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We introduce a robust approach for characterizing spatially and temporally heterogeneous behav-
ior within a system based on the evolution of dynamic fluctuations averaged over different space
lengths and time scales. We apply it to investigate the dynamics in two canonical systems as the
glass transition is approached: simulated Lennard-Jones liquids and experimental dense colloidal
suspensions. In both cases the onset of glassiness is marked by spatially localized dynamic fluc-
tuations originating in regions of correlated mobile particles. By removing the trivial system size
dependence we show that the spatial heterogeneity of the dynamics extends to large length scales
containing tens to hundreds of particles, corresponding to the time scale of maximally non-Gaussian
dynamics.

Glasses are solid materials with disordered liquid-like
structure. These are typically formed by rapidly quench-
ing a liquid from a hot to a cold temperature, or com-
pressing a liquid from a low to a high pressure [1, 2].
How the transition from an equilibrium liquid to an
out of equilibrium glass takes places is highly debated,
with many different and contrasting interpretations pro-
posed; see Refs. [3–9] for reviews. One point is known:
the onset of unusual behavior within a sample precedes
the glass transition. “Supercooled liquids,” despite their
metastable equilibrium, have a markedly higher viscosity
η than normal liquids. This steep rise of η is associ-
ated with the onset of dynamical heterogeneity: diffusive
motion takes place in a spatially and temporally hetero-
geneous fashion [10–14]. At any given time, some re-
gions within the sample are frozen, while other regions
are quite mobile. The mobile regions are characterized by
“cooperative” motion where localized groups of molecules
have nearly simultaneous large displacements [12, 15–17].
Over time, the locations of faster and slower dynam-
ics change, such that at any given position the dynam-
ics are temporally heterogeneous as well [4, 18, 19]. It
has been also found that the dynamics is most heteroge-
neous at a timescale ∆t∗, the time scale that maximizes
the non-Gaussian parameter α2 [20], which quantifies
the measured frequency of large displacements as com-
pared to a Gaussian distribution of displacements[15–
17, 21, 22]. Identifying the particles responsible for the
large α2 value is expected to provide information on the
cooperatively moving clusters [15–17] and their struc-
tural and dynamic properties. Early studies [15–17] used
various somewhat arbitrary criteria to define mobile par-
ticles. Later work examined spatial correlation functions

averaged over all particles in various ways attempting to
identify the length and time scales of dynamical hetero-
geneity [12, 17, 23–30].

In this paper, we present a new and robust analysis
method to characterize spatial and temporal dynamical
heterogeneity that does not require any a priori defini-
tion of particle mobility. Our parameter-free method con-
trasts the spatial and temporal motion of particles with
motion of a system in which motion is homogeneous in
space and time and identical to that of the entire sys-
tem. The system mean square displacement thus acts as
a “null hypothesis” for particle motion and we quantify
deviations away from this null hypothesis. We apply this
method to two archetypical glass-former systems: sim-
ulations of the Kob-Andersen mixture [31] and confocal
microscopy data on colloidal suspensions [32]. Our re-
sults show that dynamical heterogeneity is most obvious
for subsystems comprised of tens to hundreds of parti-
cles, with the size growing as the glass transition is ap-
proached. Additionally, we examine how dynamical het-
erogeneity becomes averaged out at larger length scales,
finding that spatial variability of the dynamics persists to
surprisingly large scales. As a byproduct we confirm that
∆t∗ is the time scale of maximum heterogeneity. While
our method of localized fluctuations is applied to particle
displacements, the idea is generalizable to other quanti-
ties which may have spatiotemporal fluctuations such as
structure [33, 34].

We use LAMMPS to simulate the Kob-Andersen bi-
nary Lennard-Jones glassforming system [31], an 80:20
mixture of A and B particles. The particles interact via
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the Lennard-Jones potential

Uαβ(r) = 4εαβ

[(σαβ
r

)12

−
(σαβ
r

)6
]

(1)

with α, β ∈ A,B. A and B particles have the same
mass. The energy scales are εAA = 1.0, εAB = 1.5, and
εBB = 0.5. The size scales are σAA = 1.0, σAB = 0.8,
and σBB = 0.88, chosen so that A and B particles are
encouraged to mix rather than segregate, and thus crys-
tallization is frustrated [31]. For most of our results we
present data with 8000 total particles, and for our analy-
sis we consider the N = 6400 A particles. To verify that
our analysis is not biased by finite size, in a few cases we
compare with a N = 8×105 data set. Periodic boundary
conditions were used with a cubical box.

In turn, we reanalyze previously published data from
experiments using confocal microscopy to observe dense
colloidal samples [32]. The samples were sterically stabi-
lized colloidal poly-(methyl methacrylate) for which the
key control parameter is the volume fraction φ. The glass
transition for this experiment occurred at φg = 0.58.
Here we examine data with φ = 0.46, 0.52, 0.56 with
N ≈ 2500, 2900, 3100 particles respectively in the obser-
vation volume. The particles were a single species with
mean particle diameter 2.36 µm and a polydispersity of
0.045 and were slightly charged. Confocal microscopy
and particle tracking was used to follow the positions of
the particles in three dimensions. The imaging volume
was rectangular with an aspect ratio roughly 5 : 5 : 1;
see Ref. [32] for details.

We aim at characterizing the growing spatial and tem-
poral fluctuations on approaching the glass transition
without introducing any arbitrary cut-off quantity. Fol-
lowing prior work [28, 29, 35], we start by defining the
distance matrix ∆2(t′, t′′), an object that represents the
average of the squared particle displacements between
particular times t′ and t′′ of a collection of the N parti-
cles belonging to a predefined set S (S may be the entire
system or some subsystem):

∆2(t′, t′′) ≡ 1

N

N∑
i=1

|~ri(t′)− ~ri(t′′)|2 (2)

= 〈|~ri(t′)− ~ri(t′′)|2〉i∈S (3)

where the angle brackets indicate an average over the N
particles in S. Further averaging ∆2(t′, t′′) over all pairs
t′ and t′′ such that t′′− t′ = ∆t produces the well-known
average mean square displacement M2(∆t) of particles in
S. More precisely, M2(∆t) = 〈∆2(t′, t′′)〉t′′−t′=∆t, where
the average is over t′, t′′ with fixed time interval ∆t =
|t′′ − t′| and also over all of the particles in S. Assuming
stationary dynamics (true as long as the system is not
aging), for a sufficiently large ∆t, lim∆t→∞∆2(t′, t′ +
∆t) = M2(∆t).

For small systems under glassy relaxation conditions,
∆2 has temporal fluctuations, as shown in Fig. 1(a) for a
sub-system of N = 125 particles from a larger Lennard-
Jones simulation. Darker regions indicate time intervals

(t′, t′′) over which this subsystem has relatively little par-
ticle motion. Clearly, there are specific times for which
this subsystem undergoes fairly large changes, signalled
by larger displacements. It is expected [36] that at any
given time, different regions of the system are indepen-
dent when sufficiently far apart. This implies that on in-
creasing the subsystem size well beyond any dynamic cor-
relation length, ∆2 will appear much smoother, as shown
in Fig. 1(b) for the full system of N = 8000 particles. For
a sufficiently large system S, the spatial fluctuations must
average out such that limN→∞∆2(t′, t′+∆t) = M2(∆t).

The question we turn to is how the large system limit
is reached, and how this relates to the spatial scale of dy-
namical heterogeneities. Our approach of comparing spe-
cific sized subsystems is similar in spirit to Refs. [37, 38]
which used the χ4 analysis applied to subsystems. We
wish to use the approach to the large system limit to char-
acterize the spatial scale of dynamical heterogeneities.
The obvious features of Fig. 1(a) are the large fluctua-
tions that differentiate it from Fig. 1(b). This motivates
us to consider the normalized difference between ∆2 and
the expectation for a large system, defined by

Ω2
S(t′, t′′) =

[∆2(t′, t′′)−M2(∆t)]2

[M2(∆t)]2
(4)

with the convention ∆t = |t′′ − t′|. Ω2
S , a measure of dy-

namic intermittency, represents the matrix of normalized
squared deviations from the mean value for the particles
squared displacements and will be equal to zero when ∆2

is calculated for sufficiently large systems, for which time
averages and space averages are equivalent and ∆2 = M2.
Otherwise, Ω2

S > 0 and larger values indicate larger devi-
ations between ∆2 (local in both space and time) and the
expectation for a large system (that is, M2, a quantity
averaged over all space and all time).

An example of Ω2
S(t′, t′′) is shown in Fig. 1(c), where

the brighter regions indicate time periods for which
the mean motion within the sub-volume is anomalously
larger or smaller compared to the expectation from M2.
Figures 1(d) and 1(e) show scatter plots of the values of
∆2 and Ω2

S as functions of t′′ − t′, taken from the data
of Fig. 1(a) and 1(c) respectively. ∆2 starts at the ori-
gin and rises, consistent with the idea that on average
it should behave similar to the mean square displace-
ment M2(∆t). At intermediate time scales the scatter
in the data of Fig. 1(d) indicates the temporal fluctua-
tions of the motion. In contrast, Ω2

S in Fig. 1(e) has large
fluctuations at the shortest time scales, indicating large
fluctuations of the motion relative to M2(∆t) on those
time scales. At larger time scales, the temporal averaging
reduces Ω2

S toward zero.
As defined, Ω2

S is local in space and time. To focus
on the space dependence of the fluctuations we need to
evaluate a single nondimensional scalar quantity Ω(N)
characterizing the mobility fluctuations for subsystems
of size N (the ratio of the dispersion to the average [39]
for the particle squared displacements). To do so we par-
tition the system into distinct cubical boxes containing
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FIG. 1: (a) Contour plot of the distance matrix ∆2(t′, t′′) for a binary Lennard-Jones system at T = 0.50 within a
cubical subsystem containing 125 particles. (b) Contour plot of the same system for the full 8000 particle

simulation. Images taken from Ref. [29], permission pending. (c) Ω(t′, t′′). The data correspond to the same
subsystem as in (a). In the image shown, darker points indicate smaller values. (d) The values of ∆2 as a function of
∆t = |t′ − t′′| for the data shown in (a). For small ∆t this tends to 0, and for intermediate ∆t the scatter indicates
the temporal heterogeneity in this subsystem. The overall increase mirrors the mean square displacement M2(∆t).

(e) Ω2(∆t) for the data shown in (c). The scatter at small ∆t reflects a function of ∆t, which has much larger
fluctuations at short ∆t, reflecting non-Gaussian statistics of the displacements at those time scales.

N particles each and evaluate the sum of Ω2
S(t′, t′′) over

all time pairs (t′, t′′) [i.e. the sum over all points in the
scatter-plot shown in Fig. 1(e)] divided by the number
of such pairs for each of the boxes. We then average
the resulting number over all boxes and finally take the
square root of the result. This procedure yields the de-
sired scalar quantity Ω(N).

Note that the magnitude of Ω(N) depends on the to-
tal time studied, that is, the maximum of |t′′− t′| that is
studied. As is apparent from Fig. 1(c) and 1(e), at large
|t′′− t′|, ΩS decays to zero, and the more of this included
in the average, the smaller Ω(N) will be. However, for
a given data set, the magnitude of ΩS is unimportant;
what matters is the N -dependence which is insensitive to
the total time studied, as long as that time is sufficient
to capture the temporal fluctuations seen in Fig. 1(c).
That is, the key point is to include several of the “is-
lands” seen in Fig. 1(a,c). We have verified that a total
duration of ≈ 3∆t∗ gives adequate results for the data we
have examined, and 10∆t∗ gives similar results with less
noise (where ∆t∗ depends on the temperature [for the
Lennard-Jones simulations] or the volume fraction [for
the colloidal experiments]). We use 10∆t∗ for the results
we present below to allow for a fair comparison between
different data sets.

Ω(N) for the Lennard-Jones system is plotted in
Fig. 2(a), and for the colloidal experiments in Fig. 2(b).
In both cases, we see how the dynamical fluctuations av-
erage out for larger subsystem sizes. Notably, the systems
closer to the glass transition require larger subsystems be-
fore the dynamical fluctuations are averaged out – colder
systems for the LJ data (a), and higher volume fraction
systems for the colloidal data (b).

An interesting point emerges when analyzing the func-
tional form of the decay of Ω(N) with N . From the high
temperature data of Fig. 2(a) we observe the spatially lo-
calized dynamic fluctuations measured by Ω display the

usual N−1/2 size scaling dependence. This reflects that
particle motion is nearly spatially uncorrelated within a
subsystem and so the average of ∆2(N) converges to the
large-system limit M2 as N−1/2. However, for glassier
systems a clear departure from this trivial behavior is
seen, and the decay of Ω(N) gets slower. The fact that
the localized dynamical fluctuations are higher than ex-
pected, persisting at large system sizes, speaks of the
existence of regions of correlated mobile particles, an ef-
fect that is more pronounced upon supercooling [12, 15–
17, 25, 32]. We truncate our calculation atN = Nmax/10,
as we desire at least 10 subsystems to evaluate a reason-
able Ω(N). We note that both for the Lennard-Jones
system and the colloidal suspensions, the behavior of the
curves of Fig. 2(a,b) at very large system sizes is due to
lack of statistics (the subsystems are not small as com-
pared to the large system and, thus, we can only av-
erage over a few of them). The decay of the curves in
Fig. 2(a,b) presents a notable difference between our ap-
proach and that of Refs. [37, 38]. The prior work studied
how χ4, a measure of dynamical fluctuations, approached
an asymptotic limit as the subsystem size was increased.
A critical length scale was identified by the subsystem
size needed to reach this asymptotic limit, which required
a scaling collapse in Ref. [38]. In contrast, rather than
approaching an asymptote, our method approaches zero
as the subsystem size increases, enabling us to see subtle
differences from the full system behavior. Moreover, our
approach does not require any particular scaling collapse,
and indeed the power-law behavior seen in Fig. 2(a) may
well be something different for different quantities or dif-
ferent systems.

As evident from Fig. 2(a,b), for the smallest possible
subsystems (N = 1), the increasing value of Ω as the glass
transition is approached reflects the well-known increas-
ing non-Gaussian nature of the displacement distribu-
tion [31]. In fact this points out a limitation of Ω, in that
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FIG. 2: Ω(N) and ΩR(N) as a function of subsystem size N for the binary Lennard-Jones system [(a) and (c)] for
different temperatures as indicated and for the experimental colloidal suspension [(b) and (d)] at different volume
fractions φ as indicated. In the case of Ω(N) the N particles are part of the same subsystem. In the case of ΩR(N)
the N particles are selected randomly among all particles in the system. The dashed lines in (a) indicate power law
decay with the exponents shown, and the inset to (a) shows the decay exponent as a function of T for the data. The

decay exponent is found by fitting the data for N ≤ 800, and for all T we find a high quality fit (R2 ≥ 0.99).

FIG. 3: Subtracting Ω calculated for randomly chosen
particles from Ω calculated for compact subsystems. (a)

For the LJ system. The inset shows the maximum of
the curves as a function of temperature. (b) The same
quantity for the colloidal suspensions. The black curve
in (a) shows the same quantity evaluate for a system of
106 particles at T = 0.466, showing that the position of

the maximum is not affected by the finite size of the
investigated system.

large values of Ω can reflect either spatial fluctuations in
the dynamics or simply a non-Gaussian distribution of
displacements. To remove the latter influence (that is,
to remove the trivial system size dependence and thus to
highlight the local correlations) we separately compute
ΩR(N) based not on compact subsystems of size N but
on N randomly chosen particles. Here the subscript R
indicates an average over many such randomly chosen
subsets. For the Lennard-Jones system, this is plotted
in Fig. 2(c), showing different behavior from Fig. 2(a)
for the colder temperature data. In fact, now the ran-
domly distributed dynamical fluctuations quantified by
ΩR(S) display the typical N−1/2 decay at all temper-
atures. Similar behavior is found in Fig. 2(d) for the
colloidal suspensions, as compared to Fig. 2(b). Again,
the N−1/2 scaling is recovered at all volume fractions.

To understand the differences between the spatially
localized and the randomly distributed dynamic fluctu-
ations, in Fig. 3(a) we show the result of subtracting
ΩR(N) from Ω(N). For N = 1 particle the result is zero

as there is no distinction between the two calculations.
Likewise for N → 6400 (the total number of A particles),
the two calculations are identical. At intermediate num-
bers of particles, nonzero values are found in Fig. 3(a)
indicating nontrivial spatially localized values of Ω. In
particular, for colder temperatures the dynamical fluctu-
ations are larger [higher curves in Fig. 3(a)] and the sub-
system size with the largest fluctuations grows slightly
[peak position shifts rightward in Fig. 3(a)]. This last
observation is quantified in the inset of Fig. 3(a) which
shows the peak position of the curves as a function of
T . The peak occurs for larger subsystems at colder tem-
peratures. This indicates the size of regions with max-
imally variable dynamics contain about 50 particles for
the coldest samples. This leads to a length scale for these

dynamical fluctuations of σN
1/3
max = 3.7σ in terms of the

particle diameter σ. For hotter samples, the maximum
shifts to smaller system sizes; for the hottest data, Ω for
compact subsystems is nearly indistinguishable from Ω
calculated for random particles, and we cannot identify
a maximum. In turn, Fig. 3(b) shows the behavior for
the colloidal suspensions, which is similar to that found
for the Lennard-Jones system. Namely, there is a peak
in Fig. 3(b) at a specific subsystem size, and the posi-
tion and height of this peak is larger for volume fractions
closer to the glass transition volume fraction (φg ≈ 0.58
[32]). An intriguing difference is that the peak position
indicates that larger subsystems containing a few hun-
dred particles are maximally heterogeneous, as compared
to Fig. 3(a) which peaks at subsystem sizes containing a
few tens of particles. We note that these estimates for
the length scales all are based on compact subregions (like
that found in [28, 29]), while this need not be always the
case.

Earlier work with the Lennard-Jones system found mo-
bile clusters containing 10-30 particles [40] or 40 particles
[28] at the coldest temperatures, in agreement with our
result. Likewise, earlier analyses of the same colloidal
data found the largest mobile clusters contained ∼ 50
particles on average for φ = 0.562 [32]. The new result
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seen here is how the sample behaves over larger length
scales. For example, Fig. 3(a) shows that there is still
nontrivial spatial heterogeneity for subsystems contain-
ing N = 1000 particles, more than an order of magni-
tude larger than the N corresponding to the peak. This
is strong evidence that the dynamically heterogeneous
regions of size N ∼ 50 are not randomly distributed
throughout the sample but are themselves spatially clus-
tered, over length scales up to and beyond σN1/3 = 10σ.

FIG. 4: Ω(∆t) averaged over all subsystem sizes N , for
the LJ data with different temperatures as indicated by

the color scale. Red circles indicate the peak of each
curve, and yellow circles indicate the time scale ∆t∗.

In this analysis, Ω2
S is averaged over time scales to high-

light the N dependence of the dynamical fluctuations.
We now turn to the complementary case, and average
Ω2
S over subsystem sizes N to single out the time scale

∆t of the same fluctuations. Since the value of N cov-
ers several order of magnitude, we average ΩS(t′, t′′) over
subsystems with sizes N picked to be evenly distributed
in log(N), with N ranging from 1 to the system size. We
first average over all subsystems of a given size N , and
then average Ω2(N, t′, t′′) over N and (t′, t′′) with fixed
time interval ∆t = t′′ − t′ to result in Ω(∆t). This is

shown in Fig. 4 where the peak of each curve is marked
with a red circle. For comparison, the time scale ∆t∗ is
indicated for each data set with a yellow circle; it appears
the peak of Ω(∆t) is always close to the non-Gaussian
time scale ∆t∗. As expected, the time scale of maximum
dynamical heterogeneity [as measured by Ω(∆t)] grows
as the system approaches the glass transition. Of course,
other measures of dynamical heterogeneity can peak at
other time scales [30]. We note that our method can
be generalized to treat other quantities besides displace-
ments, and so the peak time scale may well vary with
other examined quantities.

In summary, we have constructed a new measure of
spatial and temporal dynamic heterogeneity. The mea-
sure does not require defining subsets of mobile or immo-
bile particles, but rather looks for fluctuations away from
the large system behavior. Additionally, it allows us to
examine dynamical heterogeneity on a variety of length
scales, showing that the approach to the large system
limit is slower than would be expected for randomly dis-
tributed fluctuations in the dynamics. That is, not only
are there relatively mobile and immobile regions within
the sample as has been long known, but also there are
subtle spatial correlations between these regions that per-
sist over long length scales. The method can be straight-
forwardly applied to experimental systems such as the
dense colloidal solution we examine; it does not require
finite-size scaling, for example. While we focus on par-
ticle motion where the mean square displacement is the
null hypothesis, the method can be generalized to any
other spatially and temporally fluctuating quantities, as
long as there is a well-defined null hypothesis based on
the large system limit.
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