equation

O (1) :
[
∂2t + ω2 (|∂x|)

]
V0 = 0 (A3)

emerges. We substitute the four-wave resonance solution

V0 =
4∑

j=1

Bj

(
ǫx, ǫt, ǫ2t

)
ei[kjx−ω(kj)t], (A4)

and that gives rise to the next-order equation,

O (ǫ) :
[
∂2t + ω2 (|∂x|)

]
V1

=

4∑

j=1

2iω(kj)

[
∂ǫtBj +

∂ω(kj)

∂kj
∂ǫxBj

]
ei[kjx−ω(kj)t].

We suppress the secular growth of V1 by letting the co-
efficient of the resonant wave vanish, which leads to the
transport equation for the wave amplitude Bj over the
time-scale of order ǫ−1,

∂ǫtBj +
∂ω(kj)

∂kj
∂ǫxBj = 0.

Likewise, by suppressing the secular term in the third
order equation

O
(
ǫ2
)
:

[
∂2t + ω2 (|∂x|)

]
V2

=

4∑

j=1

2ω(kj)

[
i∂ǫ2tBj −

3

ω(kj)
B∗

j′BkBk′

− 3

2ω(kj)

(
2

4∑

l=1

|Bl|2 − |Bj |2
)
Bj

]
ei[kjx−ω(kj)t]

+ non-resonant terms,

we find Eq. (8).
Next, we use a time-scale separation to study the

asymptotic behavior of the hyperbolic PDE

[
∂2t + ω2 (|∂x|)

]
u+ ǫu3 = 0, (A5)

which has a different amplitude scaling from the one
given in Eq. (A2). The substitution of

u = V (x, ǫx, t, ǫt) = V0 + ǫV1 + · · · (A6)

again yields Eq. (A3). If we again assume four waves to
be excited, as in Eq. (A4), the resulting equation

i∂ǫtBj + i
∂ω(kj)

∂kj
∂ǫxBj

=
6

ω(kj)
B∗

j′BkBk′ +
3

ω(kj)

(
2

4∑

l=1

|Bl|2 − |Bj |2
)
Bj ,

obtained via the suppression of a secular term in the first
order equation,

O (ǫ) :
[
∂2t + ω2 (|∂x|)

]
V1

=
4∑

j=1

2ω(kj)

[
i∂ǫtBj + i

∂ω(kj)

∂kj
∂ǫxBj −

6

ω(kj)
B∗

j′BkBk′

− 3

ω(kj)

(
2

4∑

l=1

|Bl|2 − |Bj |2
)
Bj

]
ei[kjx−ω(kj)t],

is a transport equation with a resonant nonlinear inter-
action. Therefore, the study of Eqs. (A1), (A2) and
Eqs. (A5), (A6) reveals that different scaling of the am-
plitude leads to different long-time dynamics.

Appendix B: Positive semi-definiteness of the

relative entropy

In this Appendix, we show the equation

d

dt
SEQ(Ps, P

0
s ) =

4∑

j=1

∫
4ρ2j
σ2
jPs

[(
νjPs +

σ2
j

4ρj
∂ρj

Ps

)2

+

(
σ2
j

4ρ2j
∂θjPs

)2 ]
dA

− 2(T1γ1 + T2γ2 − T3γ3 − T4γ4)

∫
ρ1ρ2ρ3ρ4 sin (φ)Ps dA.

(B1)
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Using the notation in Eqs. (42), (43), the time evolution
of the entropy becomes

d

dt
SEQ(Ps, P

0
s ) = − d

dt

∫
Pslog

(
Ps

P 0
s

)
dA

=

∫ 4∑

q=1

(
∂xq

Jxq
+ ∂yq

Jyq

)(
log

(
Ps

P 0
s

)
+ 1

)
dA

= −
4∑

q=1

∫ [
Jxq

(
∂xq

Ps

Ps
− ∂xq

P 0
s

P 0
s

)
+

Jyq

(
∂yq

Ps

Ps
− ∂yq

P 0
s

P 0
s

)]
dA

=

4∑

q=1

∫
4

σ2
qPs

[
Jxq

(
Jxq

− TqIm(a∗q′apap′)Ps

)
+

Jyq

(
Jyq

+ TqRe(a
∗
q′apap′)Ps

) ]
dA

=

[
4∑

q=1

∫
4

σ2
qPs

[ (
Jxq

− TqIm(a∗q′apap′)Ps

)2
+

(
Jyq

+ TqRe(a
∗
q′apap′)Ps

)2 ]
dA

]

+

[
4∑

q=1

∫
4

σ2
qPs

[
TqIm(a∗q′apap′)Ps

(
Jxq

− TqIm(a∗q′apap′)Ps

)

− TqRe(a
∗
q′apap′)Ps

(
Jyq

+ TqRe(a
∗
q′apap′)Ps

) ]
dA

]

:= I1 + I2.

Here I2 can be separated into

I2

=

4∑

q=1

∫
4

σ2
qPs

[
TqIm(a∗q′apap′)Ps

(
−νqxqPs −

σ2
q

4
∂xq

Ps

)

− TqRe(a
∗
q′apap′)Ps

(
−νqyqPs −

σ2
q

4
∂yq

Ps

)]
dA

= −
4∑

q=1

∫ [
4Tqνq
σ2
q

(
Im(a∗qa

∗
q′apap′)

)
Ps

]
dA

+

4∑

q=1

∫ [
Tq

[
− Im(a∗q′apap′)∂xq

Ps

+Re(a∗q′apap′)∂yq
Ps

]]
dA

:= I21 + I22,

in which

Im(a∗qa
∗
q′apap′) = xqIm(a∗q′apap′)− yqRe(a

∗
q′apap′)

is used. We turn to the polar representation, and make
use of

∂xq
=
xq
ρq
∂ρq

− yq
ρ2q
∂θq ,

∂yq
=
yq
ρq
∂ρq

+
xq
ρ2q
∂θq

and

Re(a∗qa
∗
q′apap′) = xqRe(a

∗
q′apap′) + yqIm(a∗q′apap′)

to calculate

I1 =

4∑

j=1

∫
4

σ2
jP

ρ2j

[(
νjPs +

σ2
j

4ρj
∂ρj

Ps

)2

+

(
σ2
j

4ρ2j
∂θjPs

)2 ]
dA,

I21 = −2(T1γ1 + T2γ2 − T3γ3 − T4γ4)

×
∫
ρ1ρ2ρ3ρ4 sin (φ)Ps dA,

and

I22 =

4∑

q=1

∫
Tq

[
− Im(a∗qa

∗
q′apap′)

1

ρq
∂ρq

Ps

+Re(a∗qa
∗
q′apap′)

1

ρ2q
∂θqPs

]
dA

=

4∑

q=1

∫
Tq

[
∓ (ρ1ρ2ρ3ρ4)

2 sin(φ)
1

ρq
∂ρq

Ps

+ (ρ1ρ2ρ3ρ4)
2 cos(φ)

1

ρ2q
∂θqPs

]
4∏

j=1

dρjdθj

=
4∑

q=1

∫
Tq

[
± (ρ1ρ2ρ3ρ4)

2 sin(φ)
1

ρ2q
Ps

− (ρ1ρ2ρ3ρ4)
2∂θq (cos(φ))

1

ρ2q
Ps

]
4∏

j=1

dρjdθj

=

4∑

q=1

∫
Tq

[
± (ρ1ρ2ρ3ρ4)

2 sin(φ)
1

ρ2q
Ps

∓ (ρ1ρ2ρ3ρ4)
2 sin(φ)

1

ρ2q
Ps

]
4∏

j=1

dρjdθj = 0.

Here the first sign for ± and ∓ is used when q = 1, 2,
and the second one when q = 3, 4. Therefore, we obtain
Eq. (B1).

Appendix C: Entropy in wave turbulence

For a mechanical system, the entropy is defined as

S = −
∫
P [b] lnP [b]Db (C1)
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where P [b] denotes the ensemble distribution in the phase
space, b ≡ {b1, b2, · · · } denotes all the phase variables,
and Db = db1db2 · · · [23]. However, in the theory of
weak turbulence [11], the entropy is defined as

S =

∫
lnnk dk (C2)

where nk = 〈aka∗k〉 is the wave action, ak denote the
(complex) wave-mode variables, and 〈·〉 denotes the en-
semble average over the initial conditions. We now sketch
the underlying reason behind the equivalence of these two
expressions.
Consider a probability density function (PDF) con-

sisting of a product of statistically independent phase-
variable probability densities for each j, i.e.,

P [b] =
∏

j

ζj(bj),

where ζj are the one-dimensional distributions. For this
PDF, the entropy (C1) becomes

S =
∑

j

∫ ∏

m

ζm(bm) ln ζj(bj) dbm.

For m 6= j, the corresponding factor in each product
becomes

∫
ζm(bm) dbm = 1, so what remains in the sum

is

S =
∑

j

(
−
∫
ζj(bj) ln ζj(bj) dbj

)
. (C3)

In other words, when the phase variables are statistically
independent, their total entropy equals the sum of the
entropy contributions from each individual phase vari-
able.
In a wave system, if the real and imaginary parts of

each wave-mode ak = xk+ iyk are independent and iden-
tically distributed, then each term in the above sum (C3)
can simply be counted twice, once for bk = xk and the

second time for bk = yk, and so the entropy of the wave
system becomes

S =
∑

k

Sk, Sk ≡ −2

∫
ζk(bk) ln ζk(bk) dbk. (C4)

If the wave components xk and yk are both Gaussian-
distributed with zero mean and variance 〈|ak|2〉, i.e., obey
the distribution

ζk(bk) =
1

(2π〈|ak|2〉)1/2
exp

[
− b2k
2〈|ak|2〉

]
, bk = xk or yk,

(C5)
then the term Sk in Eq. (C4) becomes

Sk =
1

(2π〈|ak|2〉)1/2
∫ ∞

−∞

[
ln
(
2π〈|ak|2〉

)

+
b2

〈|ak|2〉

]
exp

[
− b2

2〈|ak|2〉

]
db

Taking into account that the Gaussian distribution in
Eq. (C5) integrates to 1, and realizing that we can elimi-
nate the variance 〈|ak|2〉 from the second term in the inte-
gral by changing the integration variable to b/〈|ak|2〉1/2,
we finally find the equation

Sk = ln〈|ak|2〉+ const.

Ignoring a possibly infinite constant, we can write the to-
tal entropy as S =

∑
k ln〈|ak|2〉. If we replace the discrete

sum over the wave-mode number k by an integral over
a continuous wavenumber, we obtain precisely Eq. (C2),
as in the weak turbulence theory [11]. Therefore, the ex-
pression for the entropy in Eq. (C2), commonly used in
the weak-turbulence theory, emerges as a consequence of
the underlying assumption that the real and imaginary
components of the waves obey statistically independent
Gaussian distributions, identical for the two components
of each wave-mode but not necessarily identical from one
wave-mode to another.
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