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Cross-beam energy transfer (CBET) is a significant energy-loss mechanism in directly-driven
inertial-confinement-fusion (ICF) targets. One strategy for mitigating CBET is to increase the
bandwidth of the laser light, thereby disrupting the resonant three-wave interactions that underlie
this nonlinear scattering process. Here, we report on numerical simulations performed with the
wave-based code LPSE that show a significant reduction in CBET for bandwidths of 2 − 5 THz
(corresponding to a normalized bandwidth of 0.2 − 0.6% at a laser wavelength of 351 nm) under
realistic plasma conditions. Such bandwidths are beyond those available with current high-energy
laser used for ICF, but could be achieved using stimulated rotation Raman scattering in diatomic
gases like nitrogen.

The interference pattern created by the beating of the
electric fields of two intense lasers (with angular frequen-
cies ω1, ω2 and wave vectors k1, k2) crossing in a plasma
can excite a density perturbation due to the ponderomo-
tive force [1]. A state of resonance is reached when the
beat frequency ω1 − ω2 and wave vector k a = k1 − k2

of the perturbation satisfy the dispersion relation for an
ion-acoustic wave

ω1 − ω2 = k a ·U ± kacs , (1)

where U is the plasma flow velocity, cs =

[(Z kB Te + 3 kB Ti)/mi]
1/2

is the ion acoustic speed, Z
is the ion charge, kB is the Boltzmann constant, mi is
the ion mass and Te and Ti are the electron and ion
temperatures, respectively. At resonance, the induced
ion-acoustic wave and the two laser beams become
parametrically unstable, resulting in the amplification
of the plasma density perturbation and a transfer of
energy to the beam with lower frequency in the rest
frame of the plasma [2]. Inspection of Eq. (1) shows
that resonance can occur for two lasers with the same
frequency (ω1 = ω2) provided that the speed of the
plasma flow is sufficiently supersonic (i.e., that the
product of the Mach number M = U/cs and the cosine
of the angle between k a and U equals plus or minus
one), but in such a case the density perturbation is
static in the laboratory frame. It is also apparent
that small differences between the laser frequencies
can shift the location of resonance in the plasma (for
spatially-dependent velocity profiles) or modify the
energy transfer between beams, as has been done in
indirect-drive simulations [3, 4] and experiments [5–8]
on the National Ignition Facility (NIF).

The phenomenon described above is known as in-
duced Brillouin scattering [9] or more commonly, cross-
beam energy transfer (CBET) [10–19], and is considered
highly deleterious to direct-drive inertial-confinement-
fusion (ICF) schemes because it causes a significant
amount of the incident laser energy to be scattered away

from the target, or to be absorbed in a less favorable loca-
tion. Figure 1 depicts the geometry of crossing laser rays
with the most-efficient energy transfer in a direct-drive
ICF implosion [20]. In the so-called “backscatter mode”
of CBET, a ray from the edge of one laser beam refracts
through the plasma corona of the target and crosses an
incoming ray from another beam. Energy can be trans-
ferred from the incoming ray to the outgoing one if the
crossing occurs in a region where Eq. (1) is satisfied. In
that case, the incoming ray reaches the most absorptive
region of the plasma corona where ne ' nc with less en-
ergy than it would have in the absence of CBET, reducing
both the ablation pressure and the implosion symmetry.
Here, ne is the electron number density of the plasma,
nc = me ω

2
0/(4πe

2) is the critical density for laser absorp-
tion, me is the electron mass, ω0 is the angular frequency
of the incident light and e is the electron charge.

FIG. 1: The backscatter mode of CBET in direct-drive ICF.
The yellow arrow denotes the direction of laser energy ex-
change.



2

In direct-drive ICF experiments performed on the
OMEGA laser facility, CBET is thought to be responsible
for as much as a 30% reduction in the overall hydrody-
namic efficiency of the implosion [21]; for similar target
designs scaled to the laser energy of the NIF, this figure
is predicted to increase to nearly 50% [22]. To date, sev-
eral different mitigation strategies have been proposed,
including wavelength detuning [23], the use of “mid-Z”
ablators [20] and a reduction of the laser spot size [24]
to limit beam crossing during the high-intensity portion
of the laser pulse. Recent experiments on OMEGA have
demonstrated that this last technique does improve the
laser-target coupling, but at the price of increased, low-
mode surface asymmetries [20]. This effect can be allevi-
ated by focal zooming when the reduction in spot size is
delayed until the pellet implodes [25]. Zooming, however,
cannot completely eliminate crossing beams or CBET.

A more promising strategy for reducing CBET in ICF
targets is to increase the temporal incoherence of the
driver — an approach that is theoretically predicted to
help mitigate other varieties of parametric instabilities
[26–32]. In experiments performed in the 1970s using
high-power microwaves to simulate laser-plasma inter-
actions, for example, Obenschain and Luhmann showed
that the production of non-thermal electrons from para-
metric decay was significantly reduced when the band-
width of the microwaves greatly exceeded the resonance
width [33]. More recent theoretical [34–36] and computa-
tional [37–39] studies have reached a similar conclusion
for the stimulated Brillouin (SBS) and Raman scatter-
ing (SRS) of laser light, both of which are important
considerations in ICF target designs because they reduce
laser-target coupling and in the case of SRS, can generate
supra-thermal electrons that preheat the thermonuclear
fuel, degrading performance. It is generally believed that
the mitigation of SBS, SRS and other laser-plasma in-
stabilities in direct-drive implosions driven by frequency-
tripled Nd:glass lasers requires bandwidths of at least
several terahertz [40]. Since such values exceed those of
most ICF lasers today [41], however, assessing the verac-
ity of this prediction — and in particular, better quan-
tifying the amount of bandwidth necessary to suppress
CBET — relies heavily on realistic numerical models for
simulating the physics of laser-plasma interactions.

In this paper, we present the first numerical simula-
tions demonstrating the efficacy of multi-terahertz laser
bandwidth for suppressing CBET in direct-drive ICF
plasmas. Our simulations were performed with the wave-
based code LPSE (Laser Plasma Simulation Environ-
ment) [42, 43] in two-dimensional planar geometry and
model the CBET configuration depicted in Fig. 1 in
which two laser beams cross at an acute angle in an
expanding, supersonic plasma. Using a discrete, multi-
line bandwidth model, we find a significant reduction in
CBET at 2 THz bandwidth (full width half maximum)
and almost complete suppression of CBET at 5 THz. It
may be possible to achieve such bandwidths with con-
temporary ICF lasers by passing beams through gas cells

and relying on spectral broadening due to stimulated
rotational Raman scattering (SRRS), which can occur
when a laser excites rotational quantum states of a di-
atomic molecule [44, 45]. This effect has recently been
observed in the ultraviolet region on the Nike krypton-
fluoride (KrF) laser at the U.S. Naval Research Labora-
tory (NRL) [46] with only a modest degradation of the
final focal distribution and may provide a practical ap-
proach for bandwidth enhancement on other, existing,
direct-drive laser facilities [36, 40].

Although the CBET phenomenon has been simulated
numerically in the past [12, 13, 15, 17], the possibility of
using large laser bandwidth as a suppression mechanism
for this parametric instability has, to our knowledge, not
been investigated previously. Moreover, the LPSE code
used in this study contains several significant improve-
ments over previous CBET models that make it partic-
ularly well-suited for our purposes here. First, LPSE
does not adopt a paraxial approximation (spatial en-
veloping) or assume transversely-periodic boundary con-
ditions, both of which place restrictions on the directions
that laser light can propagate and therefore preclude sim-
ulations involving complex beam geometries [47–49]. Sec-
ond, the use of a “total-field/scattered-field” formulation
[50–52] in conjunction with a “perfectly-matched layer”
approach [53] allows laser light to enter and exit through
any boundary of the computational domain at arbitrary
angles with minimal numerical reflectivity. Third, beams
in LPSE simulations can be modeled with realistic laser
properties such as speckles, polarization and bandwidth.
Finally, unlike most previous theoretical studies (e.g.,
Ref. [4]) and ray-based models (e.g., Ref. [20]) of CBET,
the LPSE code permits an inhomogeneous background
state that can include a time-varying plasma flow. All of
these computational features are important for simulat-
ing CBET effects accurately in direct-drive ICF plasmas.

The LPSE code solves a system of coupled partial-
differential equations governing the evolution of the elec-
tric field of the laser Ẽ and the low-frequency plasma
response mediated by the ion acoustic wave. The equa-
tions for the electric field are derived by writing Ẽ =
Re [E(x, t) exp(−iω0t)] and assuming that the envelope
E varies slowly over the period of the light such that∣∣∂2 E/∂ t2∣∣ � |ω0 ∂E/∂t|. This is valid provided that
laser bandwidth ∆ν is much less than the central fre-
quency, i.e., ∆ν/ν0 � 1, where ν0 = ω0/2π and ∆ω =
2π∆ν. (Note that the lasers modeled in the present
study have ν0 & 850 THz, so that this inequality is satis-
fied for bandwidths in the multi-terahertz regime.) Then,
a combination of Faraday’s and Ampère’s laws yields

2 i ω0

c2
∂

∂t
E +∇2E−∇ (∇ ·E) +

ω2
0

c2
εE = 0 , (2)

where c is the speed of light and we have introduced the
plasma dielectric function ε = 1 − ω2

pe/ [ω0(ω0 + iνei)].

Here, ω2
pe = 4πe2 ne/me is the square of the plasma fre-

quency, νei = 4
√

2π Z2 e4 ni ln Λe/[3m
1/2
e (kB Te)

3/2] is
the electron-ion collision frequency (assumed to be small
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compared to ω0), ni ' ne/Z is the ion number density
and Λe is the Coulomb logarithm for electron-ion col-
lisions [1]. The equations that describe the plasma re-
sponse are derived by decomposing the electron number
density and plasma flow velocity as ne = n0 + δn and
U = U0 + δU, respectively, where the subscript “0” de-
notes a static component (assumed to satisfy the plasma
hydrodynamic equations to zeroth order) and the sym-
bol δ indicates a small perturbation. We assume that the
gradients of static quantities are negligible with respect
to those of the perturbations, which is a justified approx-
imation since hydrodynamic length scales (& 100µm)
in ICF plasmas greatly exceed the wavelength of an
ion-acoustic wave (typically < 1µm and, in this study,
' 0.2µm). With these assumptions, we find(

∂

∂t
+ U0 · ∇

)
δn

n0
= −w , (3)(

∂

∂t
+ U0 · ∇+ νL

)
w = −∇2

(
c2s
δn

n0
+ φp

)
, (4)

where w = ∇·δU, φp = Ze2 |E|2 /(4memi ω
2
0) and νL is

a non-local operator that models the Landau damping of
ion acoustic waves [14, 54]. Note that νL is applied in k-
space via a discrete Fourier transform and preserves the
linearity of δn over time. More details of the numerical
methodology underlying the LPSE code can be found
elsewhere [42, 43].

We now present results from two-dimensional numer-
ical simulations of CBET that were performed with the
LPSE code. We begin our discussion by considering
the interaction of two, equal-intensity, monochromatic
(∆ν = 0) beams crossing at 45◦ in a flowing, inho-
mogeneous CH plasma (modeled as a single ion species
with average charge Z = 3.5) near a region of ion-
acoustic-wave resonance — an arrangement that approx-
imates the typical backscatter mode of CBET occurring
in direct-drive ICF and serves as an archetypal configu-
ration for studying finite-bandwidth effects. The back-
ground plasma through which the lasers propagate is
100µm× 200µm in spatial extent (discretized on a grid
with 2000 × 4000 zones) and is characterized by elec-
tron and ion temperatures of 3 keV and 1 keV , respec-
tively. The plasma is also expanding, with an electron
number density n0 that decreases linearly in the upward
direction from 0.4nc to 0.15nc. This corresponds to a
density gradient scale-length Ln = n0/|∇n0| ' 200µm,
which is representative of values in OMEGA experiments
[42]. Additionally, the simulations contain an upwardly-
directed plasma flow U0 that varies linearly in space and
allows the resonance condition in Eq. (1) to be satisfied.
Note that in our simulations, collisional absorption is
turned off and ion acoustic waves are subject to electron
Landau damping at a constant rate of νa = 0.14 ka cs,
which is a reasonable approximation for the collisionless
damping of ion acoustic waves in a CH plasma under
these conditions [55]. Also note that M and n0 conserve
the plasma flux across the computational domain.

Figure 2(a) shows a plot of the electric-field magnitude
for the system described above with I = 1.5×1015W/cm2

at 4 ps, which is sufficiently long compared to the CBET
saturation time [56] that a steady-state condition is
achieved. The red arrows in Fig. 2(a) indicate the di-
rections of the laser beams, which are injected as plane
waves with 20-µm-wide, 6th-order, super-Gaussian en-
velopes. The beams are also s-polarized with their elec-
tric field vectors pointing out of the plane. Such an align-
ment of polarities represents a “worst case” scenario for
analyzing CBET in a two-dimensional simulation since
the ponderomotive force created by two such overlapping
beams is a maximum. In the example in Fig. 2(a), ap-
proximately 79% of the downwardly-directed laser power
is steadily transferred to the diagonal beam.

FIG. 2: Results from LPSE showing: (a) the electric-field
magnitude and (b) the absolute value of the electron-number-
density perturbation at 4 ps. In this simulation, two laser
beams (red arrows) with equal intensity I = 1.5×1015W/cm2

cross at 45◦ in an expanding, supersonic CH plasma with Te =
3 keV and Ti = 1 keV . Resonance occurs near the crossing
point where M ' 1.1 and |δn/n0| . 4%. Approximately 79%
of the laser power is transferred, as indicated by the yellow
and red regions of the diagonal beam in (a).
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A plot of the corresponding value of |δn/n0| at 4 ps ap-
pears in Fig. 2(b). This figure also indicates the direction
of k1 and k2 for the lasers, as well as the wave vector ka
of the interference pattern they create, which intersects
U0 at an angle θ = 22.5◦. Note that ka = 2k sin (π/2−θ),
where k = k1 = k2 = (2π/λ0)(1−ne/nc)1/2 and λ0 is the
vacuum laser wavelength. Because the lasers have equal
frequencies (ω1 = ω2), resonance occurs in the plasma
region where the Mach number satisfies M = 1/ cos θ '
1.1. Consequently, in order to maximize the CBET ef-
fect, our simulations were arranged to have this value of
M near the center of the computational domain where
the lasers cross. We also note that because ω1 = ω2,
the electron-number-density perturbation δn is static in
the laboratory frame and reaches a maximum of only
about 0.04n0, thus corroborating the linear approxima-
tions made in Eqs. (3) and (4).

We next consider the effect of finite laser bandwidth
on CBET for this plasma configuration. To model band-
width, we divide each beam into 20 discrete wavelengths
distributed symmetrically on either side of the central
wavelength whose intensities follow a Gaussian distri-
bution (see inset of Fig. 3). Such a spectrum qualita-
tively resembles the bandwidth produced by SRRS. In
our simulations, a uniform line-spacing of 0.8Å was used
for ∆ν = 2 THz, while 2Å was used for ∆ν = 5 THz
— both of which are sufficiently small to expect equiv-
alence with a continuous spectrum [40]. The different
wavelengths for each bandwidth were randomly-phased
and eight runs were performed at each intensity to com-
pute an ensemble average of the amplification of laser
power in the enhanced beam, Pout/Pin. This quantity
was computed by integrating the Poynting flux over the
cross-section of the intensified beam before and after pas-
sage through the CBET region and taking the ratio. The
symbols in Fig. 3 are LPSE simulation results that show
the dependence of Pout/Pin on the peak laser intensity
averaged over an interval of 20 ps, where error bars de-
note the standard deviation of the average result. Note
that in the absence of CBET, Pout/Pin = 1.

Inspection of Fig. 3 shows that for ∆ν = 0 THz, the
CBET process is responsible for a laser-power transfer
of about 65 % at I = 1015W/cm2. For ∆ν = 2 THz,
however, the transferred power drops significantly. At 5
THz, nearly complete suppression of CBET occurs. The
observed mitigation is apparently due to the coherence
time τc ' ∆ν−1 being much shorter than the time re-
quired for CBET to reach steady state (& 1 ps) [45].
Thus, the interference pattern created by the beating of
the lasers becomes out of phase with the ion acoustic
wave before the latter can reach a large amplitude. (This
conclusion is supported by the fact that increasing νa by
50% or more did not affect our finite-bandwidth results.)
Additionally, we note that the interaction length in these
simulations (' 28µm) was too short for the laser coher-
ence length (& 60 µm) to be a factor.

To compare our results with theory, we adopt the
steady-state, convective-growth model of CBET scatter-

ing developed in Ref. [10]. According to the theory, the
amplification or attenuation in intensity of an s-polarized
light ray along a path ` is the exponential of the gain

G =

∫
η L−1

CBET d` , (5)

where η is a dimensionless parameter satisfying 0 ≤
η ≤ 1 that has been included in the model to ac-
count for the effects of bandwidth and L−1

CBET '
0.06λµm I14 (ne/nc)R(ϕ)/[(Te + 3Ti/Z)(1 − ne/nc)

1/2]
is the inverse scale-length of gain due to CBET (in units
of µm−1). Here, λµm is the vacuum laser wavelength
in microns, I14 is the crossing-laser intensity in units
of 1014W/cm2, Te and Ti are measured in keV and
R(ϕ) = (νa/kacs)ϕ/[(νa/kacs)

2 ϕ2 + (1 − ϕ2)2], where
ϕ = ka ·U/kacs−(ω1−ω2)/kacs, determines how closely
the resonance condition in Eq. (1) is satisfied.

The theoretical model described above was used to
estimate the power of the CBET-amplified beam in
Fig. 2(a). This was accomplished by numerically com-
puting Eq. (5) along many laser ray trajectories using
the local plasma conditions and accounting for all pos-
sible crossing points of the monochromatic rays in the
two-dimensional domain [57]. Such an approach is sim-
ilar to the technique used to calculate CBET effects in
ICF hydrocodes [18, 58], with the exception that correc-
tions due to inverse bremsstrahlung and temporal varia-
tions in the background density profile were not included
in our calculations. The net Poynting flux resulting from
this procedure with η = 1 was then integrated across
the beam cross-section to determine Pout/Pin, which is
shown as the black curve in Fig. 3. Although the theory

FIG. 3: Plots of the laser-power amplification due to CBET
as a function of average peak intensity and bandwidth for the
laser and plasma configuration shown in Fig. 2. The symbols
denote results from wave-based LPSE simulations while the
dashed lines are predictions based on the steady-state theory
described in the text. The inset shows the discrete multi-
line model of laser bandwidth used in this study for the case
∆ν = 2 THz.
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exceeds the (monochromatic) simulation result over most
of the intensity range, the agreement is reasonably good
considering the limitations of the former, which include
a reliance on the paraxial approximation and the neglect
of diffraction effects. Figure 3 also shows the laser-power
amplification based on the monochromatic theory and
the values η = 0.2 and η = 0.04 — choices that reproduce
the simulation results for ∆ν = 2 THz and 5 THz, respec-
tively, fairly well. A heuristic expression that appears to
capture the dependence of η on bandwidth in this study
is the Lorentzian function η ' 1/[1 + (∆ω/π νa)2], which
we note is similar in form to the result derived for a single
discrete separation of laser frequencies [9, 59].

In summary, we have identified a promising mecha-
nism for the mitigation of CBET in directly-driven ICF
targets, namely, enhanced laser bandwidth. Although it
has been suspected for some time that large bandwidths
are helpful at controlling other categories of laser-plasma
instabilities by detuning the underlying resonant interac-
tions [26–31], this is the first demonstration of the effi-
cacy of this approach for suppressing CBET in a numer-
ical simulation. Our results, which were obtained with
the wave-base code LPSE [42, 43], utilized a collection of
randomly-phased narrowband lines to model laser band-
width and showed that a significant reduction in CBET
occurs for bandwidths of 2 − 5 THz (corresponding to
∆ω/ω0 ' 0.2−0.6%, respectively, at λ0 = 351 nm) under
conditions relevant to inhomogeneous, direct-drive ICF
plasmas. Future computational research efforts with the
LPSE code will explore the effects that laser speckles [60]
and beam-smoothing techniques such as SSD [61, 62] and
ISI [63–66] have on CBET, as well as other single-beam
and multi-beam laser-plasma instabilities.

Although multi-terahertz bandwidths exceed those of
most ICF lasers in existence today, it may be possible to
enhance the spectrum of narrowband laser light to such
levels by exploiting the phenomenon of SRRS in a di-
atomic gas medium [44, 45]. Bandwidths up to 8 THz
have been achieved on a frequency-doubled Nd:glass laser
(λ0 = 527 nm) using this technique in nitrogen gas [40].
Alternatively, the required bandwidth for CBET mitiga-
tion could likely be obtained directly by imploding ICF
targets with excimer lasers. On the Nike KrF laser, for
example, a full-width-half-maximum bandwidth of about
2.7 THz (τc ' 350 ps) at full energy was achieved by em-
ploying etalons to shape the input power spectrum [67].
An argon-fluoride (ArF) laser has a larger native band-
width than its KrF counterpart [68] and we project that
at least 5 THz bandwidth could be similarly obtained in
a high-energy ArF system [69]. Both KrF and ArF lasers
have the additional advantage of possessing a short wave-
length — 248 and 193 nm, respectively — which would
help to suppress CBET even further.
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