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How cooperation can evolve between players is an unsolved problem of biology. Here we use
Hamiltonian dynamics of models of the Ising type to describe populations of cooperating and de-
fecting players to show that the equilibrium fraction of cooperators is given by the expectation
value of a thermal observable akin to a magnetization. We apply the formalism to the Public Goods
game with three players, and show that a phase transition between cooperation and defection occurs
that is equivalent to a transition in one-dimensional Ising crystals with long-range interactions. We
then investigate the effect of punishment on cooperation and find that punishment plays the role
of a magnetic field that leads to an “alignment” between players, thus encouraging cooperation.
We suggest that a thermal Hamiltonian picture of the evolution of cooperation can generate other
insights about the dynamics of evolving groups by mining the rich literature of critical dynamics in
low-dimensional spin systems.

Cooperation is a particularly interesting phe-
nomenon in the context of evolution. Evolution
acts on short-term benefits, which makes coop-
erators vulnerable to exploitation in the form of
cheating or “defection” even if cooperation is a
strategy with higher payoffs in the long-term,
creating what is known as the “dilemma of co-
operation”. It is often stated that because of
the dilemma, the expected outcome of evolu-
tion should be defection, rendering the plethora
of examples for cooperators in nature myste-
rious. However, there are number of different
mechanisms that nevertheless enable coopera-
tion [1–4] suggesting that, contrary to the naive
expectation, cooperation is after all the natu-
ral outcome of evolution when mechanisms en-
abling assortment (such as discrimination via
communication) are available [5]. These results
have been obtained using mathematics as well
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as computational-simulation tools. The mathe-
matical results in particular provide insight into
the evolutionary dynamics giving rise to cooper-
ation from inspecting closed-form solutions, but
such solutions are hard to come by when pop-
ulations are finite, are not well-mixed, or are
subject to significant mutation [5]. Recently,
progress was made in understanding the evo-
lutionary dynamics on games played on arbi-
trary grids [6], but closed-form solutions pre-
dicting the “critical point” for the transition be-
tween cooperation and defection still do not ex-
ist. Here, we use methods borrowed from statis-
tical physics that show the path to such general
formulæ.

Prior investigations of several standard evo-
lutionary games [7–12] revealed that the evo-
lutionary process often critically depends on a
single parameter that causes an abrupt change
in winning strategy. In some cases it is pos-
sible to move the parameter beyond the criti-
cal point without triggering the transition—the
hallmark of hysteresis [11]. These results sug-



2

gest that there is an underlying analogy between
evolutionary game dynamics and the statistical
description of phase transitions. Indeed, Szabó
and Hauert [13, 14] applied mathematical meth-
ods that are used to describe critical phase tran-
sitions like the ones found in the celebrated Ising
model [15] to evolutionary games on a lattice,
and showed (via numerical simulation, as well as
the pair-approximation on square lattices) that
the Prisoner’s Dilemma (PD) game dynamics
on random regular lattices fall into the directed
percolation class of phase transitions.

Here we take a different approach, by explic-
itly constructing Hamiltonians for game dynam-
ics inspired by Ising-type models, and studying
games on finite regular lattices analytically (al-
beit only in one dimension). It might at first
appear odd to consider thermal game theory, as
temperature plays no role in evolutionary dy-
namics. In physics, thermal effects are due to
fluctuations in energy, but payoffs in evolution-
ary games can fluctuate as well, for a number
of different reasons. For example, a finite evolv-
ing population is subject to drift and thus to a
random element in the payoffs. Mutations that
change strategies can play a similar role. In evo-
lutionary games, we can summarize the effect
of fluctuations by introducing a parameter that
controls the strength of selection in the game,
using the “strategy adoption” mode of selection
(see [14] and below). While the dynamics under
this rule is not precisely the same as the “strat-
egy inheritance” mode of Darwinian selection,
the differences (also discussed in [14]) are irrele-
vant for our purposes. The relationship between
game dynamics and Ising-type models has been
reviewed recently [12]

To introduce our method and notation, we
first study the Prisoner’s Dilemma Hamiltonian
at finite temperature and recover well-known re-
sults. We then apply the method to the Public
Goods game without punishment, which turns
out to be equivalent to an Ising model with long-
range interactions, but without a magnetic field.
We then add punishment to the Public Goods
game, leading to an Ising model with magnetic
field (and corresponding hysteresis effects) that
we solve exactly.

A. Prisoner’s Dilemma

The Prisoner’s Dilemma is a game played be-
tween two individuals, in which both players
have to make a decision about whether to coop-
erate or to defect. After both players have made
their choice–to cooperate (C) or to defect (D)–
their actions are revealed and players receive a
payoff according to a payoff matrix (note that
the values in the matrix correspond to the pay-
off given to the “row” player)

E =

(C D

C R S
D T P

)
. (1)

The payoffs in that matrix define the type of
game to be played. To obtain a Prisoner’s
Dilemma, we must have [2] T > R > P > S. If
the game is played repeatedly it becomes the it-
erated Prisoner’s Dilemma (IPD), a variant not
considered here. Evolutionary game theory fo-
cuses on determining what strategies are evo-
lutionarily stable in a population of strategies.
In the simplest case, competition is between two
unconditional deterministic strategies: one that
always cooperates and one that always defects.
A population starts out as a mix of both strate-
gies, and players interact with a defined num-
ber of neighbors. Each player’s performance is
evaluated by accumulating all payoffs received
in that round. To model evolution, randomly-
picked players (called focal players) can now ei-
ther maintain their strategy or adopt the strat-
egy of a competitor. Over time this process
will lead to the spread of successful strategies
and thus to evolution. This process of proba-
bilistic strategy adoption is similar to the dy-
namics of strongly interacting spins described
by Glauber [16]. In such a model of ferromag-
netism, adjacent particles interact so that their
spins will predominantly align (a spin adopting
the state of its neighbor), giving rise to an over-
all magnetization that depends on the tempera-
ture of the system. In the following, we explore
this analogy more deeply.

We first derive the thermodynamics of the
Prisoner’s Dilemma with a payoff matrix where
we set the reward R = b − c (the benefit of
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cooperation minus the cost), while the tempta-
tion payoff T = b (obtaining the benefit with-
out bearing the cost). At the same time, the
so-called “sucker-payoff” S = −c due to pay-
ing the cost without any benefit, while P = 0
is the “punishment” for both players mistrust-
ing each other. In all of the following, we as-
sume c ≥ 0 as well as b − c ≥ 0, so that the
net benefit r = b − c ≥ 0, ensuring that a
dilemma exists. Indeed, even though the bene-
fit outweighs the cost (r > 0), the Nash equilib-
rium and evolutionarily stable strategy is known
to be defection, not cooperation. The payoff
matrix in terms of these values then becomes

E =

(
b− c −c
b 0

)
.

To define a Hamiltonian (an operator that
describes the total energy for this system) we
can transform the payoffs into an energy by
subtracting the payoff from its largest possi-
ble value. However, as this only adds a global
constant it will cancel in observables, so to un-
derstand the population dynamics in terms of
thermodynamics we can keep the payoff as is. A
Hamiltonian is an operator that acts on a vector
space (Hilbert space). A basis for the Hilbert
space is spanned by the cooperative strategy
C and the defecting strategy D by the vectors

C = |0〉 =

(
1
0

)
and D = |1〉 =

(
0
1

)
.

In analogy to Ising spin systems, the Hamil-
tonian for the PD game can then be written in
terms of the energy matrix E and the projec-

tors P0 = |0〉〈0| =

(
1 0
0 0

)
and P1 = |1〉〈1| =(

0 0
0 1

)
as

H =

N∑
i=1

1∑
m,n=0

EmnP
(i)
m ⊗ P (i+1)

n , (2)

where the sum over i goes over all the sites in
this one-dimensional “spin chain”.

We proceed by calculating the thermal parti-
tion function of the system by writing (β = 1/T
is the inverse of the temperature, which the
reader will not confuse with the temptation pay-

off)

Z = Tr e−βH =
∑
x

〈x|e−βH |x〉 , (3)

where |x〉 = |m1m2 · · ·mN 〉 is a circular chain
so that the Nth site is adjacent to the first site.
It is then easy to see that

Z =
∑

m1···mN

e−β(Em1m2
+Em2m3

+···+EmNm1
)

=
∑

m1···mN

Um1m2
Um2m3

· · ·UmNm1

= TrUN , (4)

where Uij = e−βEij .
To determine the equilibrium population

composition, we define an order parameter given
by the fraction of cooperators minus the frac-
tion of defectors. For spin chains this is equal
to the magnetization of the chain, defined using
a spin operator Jz for which 〈0|Jz|0〉 = 1 and
〈1|Jz|1〉 = −1. This can be achieved, e.g., with
(σz is a Pauli matrix)

Jz = σz = P0 − P1 . (5)

We will understand this operator to act on the
“row” player (that is, the first spin of the pair).
For a chain of length N ,

Jz =

N∑
i

(P
(i)
0 − P

(i)
1 ) , (6)

so that∑
x 〈x|Ĵze−βH |x〉 = NTr (U ′UN−1) (7)

due to the cyclic property of the trace. Here
we introduced the matrix U ′ij = (−1)iUij . An
explicit calculation shows that (recall that r =
b− c)

Z = TrUN = (1 + e−βr)N , (8)

while since U ′U = (1 + e−βr)U ′ and TrU ′ =
−1 + e−βr

Tr (U ′UN−1) = (1 + e−βr)N−1(−1 + e−βr) , (9)
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so that finally the thermal expectation value of
the magnetization is

〈JZ〉β =
1

Z

∑
x

〈x|Ĵze−βH |x〉

= −N tanh(βr/2) . (10)

We show the magnetization per player [Eq. (10)
divided by N ] as a function of the critical pa-
rameter r in Fig. 1, and see that at low tem-
peratures (high β) the population will consist
mostly of defectors (negative magnetization) as
this is the Nash equilibrium. We note that the
parameter r plays the same role as the inter-
action strength J in the standard Ising model.
The phase transition (vanishing magnetization)
occurs at r = 0 (the “boundary” of the param-
eter values), which is expected from the general
arguments of van Hove [17] and of Landau [18]
that forbid phase transitions in one-dimensional
systems. Thus, we do not observe cooperation
in the one-dimensional Prisoner’s dilemma, as
is of course well-known.
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FIG. 1. Order parameter 〈Jz〉β as a function of
the net reward r = b − c, for three different tem-
peratures. As opposed to the game in two dimen-
sions [14], the phase transition occurs at r = 0.

B. Public Goods game in one dimension

The PD game we just described turns out to
be the two-player version of the more general

Public Goods (PG) game. The PG game is a
staple of evolutionary game theory as well as
experimental economics [19–21], and has been
used to understand the Tragedy of the Com-
mons [22], a social dilemma that can lead to the
overuse of public resources (for example, over-
fishing) because of selfish behavior. In the PG
game, payoffs are defined for cooperators and
defectors via

ΠC =
r

(k + 1)
(NC + 1)− 1 (11)

ΠD =
rNC

(k + 1)
(12)

where ΠC is the payoff for a cooperator (ΠD

for a defector). NC is the number of coopera-
tors in the neighborhood (not counting the focal
player, so it is the number of cooperators in the
player’s periphery), and r is the reward multi-
plier (synergy factor). These are the rules for a
game with k + 1 players in a group. In the fol-
lowing, we will treat the game in one dimension
(so k = 2).

The rules (11-12) imply a payoff matrix

ΠC =

( C D

C r − 1 2
3r − 1

D 2
3r − 1 1

3r − 1

)
(13)

for cooperators, where the matrix elements in-
dicate the states of spins in the periphery of the
focal player. For example, r − 1 is the payoff
for a cooperator surrounded by two coopera-
tors. The payoff matrix for defectors is simply
ΠD = ΠC − ( 1

3r − 1) ..
We now construct a Hamiltonian to solve this

evolutionary model exactly in two cases: one
where the dynamics maximize the mean payoff
of the population, and one in which the payoff
of an individual is maximized. Naturally, we
expect a correspondence with the evolutionary
scenario only in the latter case. In this one-
dimensional game, the population is arranged
linearly so that each player forms a group with
its left and right neighbor (k = 2), see Fig. 2.

As mentioned earlier, we can create matrices
for energies that should be minimized (rather
than payoffs that need to be maximized) by sub-
tracting the payoffs from the maximal payoff
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FIG. 2. One-dimensional string of players in a
Public Goods game that interact with two nearest-
neighbors. Because players interact with more than
one nearest-neighbor, effectively next-to-nearest
neighbors interact.

(here, r− 1), leading to a ground state that has
zero energy. Strictly speaking, the Hamiltonian
for this system should be written as an inter-
action of three spins, but we will often write it
in terms of a two-spin interaction matrix condi-
tional on the state of the focal spin. For exam-
ple, we can write

E(C) =

(
0 1

3r
1
3r

2
3r

)
, E(D) =

1

3
r − 1 + E(C).(14)

We write a Hamiltonian for cooperators using
these energies and the projectors previously de-
fined

H
(i)
C =

N∑
i=0

1∑
m,n=0

E(C)
mnP

i−1
m ⊗ P i+1

n , (15)

and similarly for H
(i)
D . The total Hamiltonian

is (recall that P0 projects onto a cooperator, so
that P0|0〉 = |0〉 while P0|1〉 = 0)

H =

N∑
i=1

H
(i)
C P

(i)
0 +H

(i)
D P

(i)
1 . (16)

Using the spin operator (6) and the methods
outlined earlier, we obtain after a somewhat te-
dious calculation

〈Jz〉β =
1

Z
Tr (Jze

−βH) = N tanh
β

2
(r − 1) ,(17)

suggesting a phase transition at r = 1, in con-
tradiction with the standard expectation [11]
that suggests a transition at r = 3 (see be-
low). The reason for this discrepancy is not
difficult to find: Hamiltonian dynamics mini-
mize the energy of the entire spin chain, which
is equivalent to maximizing population fitness

as a whole. Darwinian evolution, however, does
not optimize population fitness, but rather max-
imizes the fitness of a single individual within a
population.

We can implement the latter dynamic by
dropping the sum over sites in Eq. (15), and
consider only the contribution to the energy
from a single spin with its two neighbors. In
that case (we take the middle site to be the fo-
cal site whose energy is minimized)

Z =
∑

m1m2m3

〈m1m2m3|e−βHm2 |m1m2m3〉

=
∑
m1m3

(Um1m3 + Vm1m3) (18)

where U is the “cooperative” matrix U =
e−βH0 while the defector matrix V = e−βH1 =
eβ(r/3−1)U because defector energies differ by
r/3 − 1 from cooperator energies, see Eq. (14).
Then,

Z =
∑
m1m3

Um1m3
(1 + e−β(r/3−1))

= (1 + e−β
r
3 )2(1 + e−β(

r
3−1)) . (19)

Using the spin operator defined in Eq. (5) we ob-
tain (again for a single focal player in the middle
position)∑

m1m2m3

〈m1m2m3|Jze−βHm2 |m1m2m3〉

= (P0 − P1)
∑
m1m3

(P0Um1m3 + P1Vm1m3)

= (1− e−β(r/3−1))(1 + e−β
r
3 )2 , (20)

which allows us to calculate the order parameter
as

〈Jz〉β =
1

Z
Tr (e−βHJz) = tanh

β

2
(
1

3
r − 1) . (21)

This function is plotted in Figure 3, and sug-
gests that a phase transition with an inte-
rior critical point is possible in this game even
though the game is one-dimensional, seemingly
violating van Hove’s theorem [17]. However,
the theorem forbidding internal critical points
in one dimension only holds for short-range in-
teractions, while the interaction between three
players studied here is not of that kind.
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FIG. 3. Exact solution for the order parameter
〈Jz〉β as a function of synergy parameter r for three
different temperatures, from Hamiltonian dynam-
ics.

To test the accuracy of our theoretical result,
we now simulate the Public Goods game using
agent-based methods [5, 11, 23]. In the agent-

r

M

FIG. 4. Fraction of cooperators for a chain of
length 210, as a function of the synergy parame-
ter r for three different selection strengths defined
by β = 1/T . Each data point (each r, incre-
ments of ∆r = 0.1) is the average over 100 replicate
agent-based simulations using strategy adoption for
2×106 updates. Barely visible grey bands represent
standard error.

based simulations we use a population of 1,024
players that either cooperate or defect, arranged
in a one-dimensional chain just as in Fig. 2.
Which of the two moves an agent chooses is

determined by a genome (here a single locus)
that evolves. At every update, players have a
chance to change their strategy by probabilis-
tically adopting the strategy of a competitor
(Glauber dynamics, see, e.g., [7, 14]) using the
rule (here x is the focal player while y is an
alternative strategy)

p(x← y) =
1

1 + e−β(wx−wy)
, (22)

where β is related to the strength of selection
and w is the fitness of each player defined by the
payoff the player receives. In the case of rejec-
tion (i.e., non-adoption) the focal player retains
its strategy.

We define an order-parameter-like function
that indicates to what extent the population is
in a cooperative or a defective regime. This pa-
rameter depends on the fraction of players in
the population cooperating (PC) and the frac-
tion defecting (PD) and is defined as:

M =
PC − PD
PC + PD

(23)

The agent-based simulations confirm that the
fate of an evolving population depends criti-
cally on the synergy factor r (see Figure 4), and
changes from negative (defection) to positive
(cooperation) at r = 3, in accordance with the
critical rc = k+ 1 for strategies to evolve coop-
erative behavior in the Public Goods game [11].
In particular, the simulations confirm the theo-
retical results with high accuracy.

C. Public Goods game with punishment

Cooperation evolves in the PG game if the
synergy r is at least as large as the group’s size
k + 1. However, it is unlikely that in nature
cooperation would ever create such a high syn-
ergy factor, implying that cooperation cannot
evolve in this type of game. It has previously
been suggested that punishment is one way to
promote cooperation [23–29]. By introducing
punishment, players can now not only choose
between cooperation and defection, but can do
this in conjunction with deciding whether or not
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to punish cheaters. This introduces two more
strategies: a “moralist” M who cooperates and
punishes, and an “immoralist I” who defects but
also punishes [23]. For every player punished for
defecting, each punishing player must pay a cost
(γ), and every player that is punished in such a
way suffers a fine (ε), thus extending the rules
(11,12) to (here, we show the special 1D case
k = 2, for the general case see for example [11])

ΠC =
r

3
(NC +NM + 1)− 1 (24)

ΠD =
r(NC +NM )

3
− ε
(
NM +NI

2

)
(25)

ΠM = ΠC − γ
(
ND +NI

2

)
(26)

ΠI = ΠD − γ
(
ND +NI

2

)
, (27)

where Ni is the number of players in the im-
mediate neighborhood of the focal player with
strategy i, ε parameterizes the effect of punish-
ment, while γ stands for the cost of punishment
(see [11, 23]).

We now study this model thermodynamically,
but in order to compare to the evolutionary dy-
namics we study the regime where the energy of
a single site is minimized. To account for the ad-
ditional strategies (beyond cooperator and de-
fector), we extend the Hilbert space by allowing
for a site-dependent magnetization |i〉 → |i〉|j〉,
so that each strategy is defined by a product of
spin vectors. If we define punishment as |0〉 and
non-punishment as |1〉, we can write the states
of the punishing and non-punishing cooperator
as

M = |0〉|0〉 =

(
1
0

)
⊗
(

1
0

)
=

 1
0
0
0

 (28)

C = |0〉|1〉 =

(
1
0

)
⊗
(

0
1

)
=

 0
1
0
0

 .(29)

The payoffs (24-27) can be written in terms of
a Hamiltonian for each of the four strategies as

H = P00HM + P01HC + P10HD + P11HI ,(30)

with projectors Pij on the respective states

(with
∑1
ij=0 Pij = 1). Each Hamiltonian Hk

(k = C,D,M, I) is written in terms of an energy
matrix F (k) just as in Eq. (15)

F (C) =


C D M I

C 0 r
3 0 r

3

D r
3

2
3r

r
3

2
3r

M 0 r
3 0 r

3

I r
3

2
3r

r
3

2
3r

 =

(
E(C) E(C)

E(C) E(C)

)
.(31)

Similarly,
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FIG. 5. Exact results for the order parameter 〈Jz〉β
for the Public Goods game with punishment, as a
function of synergy parameter r for three different
punishment fines ε, at a constant temperature (β =
5).

F (D) =
r

3
− 1 +

(
E(C) E(C) + ε

2

E(C) + ε
2 E(C) + ε

)
, (32)

F (M) =

(
E(C) E(C) + γ

2

E(C) + γ
2 E(C) + γ

)
, (33)

F (I) =
r

3
− 1 +

(
E(C) E(C) + γ+ε

2

E(C) + γ+ε
2 E(C) + γ + ε

)
.(34)

We can now calculate the partition function

Z = Tr (e−βH) = ZC + ZD + ZM + ZI (35)

on account of the decomposition (30), where

ZC = Tr (e−βHC ) = 4(1 + e−β
r
3 )2 , (36)
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or four times the contribution from each E(C).
Similarly,

ZD = e−β(
1
3 r−1)(1 + e−β

r
3 )2(1 + e−β

ε
2 )2 , (37)

ZM = 4(1 + e−β(
r
3+

γ
2 ))2 , (38)

ZI = e−β(
1
3 r−1)(1 + e−β(

r
3+

γ
2 )2(1 + e−β

ε
2 )2 . (39)

Finally, we obtain the order parameter that
measures the degree of cooperation (the frac-
tion of C and M players minus the fraction of D
and I players), which turns into the surprisingly
simple expression

〈Jz〉β =
1− cosh2(β ε4 )e−β(

r
3+

ε
2−1)

1 + cosh2(β ε4 )e−β(
r
3+

ε
2−1)

. (40)

Note that the order parameter only depends on
the effect of punishment ε but not the cost γ,
and reduces to expression (21) in the limit ε→
0.

To check the theory, we can extend the agent-
based model described above by including the
two new strategies I and M. As before, we use
1024 players in a population that is arranged
linearly (see Methods), and games are played
in groups of three. Again, when we evolve this
population using strategy adoption, we see the
dependence of the critical point on the synergy
factor r and the selection strength β = 1/T .
Since the game now includes two more strate-
gies, we have to modify the function M that de-
scribes the fraction of cooperators in the game
to contain all four strategies as the fraction of
contributing (cooperating) strategies:

M =
(PC + PM)− (PD + PI)

PC + PD + PM + PI
(41)

Evolving these populations using different fines
ε and costs γ, we find that the critical point now
only depends on ε (see Figure 6), and moves the
critical point in such a manner that the punish-
ment fine reduces the critical synergy for coop-
eration [11]. It turns out that the closed-form
solution Eq. (40) reproduces the agent-based
simulations shown in Fig. 6 to a remarkable ex-
tent, confirming the unintuitive finding that the
critical point only depends on the effect, but
not on the cost, of punishment. The Hamilto-
nian model also clarifies that punishment indeed

r

M

FIG. 6. Fraction of cooperators M for a chain of
length 210 as a function of the synergy parameter r
for three different fines ε (at fixed β = 5). Each data
point (increments of δr = 0.1) is the average over
100 replicates running the agent-based simulation
with Glauber dynamics for 2× 106 updates.

acts like a magnetic field that encourages align-
ment of spins, thus explaining why in agent-
based simulations punishment induces hystere-
sis as a population is subjected to an adiabat-
ically varying r [11]. Further work using the
Hamiltonian model of cooperation with punish-
ment may elucidate other aspects of the critical
dynamics, in particular for games in higher di-
mensions, with more players per group, or even
on irregular lattices.

D. Discussion

Evolutionary Game Theory is a mathematical
framework that has been eminently successful
at unraveling the numerous elements that im-
pact decisions, and to work out the decision’s
consequences. While both mathematics and
computational simulations have influenced this
field (see for example the review [5], along with
commentaries), the relationship between game
theory and physics has been explored less. In
real situations, decisions must be made under
uncertainty; either due to unpredictable envi-
ronments, or due to inherent noise. For evo-
lutionary dynamics in particular, noise is un-
avoidable. After all, high reproductive poten-
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tial does not guarantee survival, but only biases
future outcomes. A standard result of popula-
tion genetics for example predicts that a gene
that confers a ten percent advantage in repro-
ductive rate only has a twenty percent chance
of being represented in future generations. The
branch of science best equipped to tackle the
impact of chance on dynamics is physics, with
a well-developed corpus of results in statisti-
cal mechanics and thermodynamics. A grow-
ing literature has found success in mining these
well-established methods, from harnessing the
Fokker-Planck equation to describe the effect of
chance due to drift in small populations [30] to
using tools from statistical mechanics to study
the universality class of phase transitions in
the spatial Prisoner’s Dilemma [14]. Here, we
tapped a different set of well-established tools
from statistical physics, namely the thermody-
namics of spin systems. The analogy between
the critical dynamics of spin systems and game
theory is not difficult to see. After all, the
correspondence between Eigen and Schuster’s
model for the evolution of macromolecules [31]
and two-dimensional Ising models was pointed
out over thirty years ago [32] (see also section
11.4 in [33]) but we have not, as yet, seen
a concerted effort to marshal the considerable
machinery developed to tackle low-dimensional
condensed matter structures to aid in under-
standing evolutionary game theory.

It may seem odd, at first sight, that a ther-
modynamic approach to game theory is possi-
ble at all, given that thermodynamics relies on
the assumption that the system tends towards
equilibrium, whereas in many game-theoretic
situations (in particular, those that are of the
Rock-Paper-Scissors type) the system appears
to be maintained out of equilibrium. Fortu-
nately, it is possible to show that even in sys-
tems out of equilibrium, detailed balance can
be assured as long as microscopic reversibility
is guaranteed [34, 35]. While this result de-
pends on the nature of the boundary condition
(it holds under “normal” boundary conditions,
that is, boundary conditions in which the prob-
ability distribution vanishes at the boundary),
there are strong reasons to believe that at least

in the limit of large systems and low mutation
rates, detailed balance can always be achieved
for these games. Investigating this issue more
deeply is left for forthcoming work.

The Hamiltonian approach we described here
leads to important new insights about the dy-
namics of evolving populations at fixed strength
of selection (and thus, to some extent, fixed
temperature). First, we have shown that the
standard statistical approach in which the en-
ergy of the entire ensemble is minimized, does
not correspond to the evolutionary scenario,
giving rise instead to a transition at r = 1. That
result would imply that a dilemma is absent,
and indeed this is precisely what we would ex-
pect if groups of organisms, rather than individ-
uals, are selected. Second, the treatment of the
Public Goods Game with punishment revealed
that punishment plays the role that a local mag-
netic field plays when interacting with a sys-
tem that can display spontaneous magnetiza-
tion. An extensive literature in the area of spin-
glasses of the Sherrington-Kirkpatrick type [36]
suggests that local magnetic fields can give rise
to spontaneous symmetry breaking, and that
their mean-field solutions are similar to those
of local spins interacting with a global mag-
netics field. These insights immediately sug-
gests to look for effects such as hysteresis (as
seen, for example, in [11]), but also interactions
between hysteresis and impurities for example.
Indeed, it is not unreasonable to imagine that
including a third player strategy such as “ab-
staining” [37–39] can be viewed as impurities
that can dramatically alter the critical dynam-
ics we observe, for example by “pinning” the
interfaces between domains[40]. While the dy-
namics that includes abstaining may give rise
to intransitive dominance dynamics [41] (such
as the Rock-Paper- Scissors game), the argu-
ments given above that out-of-equilibrium dy-
namics still gives rise to stationary equilibrium
distributions as long as microscopic reversibil-
ity holds, suggest that such games can also be
solved using Hamiltonian dynamics.

We should caution, however, that extending
the present results to games in higher dimen-
sions will be difficult. For example, while the
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Ising model can be solved in two dimensions,
there is no solution for the model in two dimen-
sions with a magnetic field, as it is related to
the three-dimensional model for which a closed-
form solution does not exist. Nevertheless, we
expect that the tools developed here will be use-
ful because if the analogy between evolutionary
game dynamics and phase transitions in spin
systems is established, other results from the
rich literature of critical phenomena in spin sys-
tems may inform us about the dynamics of co-
operation in groups. In particular, an extension
of the calculation shown here to two dimensions
may produce an exact solution along the lines
of Onsager’s, which would allow us to move be-
yond pair-approximations for games on a 2D
regular lattice. We hope that the simple re-
sults derived here (validated via computational
simulation) can serve as a seed for the future
development of this field.

METHODS

The computational evolutionary model in-
stantiates a population of 1,024 random agents
in a circular configuration. At each update a
single agent is randomly selected and its pay-
off computed by playing the strategy against

its left and right neighbors. At the same time,
the payoff of a strategy to potentially replace
the agent is computed. In case of a two player
game (C and D) the only other alternative strat-
egy is used, in the case of four players (C, D,
M, and I) one alternative strategy is chosen at
random. Instead of the evolutionary updating
of the population described in [5, 11], here the
likelihood to replace the strategy of the selected
agent with the alternative is given by Eq. (22).
In each replicate run, we updated strategies 2
million times (roughly 2,000 updates per site),
then calculated the order parameter. The code
as well as the analysis scripts to create all fig-
ures can be found at: github reference will be
provided upon acceptance of the manuscript.
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diagrams for three-strategy evolutionary pris-
oner’s dilemma games on regular graphs. Phys
Rev E, 80:056104, 2009.

[9] D. Iliopoulos, A. Hintze, and C. Adami. Crit-
ical dynamics in the evolution of stochastic
strategies for the iterated Prisoner’s Dilemma.
PLoS Comp Biol, 7:e1000948, 2010.

[10] C. Adami, J. Schossau, and A. Hintze. Evolu-
tion and stability of altruist strategies in mi-
crobial games. Phys Rev E, 85:011914, 2012.

[11] A. Hintze and C. Adami. Punishment in public
goods games leads to meta-stable phase tran-
sitions and hysteresis. Phys Biol, 12:046005,
2015.



11
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[13] G. Szabó and C. Hauert. Phase transitions
and volunteering in spatial public goods games.
Phys Rev Lett, 89:118101, 2002.

[14] C. Hauert and G. Szabó. Game theory and
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