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Abstract
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-

Stokes (NS) equations on standard lattices can lead to non Galilean invariant (GI) viscous stress

involving cubic velocity errors. This arises from the dependence of their third order diagonal mo-

ments on the first order moments for standard lattices, and strategies have recently been introduced

to restore GI without such errors using a modified collision operator involving either corrections

to the relaxation times or to the moment equilibria. Convergence acceleration in the simulation

of steady flows can be achieved by solving the preconditioned NS equations, which contain a pre-

conditioning parameter that can be used to tune the effective sound speed, and thereby alleviating

the numerical stiffness. In the present study, we present a GI formulation of the preconditioned

cascaded central moment LB method used to solve the preconditioned NS equations, which is free

of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals

the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of

the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid

velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by

scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square

of the preconditioning parameter. Furthermore, we develop additional corrections based on the ex-

tended moment equilibria involving gradient terms with coefficients dependent locally on the fluid

velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the

remaining truncation errors arising from the degeneracy of the diagonal third-order moments and

fully restores GI without cubic defects for the preconditioned LB scheme on a standard lattice.

Several conclusions are drawn from the analysis of the structure of the non-GI errors and the asso-

ciated corrections, with particular emphasis on their dependence on the preconditioning parameter.

The new GI preconditioned central moment LB method is validated for a number of complex flow

benchmark problems and its effectiveness to achieve convergence acceleration and improvement in

accuracy is demonstrated.

PACS numbers: 47.11.Qr,05.20.Dd,47.27.-i
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I. INTRODUCTION

The lattice Boltzmann (LB) method has now been established as a powerful kinetic

scheme based computational fluid dynamics approach ([1], [2], [3]). It is a mesoscopic method

based on local conservation and discrete symmetry principles, and may be derived as a spe-

cial discretization of the Boltzmann equation. Algorithmically, it involves the streaming of

the particle distribution functions as a perfect shift advection step along the lattice direc-

tions and followed by a local collision step as a relaxation process towards an equilibria,

and accompanied by special strategies for the implementation of impressed forces. The hy-

drodynamic fields characterizing the fluid motion are then obtained via the various kinetic

moments of the evolving distribution functions and its consistency to the Navier-Stokes (NS)

equations may be established by a Chapman-Enskog expansion or Taylor series expansions

under appropriate scaling between the discrete space step and time step. As such, the LB

method has been applied for the computation of a wide range of complex flows including

turbulence, multiphase and multicomponent flows, particulate flows and microflows ([4], [5]).

Its various appealing features, including its inherent parallelism, natural framework to in-

corporate kinetic models for complex flows and the ease of boundary conditions has made

it an unique and efficient approach for computational fluid dynamics (CFD). During the

last decade, many efforts were made to further improve its numerical stability, accuracy and

efficiency. In particular, sophisticated collision models based on multiple relaxation times

and involving raw moments, central moments or cumulants, and entropic formulations have

significantly expanded the capabilities of the LB method. The significant achievements of

these developments and their applications to a variety of complex flow problems have been

discussed, for example, in [5–16].

There exist various additional aspects in the LB approach that require further attention

and present scope for improvements. In particular, the finiteness of the lattice can introduce

certain truncation errors that manifest as non-Galilean invariant viscous stress, i.e. fluid

velocity dependent viscosity. This lack of Galilean invariance (GI) arises due to the fact

that the diagonal terms in the third-order moments are not independently supported by the

standard tensor-product lattices (i.e. D2Q9 and D3Q27). More specifically, for example,

κ̂
′

xxx =
∑
α

e3αxfα =
∑
α

eαxfα = κ̂
′

x.
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Here, and in the following, the primed quantities denote raw moments. In other words,

there is a degeneracy of the third-order diagonal (longitudinal) moments that results in

a deviation between the emergent macroscopic equations derived by the Chapman-Enskog

expansion and the Navier-Stokes (NS) equations. Such cubic-velocity truncation errors are

grid independent and persist in finer grids especially under high shear and flow velocity.

Moreover, such emergent anisotropic viscous stress may have a negative impact on numerical

stability as a result of a negative dependence of the emergent viscosity on the fluid velocity.

In order to overcome this shortcoming, various attempts have been made.

One possibility is to consider a lattice with a larger particle velocity set, such as the D2Q17

lattice in two-dimensions [17], which was pursued after [18] pointed out nonlinear, cubic-

velocity deviations of the emergent equations of the LB models with standard lattice sets

from the NS equations. This involved the use of higher order velocity terms in the equilibrium

distribution. However, [19] showed that the specific equilibria adopted in [17] does not fully

eliminate the cubic-velocity errors. Moreover, the use of non-standard lattice stencils with

larger number of particle velocities increases the computational cost and propensity of the

numerical instability at grid scales. On the other hand, it was shown more recently by

various others ([20], [19], [21]) that partial corrections to the GI errors on the standard

lattice (i.e. D2Q9 lattice) may be achieved by adopting special forms of the off-diagonal,

third-order moments in the equilibria. That is,

κ̂eq
′

xxy = c2sρuy + ρu2xuy, κ̂eq
′

xyy = c2sρux + ρuxu
2
y.

Here, cs is the speed of sound and the particular choices of the cubic-velocity terms that are

underlined are crucial to partially restore GI for the above identified moments. Here, we also

point out that the above forms of the off-diagonal, third-order raw moment equilibria that

allow such partial GI corrections naturally arise in the central moment LB formulations,

when the equilibrium central moment components are set to zero and and then rewritten in

terms of their corresponding raw moments. However, since κ̂eq′xxx = κ̂eq
′

x and κ̂eq′yyy = κ̂eq
′

y due

to the degeneracy of the third-order longitudinal moments, which is inherent to the standard

tensor-product lattices, additional corrections are required to restore GI completely free of

cubic-velocity errors. In this regard, in order to compensate the terms which violate GI

on standard lattices, LB schemes with single relaxation time models were augmented with

finite difference expressions [22–24]. On the other hand, more recently, [25] introduced
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small intentional anisotropies into a matrix collision operator that corrects the anisotropy

in the resulting viscous stress tensor thereby addressing the above mentioned issue. In

addition, independently, [26] introduced additional corrections involving velocity gradients

to the equilibria that achieved equivalent results. These two studies provided strategies to

represent the Navier-Stokes equations in LB models on standard lattices completely free of

cubic-velocity errors. In addition, [27] presented finite difference based corrections to the

method proposed in [28] to reduce the resulting spurious velocity dependent viscosity effects

on standard lattices.

While the LB schemes have found applications to a wide range of fluid flow problems,

there has also been considerable interest to an important class of problems related to low

Reynolds number steady state flows. They include analysis and design optimization of

a variety of Stokes flows through capillaries, porous media flows, heat transfer problems

under stationary conditions, and since the LB methods are explicit marching in nature,

efficient solution techniques need to devised to accelerate their convergence (see e.g. [29–

43]). A recent review of the literature in the LB approach for such problems can be found

in [41, 42]. Generally, multigrid and preconditioning techniques can be devised to improve

the steady state convergence of the LB scheme. A comparison of a multigrid LB formulation

with the conventional solvers showed significant improvement in efficiency [38]. At low Mach

numbers, the convergence can be further accelerated by means of preconditioning for both

the traditional single grid LB methods [32, 35, 36, 41, 42] and multigrid LB scheme [43].

The present work addresses a further refinement to the LB techniques for steady state flows,

viz., improving the accuracy of the acceleration strategy based on the preconditioned LB

formulation without GI cubic velocity and parameter dependent errors.

Thus, it is clear that another aspect of the LB method, similar to certain schemes based

on the classical CFD, is its slow convergence to steady state at low Mach numbers. In such

conditions, there is a relatively large disparity between the sound speed and the convection

speed of the fluid motion resulting in higher eigenvalue stiffness and larger number of itera-

tions for convergence. This stiffness can be alleviated and convergence can be significantly

improved by preconditioning. Reference [32] presented a preconditioned LB method based

on a single relaxation time model by modifying the equilibrium distribution function by

using a preconditioning parameter. Then, [35] and [36] presented preconditioned LB formu-

lations based on multiple relaxation times. More recently, [41] presented a preconditioned
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scheme for the central moment based cascaded LB method [44] in the presence of forcing

terms [45] and demonstrated significant convergence acceleration.

In general, such preconditioned LB schemes are intended to solve the preconditioned NS

equations, which can be written as ([46], [47])

∂ρ

∂t
+ ∇ · (ρu) = 0, (1a)

∂ (ρu)

∂t
+ ∇ ·

(
ρuu

γ

)
= −1

γ
∇p∗ +

1

γ
∇ · (ρνS) +

F

γ
, (1b)

where p∗, S and F are the pressure, strain rate tensor and the impressed force, respectively.

Here, γ is the preconditioning parameter, which can be used to tune the pseudo-sound

speed, thereby alleviating the eigenvalue stiffness and improving convergence acceleration

(e.g. [41]). However, the existing LB models for the preconditioned NS equations are not

Galilean invariant and are expected to involve both velocity- and parameter-dependent

anisotropic form of the viscous stress tensor. Development of the Galilean invariant pre-

conditioned central moment based LB method without cubic-velocity defects and parameter

free truncation errors for steady flow simulations is the main focus of this study. It may

be noted that the preconditioned NS equations may be considered as a specific example of

what may be called as the generalized NS equations containing a free parameter. In the

present case, such a parameter is imposed by numerics due to preconditioning. On the other

hand, such generalized NS equations arise in other contexts such as in the simulation of the

fluid saturated variable porous media flows represented by the Brinkman-Forchheimer-Darcy

equation. In such cases, the free parameter appearing in the generalized NS equations is

imposed by physics, viz., the porosity. Thus, our present investigation on the development of

the Galilean invariant LB models for the preconditioned NS equations on standard lattices

without cubic-velocity and parameter dependent errors also has wider implications in other

contexts.

In order to first identify such truncation errors, we perform a Chapman-Enskog analysis

of the preconditioned central moment LB formulation and isolate various cubic-velocity and

parameter dependent errors at various moment orders. It will be seen that the anisotropy of

the stress tensor depends not just on the cubic-velocity terms (like in the previous studies),

but also on the preconditioning parameter γ. Furthermore, we will also demonstrate that

even to achieve partial corrections for the GI defects on the standard lattice, the cubic

velocity terms appearing in the off-diagonal components of the third-order moment equilibria
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need to be appropriately scaled by γ (e.g. κ̂eq′xxy = c2sρuy + ρu2xuy/γ
2). In general, the various

truncation error terms that arise due to the degeneracy of the third-order diagonal elements

will be seen to have complex dependence on both the velocities and the preconditioning

parameter. Once such GI defect terms are identified, new corrections are derived for the

preconditioned central moment LB formulation based on the extended moment equilibria.

This results in a GI central moment LB method for the preconditioned NS equations without

cubic-velocity and parameter based defects on standard lattices. The present scheme is

targeted towards efficient and accurate low Reynolds number steady state laminar flows by a

preconditioned LB formulation without the discrete cubic velocity and parameter dependent

effects via corrections to the moment equilibria. On the other hand, for high Reynolds

number turbulent flow simulations, higher-order lattice based LB methods such as that

presented in [48] appears as one of the attractive approaches.

This paper is organized as follows. In the next section (Sec. 2), our previous central

moment based preconditioned LBM with forcing terms on the D2Q9 lattice is summarized

first. Section 3 performs a more refined analysis based on the Chapman-Enskog expansion

and identifies various cubic-velocity and parameter dependent GI defect errors. Then, Sec. 4

derives new corrections based on the extended moment equilibria and Sec. 5 presents a GI

preconditioned central moment LB method free of cubic-velocity and parameter dependent

errors. Numerical results are presented in Sec. 6, which compares our numerical results for

a variety of benchmark problems, including the lid-driven cavity flow, flow over a square

cylinder, backward facing step flow, the Hartmann flow and the four-roll mills flow problem

for the purpose of validation. In addition, convergence acceleration due to preconditioning

and improvement in accuracy due to the GI corrected LB scheme are also illustrated. Finally,

the main findings of our study are summarized in Sec. 7.

II. PRECONDITIONED CASCADED CENTRAL MOMENT LATTICE BOLTZ-

MANN METHOD: NON-GALILEAN INVARIANT FORMULATION

In our previous work, we presented a modified cascaded central moment lattice Boltzmann

method (LBM) with forcing terms for the computation of preconditioned NS equations [41].

However, this preconditioned LBM formulation is not Galilean invariant on standard lattices.

This is because it results in grid-independent cubic-velocity errors that are sensitive to the
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preconditioning parameter. In fact, the derivation of the precise expression for the non-

GI truncation errors will be derived in the next section. It may be noted that all other

prior preconditioned LB schemes are also not Galilean invariant. However, the choice of

central moments here partially corrects parts of the cubic velocity defects in the off-diagonal

third order moments naturally (Sec. III) and simplifies derivation of the correction terms

to completely restore GI free of cubic velocity errors on standard lattice (Sec. IV). Here,

we summarize our previous preconditioned central moment LB model setting the stage for

further development in the following.

The preconditioned cascaded central moment LBM with forcing terms may be written as [41]

˜̄fα(x, t) = f̄α(x, t) + (K · ĝ)α + Sα(x, t), (2a)

f̄α(x + eα, t+ 1) = ˜̄fα(x, t), (2b)

where a variable transformation f̄α = fα − 1
2
Sα is introduced to maintain second order

accuracy in the presence of forcing terms. In the above, K is the orthogonal transformation

matrix and ĝ is the collision operator. In order to list the expressions for the collision kernel

for the standard two-dimensional, nine particle velocity (D2Q9) lattice, we first define various

sets of raw moments as follows on which it is based:
κ̂

′
xmyn

κ̂eq
′

xmyn

σ̂
′
xmyn

ˆ̄κ
′
xmyn

 =
∑
α


fα

f eqα

Sα

f̄α

emαxenαy. (3)

The preconditioned collision kernel set for the orthogonal moment basis using the precondi-

tioning parameter γ can be written as [41]

ĝ0 = ĝ1 = ĝ2 = 0,

ĝ3 = ω3

12

{
2
3
ρ+

ρ(u2x+u
2
y)

γ
− (κ̂

′

xx + κ̂
′

yy)− 1
2
(σ̂

′
xx + σ̂

′
yy)
}
,

ĝ4 = ω4

4

{
ρ(u2x−u2y)

γ
− (κ̂

′

xx − κ̂
′

yy)− 1
2
(σ̂

′
xx − σ̂

′
yy)
}
,

ĝ5 = ω5

4

{
ρuxuy
γ
− κ̂

′

xy − 1
2
σ̂

′
xy

}
, (4)

ĝ6 = ω6

4

{
2ρu2xuy + κ̂

′

xxy − 2uxκ̂
′

xy − uyκ̂
′

xx − 1
2
σ̂xxy

}
− 1

2
uy(3ĝ3 + ĝ4)− 2uxĝ5,

ĝ7 = ω7

4

{
2ρuxu

2
y + κ̂

′

xyy − 2uyκ̂
′

xy − uxκ̂
′

yy − 1
2
σ̂xyy

}
− 1

2
ux(3ĝ3 − ĝ4)− 2uyĝ5,
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ĝ8 = ω8

4

{
1
9
ρ+ 3ρu2xu

2
y −

[
κ̂

′

xxyy − 2uxκ̂
′

xyy − 2uyκ̂
′

xxy + u2xκ̂
′

yy + u2yκ̂
′

xx

+4uxuyκ̂
′

xy

]
− 1

2
σ̂

′
xxyy

}
− 2ĝ3 − 1

2
u2y(3ĝ3 + ĝ4)− 1

2
u2x(3ĝ3 − ĝ4)

−4uxuyĝ5 − 2uyĝ6 − 2uxĝ7.

For further details, and including the choice of the collision matrix K and source raw moments

σ̂
′
xmyn , see [41]. This scheme results in a tunable pseudo-sound speed c∗s = γcs, where

cs = 1√
3
δx/δt, and the emergent viscosity ν is given by ν = γ

3
( 1
ωβ
− 1

2
), β = 4, 5. While this

scheme is intended to simulate the preconditioned NS equations given in Eq. (1), as will

be shown via a consistency analysis based on the Chapman-Enskog expansion in the next

section that it leads to velocity-and preconditioning parameter-dependent non-GI truncation

errors. In particular, it will be seen that the components of the non-equilibrium parts of

the second order moments, which contribute to the viscous stress tensor, depends on cubic

velocity truncation errors and modulated by the preconditioning parameter γ.

III. DERIVATION OF NON-GALILEAN INVARIANT SPURIOUS TERMS IN

THE PRECONDITIONED CASCADED CENTRAL MOMENT LB METHOD:

CHAPMAN-ENSKOG ANALYSIS

In order to facilitate the Chapman-Enskog analysis, the central moment LB formulation

can be equivalently rewritten in terms of a collision process involving relaxation to a general-

ized equilibria in the lattice or rest frame of reference [41]. This strategy is considered in this

work to further investigate the structure of the cubic velocity non-GI truncation errors for

our preconditioned LB method. In this regard, it is convenient to define the non-orthogonal

transformation matrix T which is the basis to obtain the orthogonal collision matrix K used

in the previous section and on which the subsequent analysis follows:

T = [
∣∣eα∣∣0, |eαx〉 , |eαy〉 , |e2αx + e2αy〉 , |e2αx − e2αy〉 , |eαxeαy〉 ,

|e2αxeαy〉 , |eαxe2αy〉 , |e2αxe2αy〉] , (5)

where the usual bra-ket notation is used to represent the raw and column vectors in the

q-dimensional space (q = 9) for the D2Q9 lattice. Then, the relation between the various

sets of the raw moments and their corresponding states in the velocity space can be defined
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via this nominal, non-orthogonal transformation matrix T as

̂̄m = Tf , m̂ = Tf , m̂eq = Tf eq, Ŝ = TS, (6)

where

f̄ =
(
f̄0, f̄1, f̄2, . . . , f̄8

)†
, f = (f0, f1, f2, . . . , f8)

† ,

f eq = (f eq0 , f
eq
1 , f

eq
2 , . . . , f

eq
8 )† , S = (S0, S1, S2, . . . , S8)

†

are the various quantities in the velocity space, and

̂̄m =
( ̂̄m0, ̂̄m1, ̂̄m2, . . . , ̂̄m8

)†
=
(
κ̂

′

0, κ̂
′

x, κ̂
′

y, κ̂
′

xx + κ̂
′

yy, κ̂
′

xx − κ̂
′

yy, κ̂
′

xy, κ̂
′

xxy, κ̂
′

xyy, κ̂
′

xxyy

)†
,(7a)

m̂ = (m̂0, m̂1, m̂2, . . . , m̂8)
† =

(
κ̂

′
0, κ̂

′
x, κ̂

′
y, κ̂

′
xx + κ̂

′
yy, κ̂

′
xx − κ̂

′
yy, κ̂

′
xy, κ̂

′
xxy, κ̂

′
xyy, κ̂

′
xxyy

)†
,(7b)

m̂eq = (m̂eq
0 , m̂

eq
1 , m̂

eq
2 , . . . , m̂

eq
8 )† =

(
κ̂eq

′

0 , κ̂eq
′

x , κ̂eq
′

y , κ̂eq
′

xx + κ̂eq
′

yy , κ̂
eq′
xx − κ̂eq

′
yy , κ̂

eq′
xy , κ̂

eq′
xxy, κ̂

eq′
xyy,

κ̂eq
′

xxyy

)†
, (7c)

Ŝ =
(
Ŝ0, Ŝ1, Ŝ2, . . . , Ŝ8

)†
=
(
σ̂

′
0, σ̂

′
x, σ̂

′
y, σ̂

′
xx + σ̂

′
yy, σ̂

′
xx − σ̂

′
yy, σ̂

′
xy, σ̂

′
xxy, σ̂

′
xyyσ̂

′
xxyy

)† (7d)

are the corresponding states in the moment space.

To facilitate the Chapman-Enskog analysis, we can rewrite the preconditioned LB model

presented in Eq. (2a) and Eq. (2b) in terms of the raw moment space given in Eq. (6)

as ([45], [41])

f (x + eαδt, t+ δt)− f (x, t) = T−1
[
−Λ̂ (m̂− m̂eq)

]
+ T−1

[(
I− 1

2
Λ̂

)
Ŝ

]
δt, (8)

where the diagonal relaxation time matrix Λ̂ is defined as

Λ̂ = diag(0, 0, 0, ω3, ω4, ω5, ω6, ω7, ω8). (9)

The preconditioned raw moments of the equilibrium distribution and source terms can be

represented as

κ̂eq
′

0 = ρ, κ̂eq
′

x = ρux, κ̂
eq′
y = ρuy,

κ̂eq
′

xx = 1
3
ρ+ ρu2x

γ
, κ̂eq

′
yy = 1

3
ρ+

ρu2y
γ
, κ̂eq

′
xy = ρuxuy

γ
,

κ̂eq
′

xxy = 1
3
ρuy +

ρu2xuy
γ2

, κ̂eq
′

xyy = 1
3
ρux +

ρuxu
2
y

γ2
,

κ̂eq
′

xxyy = 1
9
ρ+ 1

3
ρ(u2x + u2y) + ρu2xu

2
y. (10)
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and

σ̂
′
0 = 0, σ̂

′
x = Fx

γ
, σ̂

′
y = Fy

γ
,

σ̂
′
xx = 2Fxux

γ2
, σ̂

′
yy = 2Fyuy

γ2
, σ̂

′
xy = Fxuy+Fyux

γ2
,

σ̂
′
xxy = Fyu

2
x + 2Fxuxuy, σ̂

′
xyy = Fxu

2
y + 2Fyuyux,

σ̂
′
xxyy = 2(Fxuxu

2
y + Fyuyu

2
x). (11)

The following comments are in order here. Up to the second order moments, the above

expressions coincide with those presented in our previous work [41]). In other words, uiuj

terms in the moment equilibria are preconditioned by γ, while the first and second order

moment terms, i.e. Fi and Fiuj are preconditioned by γ and γ2, respectively. As a first

new element towards a LB scheme with an improved GI, we precondition the third-order

moment equilibria terms uiu2j terms by γ2 (see the terms inside boxes in Eq. (10)). This

partially restores GI without cubic velocity defects for the preconditioned LB model for

the off-diagonal components of the third-order moments. In fact, as will be shown later in

this section, in order to remove the spurious cross-velocity derivative terms appearing in

the equivalent macroscopic equations of our preconditioned LB scheme (e.g. uxuy∂xuy and

uyux∂yux), such a scaling of the cubic velocity terms in the third order moment equilibria

is essential. Then, applying the standard Chapman-Enskog multiscale expansion to Eq. (8),

i.e.

m̂ =
∞∑
n=0

εnm̂(n), (12)

∂t =
∞∑
n=0

εn∂tn . (13)

where ε is a small bookkeeping perturbation parameter, and also using a Taylor expansion

to simplify the streaming operator in Eq. (8), i.e.

f(x + eαε, t+ ε) =
n∑
n=0

εn

n!
(∂t + eα ·∇)f(x, t). (14)

After converting all the resulting terms into the moment space using Eq. (6), we get the

following moment equations at consecutive order in ε:

O(ε0) : m̂(0) = m̂eq, (15a)

O(ε1) : (∂t0 + Êi∂i)m̂(0) = −Λ̂m̂(1) + Ŝ, (15b)

O(ε2) : ∂t1m̂
(0) + (∂t0 + Êi∂i)

[
I− 1

2
Λ̂
]

m̂(1) = −Λ̂m̂(2), (15c)
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where Êi = T(eiI)T
−1, i ∈ {x, y}. The relevant components of the first-order O(ε) equations

Eq. (15b), i.e. up to the second order in moment space needed for deriving the preconditioned

macroscopic hydrodynamics equations are given as

∂t0ρ+ ∂x(ρux) + ∂y(ρuy) = 0, (16a)

∂t0 (ρux) + ∂x

(
1
3
ρ+ ρu2x

γ

)
+ ∂y

(
ρuxuy
γ

)
= Fx

γ
, (16b)

∂t0 (ρuy) + ∂x

(
ρuxuy
γ

)
+ ∂y

(
1
3
ρ+

ρu2y
γ

)
= Fy

γ
, (16c)

∂t0

(
2
3
ρ+

ρ(u2x+u
2
y)

γ

)
+ ∂x

(
4
3
ρux +

ρuxu2y
γ2

)
+ ∂y

(
4
3
ρuy + ρu2xuy

γ2

)
= −ω3m̂

(1)
3 + 2(Fxux+Fyuy)

γ2
, (16d)

∂t0

(
ρ(u2x−u2y)

γ

)
+ ∂x

(
2
3
ρux −

ρuxu2y
γ2

)
+ ∂y

(
−2

3
ρuy + ρu2xuy

γ

)
= −ω4m̂

(1)
4 + 2(Fxux−Fyuy)

γ2
, (16e)

∂t0

(
ρuxuy
γ

)
+ ∂x

(
1
3
ρuy + ρu2xuy

γ2

)
+ ∂y

(
1
3
ρux +

ρuxu2y
γ2

)
= −ω5m̂

(1)
5 + Fxuy+Fyux

γ2
. (16f)

Similarly, the leading order moment equations at O(ε2) can be obtained from Eq. (15c) as

∂t1ρ = 0, (17a)

∂t1 (ρux) + ∂x

[
1
2

(
1− 1

2
ω3

)
m̂

(1)
3 + 1

2

(
1− 1

2
ω4

)
m̂

(1)
4

]
+ ∂y

[(
1− 1

2
ω5

)
m̂

(1)
5

]
= 0, (17b)

∂t1 (ρuy) + ∂x

[(
1− 1

2
ω5

)
m̂

(1)
5

]
+ ∂y

[
1
2

(
1− 1

2
ω3

)
m̂

(1)
3 − 1

2

(
1− 1

2
ω4

)
m̂

(1)
4

]
= 0. (17c)

In the above equations, the second-order, non-equilibrium moments m̂(1)
3 , m̂(1)

4 and m̂
(1)
5

(corresponding to, κ̂′(1)xx + κ̂
′(1)
yy , κ̂′(1)xx − κ̂′(1)yy and κ̂′(1)xy , respectively) are unknowns. Ideally, they

should only be related to the strain rate tensor components to recover the correct physics

related to the viscous stress. However, as will be should below, on the standard D2Q9

lattice there will be non-GI contributions dependent on the preconditioning parameter γ. In

what follows, m̂(1)
3 , m̂(1)

4 and m̂(1)
5 will be obtained from Eq. (16d), Eq. (16e) and Eq. (16f),

respectively.

Now, from Eq. (16d), the non-equilibrium moment m̂(1)
3 can be written as

m̂
(1)
3 = 1

ω3

[
−∂t0

(
2
3
ρ+

ρ(u2x+u
2
y)

γ

)
− ∂x

(
4
3
ρux +

ρuxu2y
γ2

)
− ∂y

(
4
3
ρuy + ρu2xuy

γ2

)
+2(Fxux+Fyuy)

γ2

]
. (18)
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In order to simplify Eq. (18) further, one needs to obtain expressions, in particular, for

∂t0

(
ρu2x
γ

)
, ∂t0

(
ρu2y
γ

)
, ∂x

(
ρuxu2y
γ2

)
and ∂y

(
ρu2xuy
γ2

)
. It follows from Eq. (16b) that

∂t0(ρux) = −1

3
∂xρ− ∂x

(
ρu2x
γ

)
− ∂y

(
ρuxuy
γ

)
+
Fx
γ
. (19)

Rearranging ∂t0
(
ρu2x
γ

)
as

∂t0

(
ρu2x
γ

)
=

2ux
γ
∂t0 (ρux) +

u2x
γ
∂t0ρ.

Using Eq. (19) and Eq. (16a) to replace the time derivative in the first and second terms

respectively, on the right hand side of the above equation, we get.

∂t0

(
ρu2x
γ

)
= 2ux

γ

[
−1

3
∂xρ− ∂x

(
ρu2x
γ

)
− ∂y

(
ρuxuy
γ

)
+Fx

γ

]
+ u2x

γ
[∂x (ρux) + ∂y (ρuy)] . (20)

Similarly, we may write

∂t0

(
ρu2y
γ

)
= 2uy

γ

[
−1

3
∂yρ− ∂y

(
ρu2y
γ

)
− ∂x

(
ρuxuy
γ

)
+Fy

γ

]
+

u2y
γ

[∂x (ρux) + ∂y (ρuy)] . (21)

Thus, the time derivative can be replaced with the spatial derivative. Also , it readily follows

that

−∂x
(
ρuxu2y
γ2

)
= −u2y

γ2
∂x(ρux)− 2ρuxuy

γ2
∂xuy, (22a)

−∂y
(
ρu2xuy
γ2

)
= −u2x

γ2
∂y(ρuy)− 2ρuxuy

γ2
∂yux. (22b)

Rearranging Eq. (20) and simplifying it further by retaining all cubic velocity terms and

neglecting all others higher order terms in velocity (e.g. fifth order and higher) we get

−∂t0
(
ρu2x
γ

)
= 2ux

3γ
∂xρ+ 2ux

γ2
∂x(ρu

2
x) + 2ρu2x

γ2
∂yuy + 2ρuxuy

γ2
∂yux − 2Fxux

γ2

−u2x
γ
∂x(ρux)− u2x

γ
∂y(ρuy). (23)

Similarly, it follows from Eq. (21) that

−∂t0
(
ρu2y
γ

)
= 2uy

3γ
∂yρ+ 2uy

γ2
∂y(ρu

2
y) +

2ρu2y
γ2
∂xux + 2ρuxuy

γ2
∂xuy + 2Fyuy

γ2

−u2y
γ
∂x(ρux)−

u2y
γ
∂y(ρuy). (24)
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Now, to obtain an expression for m̂
(1)
3 , we group all the higher order terms given in

Eqs. (22a), (22b), (23) and (24). It follows that owing to the choice of the off-diagonal

third-order equilibrium moments with the cubic velocity terms scaled by γ2 (i.e. κ̂eq′xxy =

1
3
ρuy + ρu2xuy

γ2
, κ̂eq

′
xyy = 1

3
ρux +

ρuxu2y
γ2

) at the outset following Eq. (9) earlier, all the cross-

derivative spurious terms, i.e.−2ρuxuy∂xuy and −2ρuxuy∂yux cancel. Then, simplifying the

grouping of all the remaining higher order terms in Eq. (22a), Eq. (22b), Eq. (23) and

Eq. (24) and retaining all cubic velocity terms and neglecting terms of negligible higher

orders and after considerable rearrangement, we get

−∂t0
(
ρu2x
γ

)
− ∂t0

(
ρu2y
γ

)
− ∂x

(
ρuxu2y
γ2

)
− ∂y

(
ρu2xuy
γ2

)
≈

2
3γ

(ux∂xρ+ uy∂yρ)− 2
γ2

(Fxux + Fyuy) + ρ
[(

4
γ2
− 1

γ

)
u2x +

(
1
γ2
− 1

γ

)
u2y

]
∂xux

+ρ
[(

4
γ2
− 1

γ

)
u2y +

(
1
γ2
− 1

γ

)
u2x

]
∂yuy. (25)

By substituting the above equation (Eq. (25)) in Eq. (18) and using ∂t0ρ = −∂x(ρux) −

∂y(ρuy) from Eq. (16a) to further simplify the resulting expressions, we finally get the form

of the non-equilibrium moment m̂(1)
3 as

m̂
(1)
3 = − 2ρ

3ω3
(∂xux + ∂yuy) + 2

3ω3

(
1
γ
− 1
)

(ux∂xρ+ uy∂yρ) +

ρ
ω3

[(
4
γ2
− 1

γ

)
u2x +

(
1
γ2
− 1

γ

)
u2y

]
∂xux

+ ρ
ω3

[(
4
γ2
− 1

γ

)
u2y +

(
1
γ2
− 1

γ

)
u2x

]
∂yuy. (26)

Similarly, using Eq. (16e) and following analogous procedure as above for m̂(1)
4 and using

Eq. (16f) for m̂(1)
5 after considerable algebraic manipulations and simplifications we get the

expressions for the remaining non-equilibrium second-order moments as

m̂
(1)
4 = − 2ρ

3ω4
(∂xux − ∂yuy) + 2

3ω4

(
1
γ
− 1
)

(ux∂xρ− uy∂yρ) +

ρ
ω4

[(
4
γ2
− 1

γ

)
u2x −

(
1
γ2
− 1

γ

)
u2y

]
∂xux

+ ρ
ω4

[
−
(

4
γ2
− 1

γ

)
u2y +

(
1
γ2
− 1

γ

)
u2x

]
∂yuy, (27)

and

m̂
(1)
5 = − ρ

3ω5
(∂xuy + ∂yux) + 1

3ω5

(
1
γ
− 1
)

(ux∂yρ+ uy∂xρ) +

1
ω5

(
1
γ2
− 1

γ

)
ρuxuy (∂xux + ∂yuy) . (28)
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The first terms, which are underlined, in the right hand sides of Eq. (26), Eq. (27) and

Eq. (28) are associated with the required flow physics related to the components of the

viscous stress tensor. All the remaining terms in these equations are non-Galilean invariant

terms for the preconditioned LB scheme. These spurious terms arise because the diagonal

third-order moments κ̂eq′xxx and κ̂eq′yyy are not supported by the standard D2Q9 lattice. How-

ever, such discrete effects are not observed in the C-E analysis of the continuous Boltzmann

equation. In order to eliminate the non-GI error terms by other means in the next section

on the standard lattice, we explicitly identify the various non-GI terms in the components

of the second-order non-equilibrium moments as

E3
gρ =

2

3ω3

(
1

γ
− 1

)
(ux∂xρ+ uy∂yρ), (29a)

E3
gu =

ρ

ω3

[(
4

γ2
− 1

γ

)
u2x +

(
1

γ2
− 1

γ

)
u2y

]
∂xux

+
ρ

ω3

[(
4

γ2
− 1

γ

)
u2y +

(
1

γ2
− 1

γ

)
u2x

]
∂yuy. (29b)

E4
gρ =

2

3ω4

(
1

γ
− 1

)
(ux∂xρ− uy∂yρ), (30a)

E4
gu =

ρ

ω4

[(
4

γ2
− 1

γ

)
u2x −

(
1

γ2
− 1

γ

)
u2y

]
∂xux

+
ρ

ω4

[
−
(

4

γ2
− 1

γ

)
u2y +

(
1

γ2
− 1

γ

)
u2x

]
∂yuy, (30b)

and

E5
gρ =

1

3ω5

(
1

γ
− 1

)
(ux∂yρ+ uy∂xρ), (31a)

E5
gu =

ρ

ω5

(
1

γ2
− 1

γ

)
uxuy∂xux +

ρ

ω5

(
1

γ2
− 1

γ

)
uxuy∂yuy. (31b)

Then, we can rewrite the non-equilibrium second-order moments

m̂
(1)
3 = κ̂(1)

′

xx + κ̂(1)
′

yy = − 2ρ

3ω3

(∂xux + ∂yuy) + E3
gρ + E3

gu, (32)

m̂
(1)
4 = κ̂(1)

′

xx − κ̂(1)
′

yy = − 2ρ

3ω4

(∂xux − ∂yuy) + E4
gρ + E4

gu, (33)

m̂
(1)
5 = κ̂(1)

′

xy = − ρ

3ω5

(∂xuy + ∂yux) + E5
gρ + E5

gu. (34)

Some interesting observations can be made from the above analysis: (i) when the LB scheme

is preconditioned, i.e. γ 6= 1, non-GI terms persist in terms of velocity and density gradi-

ents for all the second-order non-equilibrium moments, including the off-diagonal moment

15



(m̂(1)
5 = κ̂

(1)′
xy ), unlike that for the simulation of the standard NS equations (i.e. with γ = 1).

However, the non-GI cubic velocity contributions in m̂
(1)
5 vanish for incompressible flow

(∇ · u = 0), i.e. E5
gu = 0 . (ii). In general the prefactors appearing in the non-GI terms for

the diagonal components, i.e. in m̂(1)
3 and m̂(1)

4 exhibit dramatically different behaviour for

the asymptotic limit cases: No preconditioning case (γ → 1):
(

4
γ2
− 1

γ

)
∼ 3,

(
1
γ2
− 1

γ

)
∼ 0;

strong preconditioning case (γ → 0):
(

4
γ2
− 1

γ

)
∼ 4

γ2
,
(

1
γ2
− 1

γ

)
∼ 1

γ2
. Thus, due to the

complicated structure of the truncation errors and their dependence on γ, the non-GI

terms in the diagonal moment components modify significantly as γ varies due to pre-

conditioning. (iii) when γ = 1, i.e. when our preconditioned LB scheme reverts to the

solution of the standard NS equations, E3
gρ = E4

gρ = E5
gρ = 0, E3

gu = 3ρ
ω3

(
u2x∂xux + u2y∂yuy

)
,

E4
gu = 3ρ

ω4

(
u2x∂xux − u2y∂yuy

)
, and E5

gu = 0. That is, the non-GI terms become identical to

the results reported by [25] and [26].

IV. DERIVATION OF CORRECTIONS VIA EXTENDED MOMENT EQUI-

LIBRIA FOR ELIMINATION OF CUBIC VELOCITY ERRORS IN PRECONDI-

TIONED MACROSCOPIC EQUATIONS

In order to effectively eliminate the non-GI error terms given in Eq. (29a)-(31b) that

appear in the non-equilibrium moments m̂(1)
3 , m̂(1)

4 and m̂
(1)
5 in the previous section (see

Eqs. (32)-(34)) arising due to the third-order diagonal equilibrium moments (κ̂eq
′

xxx and κ̂eq′yyy)

not being independently supported by the D2Q9 lattice, we consider an approach based on

the extended moment equilibria. In other words, we extended the second-order moment

equilibria by including extra gradient terms with unknown coefficients as follows:

f̂ eq =



m̂
eq(0)
0

m̂
eq(0)
1

m̂
eq(0)
2

m̂
eq(0)
3

m̂
eq(0)
4

f̂
eq(0)
5

m̂
eq(0)
6

m̂
eq(0)
7

m̂
eq(0)
8



+ δt



0

0

0

m̂
eq(1)
3

m̂
eq(1)
4

m̂
eq(1)
5

0

0

0



=



κ̂eq
′

0

κ̂eq
′

x

κ̂eq
′

y

κ̂eq
′

xx + κ̂eq
′

yy

κ̂eq
′

xx − κ̂eq
′

yy

κ̂eq
′

xy

κ̂eq
′

xxy

κ̂eq
′

xyy

κ̂eq
′

xxyy



+ δt



0

0

0

θ3x∂xux + θ3y∂yuy + λ3x∂xρ+ λ3y∂yρ

θ4x∂xux − θ4y∂yuy + λ4x∂xρ− λ4y∂yρ

θ5x∂xux + θ5y∂yuy + λ5x∂xρ+ λ5y∂yρ

0

0

0



.(35)
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In other words, the corrections to the second-order moments are given by

m̂
eq(1)
3 = (θ3x∂xux + θ3y∂yuy) + (λ3x∂xρ+ λ3y∂yρ), (36a)

m̂
eq(1)
4 = (θ4x∂xux − θ4y∂yuy) + (λ4x∂xρ− λ4y∂yρ), (36b)

m̂
eq(1)
5 = (θ5x∂xux + θ5y∂yuy) + (λ5x∂xρ+ λ5y∂yρ), (36c)

where the coefficients θjx, θjy, λjx and λjy, where j = 3, 4, 5 are to be determined from a

modified Chapman-Enskog analysis so that the non-GI cubic velocity terms are effectively

removed from the emergent preconditioned macroscopic moment equations.

We now apply a Chapman-Enskog (C-E) expansion by taking into account the modified

equilibria which is now given as m̂eq = m̂eq(0)+δtm̂
eq(1), where m̂eq(0) is the moment equilibria

presented in the previous section and m̂eq(1) is the correction to this equilibria. As a result,

the C-E expansion given as Eq. (12) and Eq. (13) are now replaced with

m̂ = m̂eq(0) + εm̂eq(1) + εm̂(1) + ε2m̂(2) + · · · , ∂t = ∂t0 + ε∂t1 + ε2∂t2 + · · · . (37)

Then, by using a Taylor expansion given in Eq. (14) for the streaming operator in Eq. (2b)

along with above modified C-E expansion Eq. (37), we get the following hierarchy of moment

equations at different orders in ε:

O(ε0) : m̂(0) = m̂eq, (38a)

O(ε1) : (∂t0 + Êi∂i)m̂(0) = −Λ̂
[
m̂(1) − m̂eq(1)

]
+ Ŝ, (38b)

O(ε2) : ∂t1m̂
(0) + (∂t0 + Êi∂i)

[
I− 1

2
Λ̂
]

m̂(1) + (∂t0 + Êi∂i)
[
1
2
Λ̂m̂eq(1)

]
= −Λ̂m̂(2), (38c)

where Êi = T(eiI)T
−1 and i ∈ {x, y} . The relevant O(ε) equations for the first order

moments are given in Eqs. (16a)-(16c). However, the equations of the second order moments

are now modified due to the presence of the extended moment equilibria m̂eq(1) in Eq. (38b)

which are now given by (instead of Eqs. (16d)-(16f))

∂t0

(
2
3
ρ+

ρ(u2x+u
2
y)

γ

)
+ ∂x

(
4
3
ρux +

ρuxu2y
γ2

)
+ ∂y

(
4
3
ρuy + ρu2xuy

γ2

)
= −ω3m̂

(1)
3 + ω3m̂

eq(1)
3 + 2(Fxux+Fyuy)

γ2
, (39a)

∂t0

(
ρ(u2x−u2y)

γ

)
+ ∂x

(
2
3
ρux −

ρuxu2y
γ2

)
+ ∂y

(
−2

3
ρuy + ρu2xuy

γ

)
= −ω4m̂

(1)
4 + ω4m̂

eq(1)
4 + 2(Fxux−Fyuy)

γ2
, (39b)

∂t0

(
ρuxuy
γ

)
+ ∂x

(
1
3
ρuy + ρu2xuy

γ2

)
+ ∂y

(
1
3
ρux +

ρuxu2y
γ2

)
= −ω5m̂

(1)
5 + ω5m̂

eq(1)
5 + Fxuy+Fyux

γ2
. (39c)
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Similarly, the leading order moment equations of O(ε2) which are modified by m̂eq(1) as

shown in Eq. (38c) are obtained as (instead of Eqs. (17a)-(17c))

∂t1ρ = 0, (40a)

∂t1 (ρux) + ∂x

[
1
2

(
1− 1

2
ω3

)
m̂

(1)
3 + 1

2

(
1− 1

2
ω4

)
m̂

(1)
4

]
+ ∂y

[(
1− 1

2
ω5

)
m̂

(1)
5

]
+

∂x

[
1
4
ω3m̂

eq(1)
3 + 1

4
ω4m̂

eq(1)
4

]
+ ∂y

[
1
2
ω5m̂

eq(1)
5

]
= 0, (40b)

∂t1 (ρuy) + ∂x

[(
1− 1

2
ω5

)
m̂

(1)
5

]
+ ∂y

[
1
2

(
1− 1

2
ω3

)
m̂

(1)
3 − 1

2

(
1− 1

2
ω4

)
m̂

(1)
4

]
+

∂x

[
1
2
ω5m̂

eq(1)
5

]
+ ∂y

[
1
4
ω3m̂

eq(1)
3 − 1

4
ω4m̂

eq(1)
4

]
= 0. (40c)

The non-equilibrium moment m̂(1)
3 is now obtained from Eq. (39a) as

m̂
(1)
3
∼= 1

ω3

[
−∂t0

(
2
3
ρ+

ρ(u2x+u
2
y)

γ

)
− ∂x

(
4
3
ρux +

ρuxu2y
γ2

)
− ∂y

(
4
3
ρuy + ρu2xuy

γ2

)
+2(Fxux+Fyuy)

γ2

]
+ m̂

eq(1)
3 . (41)

All the terms within the square brackets in the above equation exactly corresponds to

Eq. (32). Hence, Eq. (41) reduces to

m̂
(1)
3 = − 2ρ

3ω3

(∂xux + ∂yuy) + E3
gρ + E3

gu + m̂
eq(1)
3 , (42)

where the non-GI error terms E3
gρ and E3

gu are given in Eqs. (29a) and (29b), respectively,

and the extended moment equilibrium m̂
eq(1)
3 in Eq. (36a). Similarly, the non-equilibrium

moment m̂(1)
4 is obtained from Eq. (39b) and using Eq. (33) for simplification, and for m̂(1)

5

using Eqs. (39c) and (34), we finally get

m̂
(1)
4 = − 2ρ

3ω4
(∂xux − ∂yuy) + E4

gρ + E4
gu + m̂

eq(1)
4 , (43)

m̂
(1)
5 = − ρ

3ω5
(∂xuy + ∂yux) + E5

gρ + E5
gu + m̂

eq(1)
5 . (44)

Here, the non-GI error terms E4
gρ and E4

gu are given in Eq. (30a) and Eq. (30b), respectively,

and the correction equilibrium moment m̂eq(1)
4 in Eq. (36b). Likewise, E5

gρ and E5
gu are

obtained from Eqs. (31a) and (31b) respectively and m̂eq(1)
5 is presented in Eq. (36c).

Now, in order to obtain the preconditioned moment system for the conserved moments,

we combine O(ε) equations Eqs. (16a)-(16c) with ε× Eq. (40a)-(40c) for the corresponding
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equations at O(ε2), and using ∂t = ∂t0 + ε∂t1 , we get

∂tρ+ ∂x(ρux) + ∂y(ρuy) = 0, (45a)

∂t (ρux) + ∂x

(
1
3
ρ+ ρu2x

γ

)
+ ∂y

(
ρuxuy
γ

)
=

Fx
γ
− ε∂x

[
1
2

(
1− ω3

2

)
m̂

(1)
3 + 1

2

(
1− ω4

2

)
m̂

(1)
4

]
− ε∂y

[
1
2

(
1− ω5

2

)
m̂

(1)
5

]
−ε∂x

[
ω3

4
m̂
eq(1)
3 + ω4

4
m̂
eq(1)
4

]
− ε∂y

[
ω5

2
m̂
eq(1)
5

]
, (45b)

∂t (ρuy) + ∂x

(
ρuxuy
γ

)
+ ∂y

(
1
3
ρ+

ρu2y
γ

)
= Fy

γ
− ε∂x

[(
1− ω5

2

)
m̂
eq(1)
5

]
−ε∂y

[
1
2

(
1− ω3

2

)
m̂

(1)
3 − 1

2

(
1− ω4

2

)
m̂

(1)
4

]
−ε∂x

[
ω5

2
m̂
eq(1)
5

]
− ε∂y

[
ω3

4
m̂
eq(1)
3 − ω3

4
m̂
eq(1)
4

]
. (45c)

Our goal is to show that the above equations (Eq. (45a)-(45c)) is consistent with the pre-

conditioned NS equations (Eq. (1)) presented in Sec. I without the identified truncation

errors, i.e. without involving the non-GI cubic velocity defects. Now, in order to relate the

moment corrections m̂eq(1)
3 , m̂eq(1)

4 and m̂
eq(1)
5 appearing in the equilibria with the non-GI

error terms, with a view to eliminate them, consider the right hand side of Eq. (45b) (i.e.the

x-momentum equation) and substitute for m̂(1)
3 , m̂(1)

4 and m̂(1)
5 from Eq. (42), Eq. (43) and

Eq. (44), respectively, which becomes

= Fx
γ

+ ε∂x

[
+1

3

(
1
ω3
− 1

2

)
ρ(∂xux + ∂yuy) + 1

3

(
1
ω4
− 1

2

)
ρ(∂xux − ∂yuy)

]
+ε∂y

[
1
3

(
1
ω5
− 1

2

)
ρ(∂xuy + ∂yux)

]
−ε∂x

[
1
2

(
1− ω3

2

) {
E3
gρ + E3

gu

}
+ 1

2

(
1− ω4

2

) {
E4
gρ + E4

gu

}]
− ε∂y

[(
1− ω5

2

) {
E5
gρ + E5

gu

}]
−ε∂x

[
1
2
m̂
eq(1)
3 + 1

2
m̂
eq(1)
4

]
− ε∂y

[
m̂
eq(1)
5

]
. (46)

The first two lines in the above equations correspond to the physics, while the third line

corresponds to the spurious non-GI terms arising from discrete lattice effects and the fourth

line are related to equilibrium corrections.

In order to eliminate the cubic velocity truncation errors, it follows that the third and

fourth lines in the above equation (Eq. (46)) sum to zero. This yields(
1− ω3

2

){
E3
gρ + E3

gu

}
+ m̂

eq(1)
3 = 0, (47a)(

1− ω4

2

){
E4
gρ + E4

gu

}
+ m̂

eq(1)
4 = 0, (47b)(

1− ω5

2

){
E5
gρ + E5

gu

}
+ m̂

eq(1)
5 = 0. (47c)
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The above equations Eqs. (47a)-(47c), represent the key constraint relations between the

non-GI error terms and the moment equilibria correction terms to obtain a preconditioned

cascaded central moment LB model without cubic velocity defects.

Further analysis shows that these constraints hold identically for the y-momentum as

well (Eq. 45c)). Now considering Eq. (47a) and using Eq. (29a) and (29b) for E3
gρ and E3

gu,

respectively, the extend moment equilibrium m̂
eq(1)
3 is given as

m̂
eq(1)
3 = (θ3x∂xux + θ3y∂yuy) + (λ3x∂xρ+ λ3y∂yρ),

where the coefficients obtained after matching are given by

θ3x = −
(

1
ω3
− 1

2

)
ρ
[(

4
γ2
− 1

γ

)
u2x +

(
1
γ2
− 1

γ

)
u2y

]
, (48a)

θ3y = −
(

1
ω3
− 1

2

)
ρ
[(

4
γ2
− 1

γ

)
u2y +

(
1
γ2
− 1

γ

)
u2x

]
, (48b)

λ3x = −2
3

(
1
ω3
− 1

2

)(
1
γ
− 1
)
ux, (48c)

λ3y = −2
3

(
1
ω3
− 1

2

)(
1
γ
− 1
)
uy. (48d)

Similarly, from Eq. (30a),(30b), (36b) and (47b), we can obtain the coefficient of m̂eq(1)
4 , and

from Eq. (31a), Eq. (31b), Eq. (36c) and Eq. (47c), those for m̂eq(1)
5 can be determined. The

results read as follows:

m̂
eq(1)
4 = (θ4x∂xux − θ4y∂yuy) + (λ4x∂xρ− λ4y∂yρ),

where

θ4x = −
(

1
ω4
− 1

2

)
ρ
[(

4
γ2
− 1

γ

)
u2x −

(
1
γ2
− 1

γ

)
u2y

]
, (49a)

θ4y =
(

1
ω4
− 1

2

)
ρ
[
−
(

4
γ2
− 1

γ

)
u2y +

(
1
γ2
− 1

γ

)
u2x

]
, (49b)

λ4x = −2
3

(
1
ω4
− 1

2

)(
1
γ
− 1
)
ux, (49c)

λ4y = −2
3

(
1
ω4
− 1

2

)(
1
γ
− 1
)
uy, (49d)

and

m̂
eq(1)
5 = (θ5x∂xux + θ5y∂yuy) + (λ5x∂xρ+ λ5y∂yρ),
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where

θ5x = −
(

1
ω5
− 1

2

)
ρ
(

1
γ2
− 1

γ

)
uxuy, (50a)

θ5y = −
(

1
ω5
− 1

2

)
ρ
(

1
γ2
− 1

γ

)
uxuy, (50b)

λ5x = −1
3

(
1
ω5
− 1

2

)
ρ
(

1
γ
− 1
)
uy, (50c)

λ5y = −1
3

(
1
ω5
− 1

2

)
ρ
(

1
γ
− 1
)
ux. (50d)

Note that, as a special case, when γ = 1, i.e. the LB model is used to solve the standard

NS equations without preconditioning, then θ3x = −3ρ( 1
ω3
− 1

2
)u2x, θ3y = −3ρ( 1

ω3
− 1

2
)u2y,

θ4x = −3ρ( 1
ω4
− 1

2
)u2x, θ4x = −3ρ( 1

ω4
− 1

2
)u2y, and all the remaining coefficient go to zero. In

such a case, these moment corrections to the equilibria become identical to the GI corrections

presented by [26] and equivalent to the alternative GI formulation without cubic velocity

errors introduced by [25].

Finally, using the above extended moment equilibria (m̂eq(1)
3 , m̂eq(1)

4 and m̂eq(1)
5 ) and the

expression for the non-equilibrium moments (m̂(1)
3 , m̂(1)

4 and m̂
(1)
5 ) from Eq. (42)-Eq. (44)

along with the constraint relations, i.e. Eqs. (47a)-(47c) in Eqs. (45a)-(45c), we get

∂tρ+ ∇ · j = 0, , (51)

∂tjx + ∇ ·
(
jux
γ

)
= −∂x

p∗

γ
+ ∂x

[
ϑ4

γ
(2∂xjx −∇ · j) +

ϑ3

γ
∇ · j

]
+∂y

[
ϑ5

γ
(∂xjy + ∂yjx)

]
+
Fx
γ
, (52)

∂tjy + ∇ ·
(
juy
γ

)
= −∂y

p∗

γ
+ ∂x

[
ϑ5

γ
(∂xjy + ∂yjx)

]
+ ∂y

[
ϑ4

γ
(2∂yjy −∇ · j) +

ϑ3

γ
∇ · j

]
+
Fy
γ
, (53)

where p∗ = γ
3
ρ is the pressure, j = ρu, and the bulk and shear viscosities are, respectively

given by

ϑ3 =
γ

3

(
1

ω3

− 1

2

)
, ϑ4 =

γ

3

(
1

ω4

− 1

2

)
, ϑ5 =

γ

3

(
1

ω5

− 1

2

)
. (54)

Thus, Eqs. (51)-(53) are consistent with the preconditioned NS equations given in Eqs. (1a)-

(1b) without cubic velocity defects in GI due to the use of the extended moment equilibria

presented earlier.
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V. GALILEAN INVARIANT PRECONDITIONED CASCADED CENTRAL MO-

MENT LBM WITHOUT CUBIC VELOCITY ERRORS ON A STANDARD LAT-

TICE

The cascaded central moment LBM with forcing term presented in Eqs. (2a), (2b), (3)

and (4) modify to enforce GI without cubic velocity errors as follows. Equations Eq. (2a),

Eq. (2b) and Eq. (3) remains the same as before and the collision kernel given in Eq. (4)

is modified to account for the extended moment equilibria in the second order moments as

well as corrections to the third-order equilibrium moments. The change of moments ĝ3, ĝ4

and ĝ5 for the second order components follow by augmenting the corresponding moment

equilibria with the extended moment equilibria incorporating the GI corrections identified

in the previous section. On the other hand, owing to the cascaded structure of the collision

kernel, the GI corrections to the third order moment changes ĝ6 and ĝ7, which depend on

the lower order moment changes, for the preconditioned central moment LB scheme need to

be constructed carefully. They are obtained by prescribing the relaxation of the third order

central moment components to their corresponding central moment equilibria. Following

the derivation given in [45], they can then be represented as −6uyĝ3−2uyĝ4−8uxĝ5−4ĝ6 =

ω6[κ̂
eq
xxy − κ̂xxy] and −6uxĝ3 + 2uxĝ4 − 8uyĝ5 − 4ĝ7 = ω7[κ̂

eq
xyy − κ̂xyy], where κ̂xxy and κ̂xyy

are the third order central moment components, and κ̂eqxxy and κ̂eqxyy, respectively, are their

equilibria. Rewriting these central moment relaxations in terms of the relaxations of the

raw moment components of the third and lower orders via the binomial theorem, it follows

that

ĝ6 =
ω6

4

[
(κ̂

′

xxy − κ̂eq
′

xxy)− 2ux(κ̂
′

xy − κ̂eq
′

xy )− uy(κ̂
′

xx − κ̂eq
′

xx )
]
− uy

(
3

2
ĝ3 +

1

2
ĝ4

)
− 2uxĝ5,

ĝ7 =
ω7

4

[
(κ̂

′

xyy − κ̂eq
′

xyy)− 2uy(κ̂
′

xy − κ̂eq
′

xy )− ux(κ̂
′

yy − κ̂eq
′

yy )
]
− ux

(
3

2
ĝ3 −

1

2
ĝ4

)
− 2uyĝ5.

Now, using the components of the preconditioned raw moment equilibria, including those

for the third order equilibrium moments with the GI corrections from Eq. (10), the final

expressions for the change in moments for the collision kernel ĝ6 and ĝ7 can be derived.
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Thus, the modified preconditioned collision kernel with the GI corrections reads

ĝ0 = 0, ĝ1 = 0, ĝ2 = 0,

ĝ3 = ω3

12

{
2
3
ρ+ ρ(u2x + u2y)/γ − (κ̂

′

xx + κ̂
′

yy)− 1
2
(σ̂

′
xx + σ̂

′
yy)+

(θ3x∂xux + θ3y∂yuy)δt + (λ3x∂xρ+ λ3y∂yρ)δt

}
,

ĝ4 = ω4

4

{
ρ(u2x − u2y)/γ − (κ̂

′

xx − κ̂
′

yy)− 1
2
(σ̂

′
xx − σ̂

′
yy)+

(θ4x∂xux − θ4y∂yuy)δt + (λ4x∂xρ− λ4y∂yρ)δt

}
,

ĝ5 = ω5

4

{
ρuxuy/γ − κ̂

′

xy − 1
2
σ̂

′
xy + (θ5x∂xux + θ5y∂yuy)δt + (λ5x∂xρ+ λ5y∂yρ)δt

}
,

ĝ6 = ω6

4

{(
3
γ
− 1

γ2

)
ρu2xuy + κ̂

′
xxy − 2uxκ̂

′
xy − uyκ̂

′
xx

}
− 1

2
uy(3ĝ3 + ĝ4)− 2uxĝ5,

ĝ7 = ω7

4

{(
3
γ
− 1

γ2

)
ρuxu

2
y + κ̂

′
xyy − 2uyκ̂

′
xy − uxκ̂

′
yy

}
− 1

2
ux(3ĝ3 − ĝ4)− 2uyĝ5,

ĝ8 = ω8

4

{
1
9
ρ+ 3ρu2xu

2
y −

[
κ̂

′
xxyy − 2uxκ̂

′
xyy − 2uyκ̂

′
xxy + u2xκ̂

′
yy + u2yκ̂

′
xx

+4uxuyκ̂
′
xy

]}
− 2ĝ3 − 1

2
u2y(3ĝ3 + ĝ4)− 1

2
u2x(3ĝ3 − ĝ4)

−4uxuyĝ5 − 2uyĝ6 − 2uxĝ7.

where the various coefficients θjx, θjy, λjx and λjy where j = 3, 4 and 5 are given in Eqs. (48b)-

(48d), and (49b)-(49d) and (50a)-(50d). The GI corrections are identified by means of the

underlined terms in the cascaded collision kernel terms in the above equation.

It may be noted that other GI preconditioned LB schemes without cubic velocity errors

can be constructed from our results in the previous section. For example, a non-orthogonal

moment based multiple relaxation time LB method readily follows from the analysis pre-

sented before. The spatial gradients for the velocity components and the density appearing

in the extended moment equilibria can be calculated using isotropic finite difference schemes.

Alternatively, the diagonal strain rate components ∂xux and ∂yuy can be locally obtained

from non-equilibrium moments as follows, which is used in our simulation studies presented

in the next section. From Eqs. (42) and (47a) and rearranging, one may write the resulting

expression as follows:

−c1∂xux − c2∂yuy = m̂
(1)
3 − eρ. (55)

Similarly, from Eq. (43) and Eq. (47b), it follows that

−c̃1∂xux + c̃2∂yuy = m̂
(1)
4 − ẽρ, (56)
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where the coefficients c1, c2, c̃1 and c̃1 and the parameters eρ and ẽρ are defined as

c1 =
[

2
3ω3

+ Pγ

]
ρ, c̃1 =

[
2

3ω4
+ P̃γ

]
ρ, (57)

c2 =
[

2
3ω3

+Qγ

]
ρ, c̃2 =

[
2

3ω4
+ Q̃γ

]
ρ. (58)

Here,

Pγ = −1
2

(
Aγu

2
x +Bγu

2
y

)
, Qγ = −1

2

(
Aγu

2
y +Bγu

2
x

)
,

P̃γ = −1
2

(
Aγu

2
x −Bγu

2
y

)
, Q̃γ = −1

2

(
Aγu

2
y −Bγu

2
x

)
where Aγ =

(
4
γ2
− 1

γ

)
, Bγ =

(
1
γ2
− 1

γ

)
, Cγ =

(
1
γ
− 1
)
and

eρ =
1

3
Cγ (ux∂xρ+ uy∂yρ) , ẽρ =

1

3
Cγ (ux∂xρ− uy∂yρ) . (59)

Solving Eqs. (55) and (56) for ∂xux and ∂yuy , we get

∂xux =
[
c̃2(m̂

(1)
3 − eρ) + c2(m̂

(1)
4 − ẽρ)

]
/ [−c1c̃2 − c̃1c2] , (60a)

∂yuy = −
[
c1(m̂

(1)
4 − ẽρ) + c̃1(m̂

(1)
3 − eρ)

]
/ [−c1c̃2 − c̃1c2] . (60b)

Here, the density gradients appearing in eρ and ẽρ Eqs. (59) may be computed using a

isotropic finite difference scheme. In Eqs. (60a) and (60b), all the coefficients involving γ

need to be computed only once before the start of computations for efficient implementation;

quantities such as u2x and u2y appearing in the factors P , Q, P̃ and Q̃ above need to be

reused rather than perform the product calculations for every occurrence. A comparison of

the computational costs for the uncorrected preconditioned LB scheme and the GI corrected

preconditioned formulation is presented for a benchmark case study on the four-rolls mill flow

problem at the end of the numerical results section (see Sec. VIE), which also demonstrates

a quantitative improvement in accuracy achieved with correction. The non-equilibrium

moments m̂(1)
3 and m̂(1)

4 required in Eqs. (60a) and Eqs. (60b) are obtained as

m̂
(1)
3 =

∑
α

(e2αx + e2αy)fα −
[

2

3
ρ+

ρ(u2x + u2y)

γ

]
, (61a)

m̂
(1)
4 =

∑
α

(e2αx − e2αy)fα −
ρ(u2x − u2y)

γ
. (61b)
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VI. NUMERICAL RESULTS

We will now present the validation of our new Galilean invariant preconditioned cascaded

central moment LBM by making comparisons against prior numerical solutions for various

complex flow benchmark problems. These include the lid-driven cavity flow, flow over a

square cylinder, backward-facing step flow, the Hartmann flow and the four-roll mills flow

problem. In addition, we will also demonstrate the convergence acceleration achieved using

our preconditioning LB model for some of the benchmark flow problems.

A. Lid-driven Cavity Flow

As the first test problem, the GI preconditioned central moment LB model is applied for

the simulation of steady, two-dimensional flow within a square cavity driven by the motion

of the top lid. This is one of the classical internal flow benchmark problems with complex

flow structures. The numerical simulations are computed at two different Reynolds numbers

of 3200 and 5000, which are resolved by computational meshes with a resolution of 400×400.

To implement the moving top wall at a velocity Up, the standard momentum augmented

half-way bounce back scheme is considered. In order to validate the numerical simulation

results obtained with our GI preconditioned LB scheme, the computed dimensionless hori-

zontal and vertical velocity profiles along the vertical and horizontal centerlines, respectively,

for Reynolds number Re = 3200 and 5000 and preconditioning parameter γ = 0.1, are pre-

sented with benchmark solutions of [49] in Fig. 1. The Mach number Ma considered in the

simulations is 0.05. It is clear that the velocity profiles for all the cases agree very well with

the prior numerical data. Next, we investigate how the steady state convergence histories

are influenced by the use of our new preconditioned formulation for this benchmark prob-

lem. Figure 2 presents the convergence histories for Re = 3200 obtained by varying the

preconditioning parameter γ. Here γ = 1 corresponds to results without preconditioning.

Obviously, the use of preconditioning accelerates the steady state convergence by at least

one order of magnitude. For example, it can be seen that when compared to the case without

preconditioning (γ = 1), the preconditioned GI cascaded LBM with γ = 0.05, is at least 15

times faster.
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FIG. 1: Comparison of the computed horizontal velocity u/Up and vertical velocity v/Up

profiles along the geometric centerlines of the cavity using the Galilean invariant

preconditioned cascaded central moment LBM with the benchmark results of [49]

(symbols) for Re=3200 and 5000 and γ = 0.1.

B. Laminar Flow over a Square Cylinder

Next, in order to validate our preconditioned LB formulation for an external complex flow

example, a two dimensional laminar flow over a square cylinder in a channel is studied. The

geometry details and the set up of the flow problem is provided in Fig. 3. A fully developed

velocity profile is considered at the inlet, and at the outlet, a convective boundary condition

is used which is given by

∂tui + Umax∂xui = 0 (62)
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FIG. 2: Convergence histories of the GI preconditioned cascaded central moment LBM and

the standard cascaded LBM (γ = 1) for lid-driven cavity flow for Re=3200.

where Umax is the maximum velocity of the inflow profile. Computations were performed

using L = 50D, H = 8D and L1 = 12.5D, where D is side of square the cylinder, L and

H are the total length and width of computation domain, respectively and the location of

square cylinder from entrance is defined by L1. In order to visualize the general complex

FIG. 3: Schematic representation of the flow over a square cylinder in a 2D channel.

features and patterns of the flow, the streamlines plots at four different Reynolds numbers

Re = 1, Re = 15, Re = 30 and Re = 200 are presented in Fig. 4. In Fig. 4(a), as it may

be expected, at a low Reynolds number, Re = 1, where the fluid velocity is relatively very

slow and on the other hand, the viscosity is large, the fluid flow is creeping and symmetric

without separation. However, with increasing Reynolds number an adverse pressure gradient

is established which leads to the flow separation from the surface and a vortex pair regime
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is formed (Fig. 4(b)). As the Reynolds number is further increased further to Re = 30, the

size of the recirculation zone increases; besides the flow is still steady and symmetric about

the horizontal centerline (Fig. 4(c)). These general features and flow patterns are consistent

with the prior benchmark results (e.g. [50], [51]).
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FIG. 4: Stream function contours for flow over a square cylinder for four different

Reynolds numbers; Re=1, Re=15 and Re=30 using the GI preconditioned cascaded central

moment LBM with γ = 0.5.

Then, we present the velocity profiles along the centerline at different sections at Re = 100

with a mesh resolution of 1000 × 320. Figure. 5 illustrates the horizontal and vertical

components of the velocity profiles of u and v, respectively. By comparing the present

results against the benchmark numerical results obtained using the Gas Kinetic scheme

(GKS) [51], a good agreement between the computational results is observed. An important

global feature of the flow over a cylinder is the length of the recirculating flow pattern

formed behind the cylinder. Quantitative characterization of this wake length Lr and its

dependence on the Reynolds number Re is a key element in the validation of numerical

scheme. A widely used empirical correlation for the wake length Lr as a linear function of

the Reynolds number is given by [50]
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FIG. 5: Comparison of the computed velocity profiles along and across the square cylinder

along its centerline for both the horizontal u and vertical v velocity components obtained

using the GI preconditioned cascaded central moment LBM with γ = 0.5 for Re = 100

with benchmark results obtained using the Gas Kinetic Scheme (GKS) [51].

Lr
D
≈ −0.065 + 0.0554Re, for 5 < Re < 60. (63)

As illustrated in Fig. 6a, the computed results for the wake length Lr obtained using the

GI preconditioned cascaded central moment LBM are in very good agreement with the

empirical correlation presented in Eq. (63). As may be expected, for the steady 2D flow

over a square cylinder which, at relatively low Re is characterized by symmetry, the lift

force is zero and, as a result, a main quantity of interest is the drag force or the drag

coefficient CD in dimensionless form whose magnitude varies significantly with Re. We use
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the standard momentum exchange method to compute the drag force on the square cylinder

in our preconditioned LB formulation.

A comparison of the computed drag coefficient CD obtained using our GI preconditioned

LB scheme with the GKS scheme [51] based benchmark results is presented in Fig. 6b. It

can be observed that the obtained results agree well with the benchmark solutions. Next,
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FIG. 6: Comparison of the computed Reynolds number dependence of the recirculating

wake length Lr on the left (a) and the Reynolds number dependence of the drag coefficient

CD on the right with (b) benchmark correlation (Eq. (63)) and GKS-based numerical

results [51] respectively.

we analyze the influence of the precondition parameter γ in our formulation on the steady

state convergence of this complex flow problem. Figure 7 presents the convergence histories

for Re = 30. It can be seen that when compared to the usual cascaded LBM without

preconditioning (γ = 1), the preconditioned formulation (e.g. for γ < 0.1) is able converge

to the steady state significantly faster, with the residual error being reduced to the machine

round off error by a factor of least 15 times more rapidly. Thus, the GI preconditioned

cascaded central moments LBM exhibits significant convergence acceleration for complex

flows.
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FIG. 7: Convergence histories of the GI preconditioned cascaded central moment LBM and

the standard cascaded LBM (γ = 1) for flow over the square cylinder for Re=30.

C. Backward-Facing Step Flow

As the third flow benchmark flow problem involving complex separation and reattachment

effects, we consider a two-dimensional laminar flow over a backward facing step, which is

computed using the GI preconditioned central moment LBM. The geometry and boundary

conditions for the simulation are shown in Fig. 8. For a step of height h, the flow entry

is placed at L1 = 10h behind the step and the exit is located L2 = 30h downstream of

the step, and the channel height is defined as H = 2h. In this simulation, the number

of nodes in resolving the step flow is defined by considering h = 94. At the entrance, a

parabolic profile, and, at the outlet, a convective boundary condition are imposed, and,

finally, the half-way bounce-back scheme is utilized for the no-slip boundary condition at

the walls. The computational results are then presented for Reynolds numbers up to 800,

where the Reynolds number is defined as Re = 2hUmax
3ν

. Here, Umax is the maximum speed

at the inlet channel. For the purpose of investigating the flow behavior in the vicinity of

the step, the distributions of streamlines are plotted at four different Reynolds numbers in

Fig. 9. Initially, a primary recirculation zone is created downstream of the step at Re = 100

(Fig. 9(a)). However, it can be seen from Fig. 9(a) to Fig. 9(d) that the Reynolds number has

a remarkable effect on the structure recirculation regimes and the length of this zone is seen

to increase by increasing the Reynolds number. Furthermore, a second recirculation zone

occurs along the top wall at the higher Reynolds number of Re = 500 which becomes more

visible at Re = 800. All these observed flow pattern are consistent with prior benchmark
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FIG. 8: Schematic representation of the flow over a backward-facing step in a 2D channel.

results. In order to more precisely determine the quantitative effect of the Reynolds number

on the reattachment length in the primary recirculation zone, our computed results based

on the GI preconditioned cascaded central moment LBM for different Reynolds numbers

are computed with the numerical results of [52], which are presented in Fig. 10. It can be

observed that the agreement between the predictions based on our GI preconditioned LB

scheme and the benchmark results is excellent. Moreover, it can be clearly seen that by

increasing the Reynolds number, the reattachment length increased, consistent with prior

observations.

D. Hartmann Flow

In this section, in order to validate our preconditioned scheme for a problem involving a

body force, the Hartmann flow of an incompressible fluid bounded by two parallel plates is

studied. An external uniform magnetic field Bz = B0 is applied perpendicular to the plates.

Since the body force varies spatially arising due to the interaction of the flow velocity and the

induced magnetic field, i.e. the Lorentz force, it represents appropriate test problem for the

present study. In our preconditioned LB model, the moments of the source terms at different

orders are preconditioned differently to correctly recover the macroscopic with variable body

forces. The relationship between the external magnetic field B0 and an induced magnetic

field Bx(z) across the channel is given by Bx(z) = FbL
B0

[
sinh(Ha z

L)
sinh(Ha)

− z
L

]
, where Fb and L are

driving force due to imposed pressure gradient and the half channel width, respectively, and

Ha is the Hartmann number,which measures the ratio of the Lorentz force to viscous force.

The Lorentz force component is then defined as Fmx = B0
dBx
dz

. In consequence,
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FIG. 9: Streamline contours for flow over a backward-facing step at (a) Re = 100, (b) Re

= 300, (c) Re = 500, (d) Re = 800 computed using the GI preconditioned cascaded central

moment LBM with γ = 0.3.

the effective variable body force component is defined as Fx = Fb + Fmx. The an-

alytical solution for the Hartmann flow has the following velocity profile ux(z) =

FbL
B0

√
η
ν
coth(Ha)

[
1− cosh(Ha z

L)
cosh(Ha)

]
, where η is the magnetic resistivity given by η =

B0
2L2/(Ha2ν). Figure 11 presents comparisons of the computed velocity profiles using the

GI preconditioned cascaded LBM with γ = 0.1 and Mach number Ma = 0.02 against the

exact solution for various values of Ha. It can be observed that the GI preconditioned

cascaded central moment LBM is able to reproduce the benchmark solution very well. In

particular, as Ha is increased, the resulting higher magnitudes of the Lorentz force causes

significant flattering of the velocity profiles and this effect of Ha on the velocity profiles is
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computed using the GI preconditioned cascaded central moment LBM with γ = 0.3
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cascaded central moment LBM (γ = 0.1) with the analytical solution for Hartmann flow
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solutions obtained by the GI preconditioned cascaded LBM.
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E. Four-rolls Mill Flow Problem: Comparison between GI Corrected and Uncor-

rected Preconditioned Cascaded LBM

As seen in Sec. III, the GI errors for the LBM on the standard, tensor product lattices,

such as the D2Q9 lattice, are generally related to the strain rates in the principal directions

(∂xux and ∂yuy). Hence, in order to compare the GI corrected formulation (Sec. V), which is

constructed to eliminate such errors, with the uncorrected formulation (Sec. II), we consider

the four-rolls mill flow problem, which is characterized by local extensional/compression

strain rates (i.e. ∂xux 6= 0, ∂yuy 6= 0), and for which a well-defined analytical solution is

available. It is a modified form of the classical Taylor-Green vortex flow driven by a local

body force, whose components are given by

Fx(x, y) = 2νu0 sinx sin y, Fy(x, y) = 2νu0 cosx cos y

in a periodic square domain of side length 2π (0 ≤ x, y ≤ 2π), resulting in a steady vortical

motion in the form of an array of counterrotating vortices. Here, ν and u0 are the kinematic

viscosity and the velocity scale, respectively, and a unit reference density is considered. The

analytical solution of the velocity field, which follows from a simplification of the Navier-

Stokes equations impressed by the above body force, reads

ux(x, y) = u0 sinx sin y, Fy(x, y) = u0 cosx cos y.

Clearly, the local flow field is subjected to local diagonal strain rates, i.e. ∂xux = −∂yuy =

u0 cosx sin y, and, as a result, the uncorrected LB scheme induces additional GI errors,

which should be annihilated by the corrected LB method; and thus, the difference in the

global flow fields against the analytical solution under a suitable norm in each case can be

quantitatively studied and compared.

We performed computations on a square domain resolved by 251 × 251 grid nodes with

a velocity scale u0 = 0.045 for a Reynolds number Re = u0L/ν, where L = 2π, of 20.

Figure 12 shows the streamline patterns at the steady state computed using the GI corrected

preconditioned LB scheme (γ = 0.3), which manifest as a set of counterrotating vortices.

The computed velocity profile uy(x, y = π) obtained using the GI corrected LB scheme

along the horizontal centerline of the domain presented in Fig. 13 are compared against the

analytical solution given above, which show good agreement.
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FIG. 12: Steady state streamline patterns for the four-rolls mill flow problem at u0 = 0.045

and Re = 20 computed using the GI corrected preconditioned cascaded LB scheme with

251× 251 grid nodes and γ = 0.3.

Furthermore, Fig. 14 presents a surface plot of the diagonal strain rate component ∂xux,

which is seen to have a significant local variation, due to which quantitative differences in

the solutions between the GI corrected and uncorrected preconditioned LB schemes can be

expected, which will now be demonstrated in the following.

In order to make a quantitative comparison between the solutions obtained using the

two different LB methods, we first define the global relative errors for the velocity field

||GREGIu ||2 and ||GREGIv ||2 between the components of the solution obtained using the GI

corrected preconditioned LB scheme (i.e. (uc, vc)) and the analytical solution (i.e. (ua, va))

under a discrete `2 norm; and similarly ||GREu||2 and ||GREv||2 between the uncorrected

preconditioned LB scheme (i.e. (uuc, vuc)) and the analytical solution. These are written as

follows:

||GREGIu ||2 =

√∑
(uc − ua)2∑

u2a
, ||GREGIv ||2 =

√∑
(vc − va)2∑

v2a
,
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FIG. 13: Comparison of the computed and analytical vertical velocity profiles uy(x) at

y = π for the four-rolls mill flow problem at Re = 20 obtained using the GI corrected

preconditioned cascaded LB scheme with 251× 251 grid nodes, u0 = 0.45 and γ = 0.3.

FIG. 14: Distribution of the diagonal strain rate component ∂xux = −∂yuy for the

four-rolls mill flow problem with u0 = 0.045.

||GREu||2 =

√∑
(uuc − ua)2∑

u2a
, ||GREv||2 =

√∑
(vuc − va)2∑

v2a
,

where the summations in the above are carried out for the whole computational domain.

Table I presents the above global relative errors for the velocity field components for both

the preconditioned cascaded LB formulations for different values of the preconditioning pa-

rameter (γ = 0.2, 0.3, 0.4 and 0.5). It can be seen that significant improvements in accuracy
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is achieved by the GI corrected preconditioned LB scheme. In particular, the errors relative

to the analytical solution are reduced by about a factor of two with the corrected pre-

conditioned LB scheme for the conditions considered for the computation of this problem.

Such improvements are consistent with the fact that the corrected LB scheme eliminates

the additional GI errors arising in this flow subjected to the local variations of the diagonal

(compression/extension) strain rates, which are present in the uncorrected LB scheme.

TABLE I: Comparison between the global relative errors in the computed solutions for the

velocity field using the GI corrected preconditioned cascaded LB scheme and the

uncorrected preconditioned cascaded LB scheme for the four-rolls mill flow problem at

Re = 20, u0 = 0.045 and a grid resolution of 251× 251.

Preconditioning GI corrected u error Uncorrected u error GI corrected v error Uncorrected v error

parameter γ ||GREGIu ||2 ||GREu||2 ||GREGIv ||2 ||GREv||2

0.2 3.386× 10−3 6.662× 10−3 3.377× 10−3 6.665× 10−3

0.3 1.850× 10−3 4.104× 10−3 1.854× 10−3 4.126× 10−3

0.4 1.384× 10−3 2.851× 10−3 1.389× 10−3 2.865× 10−3

0.5 1.135× 10−3 2.113× 10−3 1.140× 10−3 2.123× 10−3

Finally, we now obtain an estimate for the additional computational cost associated with

including the GI corrections. For the flow condition employed (u0 = 0.045, Re = 20, and

251 × 251 grid nodes), with γ = 0.3, the uncorrected preconditioned LB scheme for 6000

iterations incurs a CPU time of 356.1 secs on a standard Dell workstation, while the GI

corrected preconditioned LB scheme takes 390.9 secs. Thus, the additional computational

overhead of applying the GI corrections is about 9.7%. These involved computations of the

GI correction terms related to the velocity gradients using non-equilibrium moments and

the finite-difference (FD) calculations of the density gradients in our present 2D simulations,

with the latter taking 16.1 secs out of the total overhead of 34.8 secs. Also, it was found

that there were negligible differences in the accuracy variations between using a isotropic

FD scheme or a standard central difference FD scheme for the density gradients in the GI

correction terms. Thus, especially in extensions to 3D, it may be more efficient to adopt

the simpler standard FD schemes for density gradient calculations in the GI corrections

terms. In summary, a significant improvement in accuracy was achieved with the use of the
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GI corrected preconditioned LB scheme when compared to the uncorrected preconditioning

formulation with a relatively minor additional computational effort.

VII. SUMMARY AND CONCLUSIONS

Lattice Boltzmann schemes on standard tensor product lattices can result in cubic-

velocity errors in Galilean invariance (GI) as the third-order diagonal moments are not

independently supported and degenerates to the first-order moments. Recent investigations

have presented corrections to the collision operator to yield schemes free of these errors

for the representation of the standard Navier-Stokes (NS) equations. Convergence accelera-

tion of simulations of steady state flows can be achieved by solving the preconditioned NS

equations involving a preconditioning parameter γ to tune the pseudo-sound speed thereby

alleviating the numerical stiffness. In our prior work, we devised a modified central mo-

ment based cascaded LBM to represent such preconditioned NS equations, which may be

referred to as a specific example of an extended or generalized NS equations containing a

free parameter, here the preconditioning parameter γ. In this work, we have presented a

new preconditioned central moment based cascaded LB scheme that eliminates such non-GI

cubic-velocity and parameter dependent errors for the simulation of steady state flows. A

detailed analysis based on the Chapman-Enskog expansion reveals the structure of the non-

GI truncation errors that appear in the second-order non-equilibrium moment components,

which are related to the viscous stress. Subsequently, we prescribe an extended second-order

moment equilibria that restores GI free of cubic-velocity errors for the preconditioned LB

model on the standard D2Q9 lattice. The following are among the main findings arising

from our analysis:

• In general, the use of central moments in a LB scheme provides a natural setting to

partially restore GI for the third-order off-diagonal moments. In particular, by setting

the third-order central moment equilibria of the off-diagonal components to zero (e.g.

κ̂eqxxy = 0), one naturally arrives at the precise forms of the corresponding raw moment

equilibria (e.g. κ̂eq
′

xxy = c2sρuy + ρu2xuy) that restores GI of such components in the

representation of the standard NS equations. On the other hand, in the preconditioned

LB scheme, the cubic-velocity terms appearing in the third-order, off-diagonal moment

equilibria needs to be scaled by γ2 (e.g. κ̂eq′xxy = c2sρuy + ρu2xuy/γ
2) to fully eliminate
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the spurious cubic-velocity cross-derivative terms (e.g. uxuy∂yux, uyux∂xuy) appearing

in the derivation of the preconditioned macroscopic equations.

• In order to effectively eliminate the non-GI, diagonal velocity gradient terms (e.g.

u2x∂xux), the second-order, diagonal moment equilibria needs additional corrections in

both the velocity and density gradients when γ 6= 1, which are prescribed via extended

moment equilibria. The velocity gradients can be locally and efficiently obtained using

the non-equilibrium second order moment components; on the other hand, the density

gradients can be computed using a finite-difference approximation.

• Unlike that for the standard NS equations, the representation of the preconditioned

NS equations using a LB scheme results in additional, non-GI, cross-coupling velocity

terms (e.g. u2y∂xux), which are also eliminated by our GI-corrected preconditioned LB

scheme.

• For the second-order, off-diagonal moment equilibria, additional gradient velocity cor-

rection terms are needed to restore GI for these components when γ 6= 1. However,

for incompressible flows (∇ · u = 0), they vanish regardless of the value of γ. Such

a situation is unique to the representation of the preconditioned NS equations using

LB schemes, as the non-GI corrections are generally restricted only to the diagonal

components of the second-order equilibria for the representation of the standard NS

equations.

• In general, the prefactors in GI defect terms exhibit dramatically different behaviors

for the asymptotic limit cases: For example, γ → 1 (No preconditioning):
(

4
γ2
− 1

γ

)
∼ 3

and γ → 0 (Strong preconditioning):
(

4
γ2
− 1

γ

)
∼ 4

γ2
.

• When γ = 1, i.e. when the present LB model is used to simulate flows represented by

standard NS equations as a special case, all our results for the GI defect terms and

corrections become identical with those derived by [25] and [26].

• Finally, the results of our present analysis can be extended to three-dimensions (e.g.

D3Q27 lattice) and other collision models for the simulation of the preconditioned NS

equations.
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In addition, we have presented numerical validation of our new GI preconditioned LB

scheme based on central moments against several complex flow benchmark problems includ-

ing the lid-driven cavity flow, flow over a square cylinder, the backward facing step flow,

the Hartmann flow and the four-roll mills flor problem. Comparison against prior numerical

solutions show good agreement for the modified preconditioned scheme. In addition, it is

demonstrated that our GI corrected preconditioned cascaded LB scheme results in signifi-

cant convergence acceleration of complex flow simulations, and a quantitative improvement

in accuracy when compared to the uncorrected preconditioned LB scheme. Finally, it may be

noted that our analysis of non-GI aspects for the preconditioned LB scheme has implications

for LB schemes for other situations such as the porous media flows. For example, there is a

formal analogy between the preconditioned NS equations and the Brinkman-Forchheimer-

Darcy equations, where the porosity serves as a free parameter (e.g. [53, 54]). LB models

constructed for such flows (e.g. [55]) can be further improved by the approach presented in

this work. Investigations involving such flow problems will be reported in our future studies.
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