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Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves
act as quantumlike particles and the zonal-flow velocity serves as a collective field through which
they interact. This effective plasma can be described by a Wigner–Moyal equation (WME), which
generalizes the quasilinear wave-kinetic equation (WKE) to the “full-wave” regime, i.e., resolves the
wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be
borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very
different from those of conventional quantum particles. This causes unusual phase-space dynamics
that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics
with the WME instead. Specifically, we report the first consistent phase-space simulations of the
zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called
predator–prey oscillations. We also show how the WME facilitates analysis of these phenomena,
namely: (i) we show that full-wave effects critically affect the zonostrophic instability, particularly,
its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we
demonstrate that, with full-wave effects retained, the predator–prey oscillations do not require zonal-
flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh–Kuo
criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from
the WME.

I. INTRODUCTION

Drift waves (DWs) in plasma physics and mathemat-
ically similar Rossby waves in geophysics can sponta-
neously generate coherent nonlinear structures in the
form of banded shear flows, which are commonly known
as zonal flows (ZFs). Interactions between ZFs and DW
turbulence are a fundamental problem that has been ac-
tively studied for decades, particularly due to its impor-
tance for turbulent transport in magnetic-fusion devices
[1]. A common model for studying these interactions
is the wave kinetic equation (WKE) [2–13], which relies
on the geometrical-optics (GO) approximation; i.e., the
smallness of the DW wavelength compared to ZF scales.
However, this assumption is not always justified [14–17],
and essential physics is lost in the GO limit [18, 19]. (Ad-
ditional evidence is also presented below.) This stim-
ulated formulations of “full-wave” statistical theories,
which remain manageable within the quasilinear approx-
imation, i.e., when eddy-eddy interactions are ignored.
A particularly notable example is the second-order cu-
mulant expansion (CE2), which has been used both in
geophysics and plasma physics [20–23]. But the CE2 is
formulated in terms of the two-point correlation function,
so it is not an obvious generalization of the WKE, which
describes the DW dynamics in the ray phase space. Thus,
an alternative theory is needed to unify the WKE and the
full-wave approach to inhomogeneous turbulence.

Recently, it was noticed [19] that DWs can be viewed
as effective quantum particles for which the ZF veloc-
ity serves as a collective field. Then, the DW Wigner
function serves as a quasiprobability distribution of DW
quanta (“driftons”) in phase space. It fully determines
the ZF dynamics and satisfies a kinetic equation of the

Wigner–Moyal (WM) type [24, 25]. This leads to a
complete model of DW turbulence in the same quasi-
linear approximation that underlies the CE2 (and was
also extended recently beyond the quasilinear approxi-
mation [26]). But unlike the CE2, the WM model de-
scribes the dynamics in phase space; thus, it leverages
the existing Hamiltonian formalism and provides a con-
nection with the WKE, which is subsumed as the GO
limit. Previous applications of this full-wave phase-space
approach to classical turbulence have been restricted to
manifestly quantumlike systems such as those governed
by the nonlinear Schrödinger equation [27–33] (e.g., op-
tical turbulence in Kerr media) and the Klein-Gordon
equation [34, 35]. In those cases, the WM equations
are basically borrowed from quantum mechanics and re-
duce to the commonly known WKEs in the GO limit. In
contrast, driftons have Hamiltonians very different from
those of conventional quantum particles and are also sub-
ject to dissipation even in a collisionless plasma. This
causes unusual phase-space dynamics and makes the GO
approximation a subtle matter. In particular, it was
found that the GO limit of the WM equation for driftons
is not quite the traditional WKE (tWKE) but includes
corrections that reinstate the conservation of the DW–ZF
total enstrophy. Applications of this “improved” WKE
(iWKE) [36] were contemplated in Refs. [18, 19], but the
utility of full-wave WM modeling of DW turbulence has
not been yet explored.

Here, we report the first full-wave phase-space mod-
eling of inhomogeneous DW turbulence as an effective
quantumlike drifton plasma. The general mathematical
formulation of the WM equation is taken from Ref. [19],
and the plasma is assumed collisionless for simplicity. We
simulate the ZF formation (zonostrophic instability, or
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ZI [4, 5, 20–22]), deterioration (tertiary instability, or TI
[10, 17, 37–40]), and the DW–ZF predator–prey-type os-
cillations [6–9]. We also show how the WM approach fa-
cilitates analysis of these effects. Our specific findings are
the following: (i) For the linear stage of the ZI, when the
tWKE dynamics is simulation-box dependent, the WM
model predicts physical rates that account for full-wave
effects and agree with the CE2. The accuracy of the cor-
responding iWKE predictions is, in general, only qualita-
tive. (ii) The iWKE predicts three types of drifton phase-
space trajectories. Our analysis of these trajectories
shows that adequate modeling of the ZI nonlinear stage
and saturation requires accounting for full-wave effects,
which is impossible within both the tWKE and iWKE.
(iii) When full-wave effects are retained, predator–prey
oscillations do not require ZF collisional damping, con-
trary to previous studies. Moreover, we find that these
oscillations occur in our simulations only outside the va-
lidity domain of their tWKE-based existing theory. (iv)
The TI cannot be described by the tWKE or the iWKE
in principle, but it is captured by the WM analysis. We
calculate the TI growth rate and compare our results
with simulations. (v) The famous Rayleigh–Kuo crite-
rion [41], which is known from geophysics yet has been
missing in tWKE-based theories, emerges after full-wave
corrections are reinstated.

Overall, our work can be considered as the first consis-
tent phase-space analysis of inhomogeneous DW turbu-
lence that corrects and extends previous efforts such as
in Ref. [12]. Hence, it serves as a stepping stone toward
revising basic physics of DW turbulence (and potentially,
its impact on turbulent transport) from a new perspec-
tive. The specific findings reported here are only the first
step intended to illustrate the utility of the general WM
formulation in application to inhomogeneous DW turbu-
lence. Likewise, the specific turbulence model used below
is just an example chosen for its simplicity and relevance
to the existing tWKE and CE2 models. WM studies of
DW turbulence within more realistic models is something
that this work seeks to stimulate in the future.

II. BASIC EQUATIONS

The plasma model adopted in this paper is as follows.
We assume cold ions, electrons with temperature Te, and
a uniform magnetic field B0 = B0ẑ, where ẑ is a unit
vector along the z axis. The equilibrium density gradient
∇n0 is in the y direction. The electrostatic potential ϕ is
described by the generalized Hasegawa–Mima equation
(gHME) [4, 5, 42, 43]

∂tw + (ẑ×∇ϕ) · ∇w + β ∂xϕ = 0, w = (∇2 − â)ϕ

for the generalized vorticity w(t,x) on the x ≡ (x, y)
plane transverse to B0. Here, time is measured in units
Ω−1
i , where Ωi is the ion gyrofrequency; length is mea-

sured in units ρs
.
= cs/Ωi (

.
= denotes definitions), where

cs is the ion sound speed; ϕ is measured in units Te/|e|,

where e is the electron charge; also, β is proportional
to ∂yn0 and is treated as a positive constant. The op-
erator â models the electron response to ϕ such that
â = 1 for DWs and â = 0 for ZFs [43]. External
forcing and dissipation are not included because they
are not directly relevant to the effects discussed be-
low. (If the stochastic forcing were retained, ergodic-
ity in the x direction would have to be assumed, like
in the CE2 [22].) For any given f , we introduce its
zonal average 〈f〉 .=

∫
fdx/Lx (Lx is the system length

in the x direction) and fluctuations f̃
.
= f − 〈f〉. ZFs

are described by the average velocity U(t, y)
.
= −〈ϕ′〉.

(Primes denote derivatives with respect to y.) Assum-
ing the quasilinear approximation, DWs are governed by
i∂tw̃ = Ĥw̃, where Ĥ serves as the drifton Hamiltonian
[19]. We also introduce the zonal-averaged Wigner func-
tion W (t, y,p)

.
= 〈
∫
e−ip·s w̃(t,x+s/2)w̃(t,x−s/2) d2s〉.

Then, the WM formulation is [19]

∂tW = {{H,W}}+ [[Γ,W ]], (1)

∂tU = ∂y
∫
p−2
D ? pxpyW ? p−2

D d2p/(2π)2. (2)

Here, H and Γ are the Weyl symbols of the Hermitian
and anti-Hermitian parts of Ĥ:

H = −βpx
p2
D

+ pxU +
1

2
[[U ′′,

px
p2
D

]], Γ =
1

2
{{U ′′, px

p2
D

}},

where p2
D

.
= 1 + p2

x + p2
y. Also, ? is the Moyal star,

A ? B
.
= AeiL̂/2B, where L̂ .

=
←−
∂x ·
−→
∂p −

←−
∂p ·
−→
∂x and the

arrows indicate the directions in which the derivatives
act. For example, AL̂B is the canonical Poisson bracket,
{A,B}. Also, {{A,B}} .

= 2A sin(L̂/2)B and [[A,B]]
.
=

2A cos(L̂/2)B. We solve these equations numerically in
the spectral representation [19]. The accuracy of this
model is the same as of the CE2 [20–23].

For comparison, we introduce the GO limit, which cor-
responds to max (λDW/λZF, ρs/λZF)� 1. (Here, λDW is
the characteristic DW wavelength and λZF is the ZF spa-
tial scale.) Then, Eqs. (1) and (2) become

∂tW = {H,W}+ 2ΓW, (3)

∂tU = ∂y
∫
pxpyp

−4
D W d2p/(2π)2, (4)

which is called the iWKE model. Here, W is understood
as the phase-space distribution of driftons, H serves as
their GO Hamiltonian, and Γ serves as their damping
rate. Specifically,

H = pxU + px(U ′′ − β)/p2
D, Γ = −U ′′′pxpy/p4

D. (5)

The tWKE has the same general form, (3), but with H =
pxU − βpx/p2

D and Γ = 0 [2–7, 10–13]. We solve these
equations numerically using the gkeyll code [19, 44].
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FIG. 1. γZI(q) at β = 1 for two equilibria: (a) W1 with
N = 50 and pf = 1; (b) W2 with kx = 2, ky = 1, and N =
100/(2π)2. Shown are the analytical results obtained from
the WM (blue), iWKE (red), and tWKE (dashed) models,
and the corresponding numerical results obtained from the
WM (triangles) and iWKE (circles) simulations. The two
blue lines in (b) correspond to two branches of Re γTI. Only
the fastest-growing mode is observed numerically.

III. ZONOSTROPHIC INSTABILITY

A. Linear ZI

First, we study the linear ZI, which is the formation
of ZFs out of homogeneous DW turbulence with a given
equilibrium Wigner function W(p). Within the WM ap-
proach, the ZI growth rate is found just like the kinetic
dispersion of linear waves in a quantum plasma. Assum-
ing U = Re (Uqe

iqy+γZIt) and δW = Re (Wqe
iqy+γZIt),

one obtains [19]

γZI =

∫
d2p

(2π)2

qp2
xpy

γZIp2
D,+qp

2
D,−q + 2iβqpxpy

×
[(

1− q2/p2
D,−q

)
W−q −

(
1− q2/p2

D,+q

)
W+q

]
, (6)

whereW±q .
=W(px, py±q/2) and p2

D,±q
.
= 1+p2

x+(py±
q/2)2. For comparison, the iWKE predicts [18]

1 =

∫
d2p

(2π)2

q2p2
xp

4
D(1− 4p2

y/p
2
D)(1− q2/p2

D)

(γZIp4
D + 2iβqpxpy)

2 W(p).

The tWKE result is obtained if one ignores q2/p2
D in the

second bracket in the numerator.
We considered two equilibria: W1(p) = 2πN δ(|p| −

pf )/pf andW2(p) = π2N∑mx,y=±1 δ(px−mxkx)δ(py−
myky). Here, N [W] =

∫
W(p) d2p/(2π)2 is the drifton

density, or twice the DW enstrophy density [19], and pf ,
kx, and ky are constants. The simulations used U(t =
0, y) = Uq cos qy (with small Uq) and W (t = 0, y,p) =
W1,2(p). The exponential growth of the perturbations
in WM simulations agrees with Eq. (6) (Fig. 1). In con-
trast, the tWKE is adequate only at q � 1, and the cor-
responding γZI has a maximum at the largest q resolved
numerically. Thus, the tWKE is inapplicable to model-
ing the ZI, as also noticed in Refs. [18, 19]. This means
that the pioneering tWKE-based simulations of the ZI
in Ref. [12] were, at best, a qualitative demonstration of
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FIG. 2. Contour plots of H from the iWKE for U = u0 cos qy
at β = 1, q = 0.5, and px = 0.5: (a) Regime 1, u0 = 0.1;
(b) Regime 2, u0 = 2; and (c) Regime 3, u0 = 10. The
arrows show the phase-space velocity given by Eqs. (7) and
(8). The labels P, T, and R denote passing, trapped, and
runaway trajectories. The vertical dashed lines in (c) denote
the locations where U ′′ = β.

the effect. The iWKE is better, for it predicts that the
ZI vanishes at q & 1 and approximates Re γZI reasonably
well in the most important region (namely, q . 1) where
γZI has its maximum. But even so, the iWKE agree-
ment with the full-wave theory is generally qualitative
[Fig. 1(b)], and the WM model is more adequate.

B. Nonlinear ZI

We also compare the GO and full-wave DW–ZF dy-
namics beyond the linear ZI. The former is elucidated by
ray equations inferred from Eqs. (3) and (5),

ẏ = ∂H/∂py = 2pxpy(β + q2u0 cos qy)/p4
D, (7)

ṗy = −∂H/∂y =
(
1− q2/p2

D

)
pxqu0 sin qy, (8)

where we substituted a fixed ZF profile U = u0 cos qy for
clarity. Three different topologies of the (y, py) space are
possible then, assuming q < 1 [45]. (At q > 1, the GO
model is inapplicable, so it is not considered.) Regime 1
corresponds to weak ZFs, u0 < uc,1

.
= β/(2−q2) (Fig. 2).

This regime shows three types of trajectories: passing
(labeled “P”), trapped (“T”), and runaway (“R”), which
extend to infinity along py while being localized along
y [46]. Regime 2 corresponds to moderate ZFs, uc,1 ≤
u0 ≤ uc,2

.
= β/q2. In this case, P-trajectories vanish

but T- and R-trajectories persist. In Regime 3, only
R-trajectories are left. This is the case of strong ZFs,
u0 > uc,2. The latter is precisely the RK criterion [41],
which has been known as a necessary condition of the
ZF instability. Note that the RK parameter %

.
= u0/uc,2

emerges in the iWKE but not in the tWKE, where uc,2
is infinite and hence Regime 3 is impossible.

Since the total energy is conserved [19], the ZI eventu-
ally saturates. By taking moments of the iWKE, one also
finds that ∂tU = [2(U ′′ − β)]−1 ∂tN . Since the direction
of phase-space flows is known (Fig. 2), one can show from
here [45] that, within the iWKE validity domain (q < 1),
the profile of U can only sharpen with time. This implies
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that the ZI saturates monotonically, i.e., never transfers
its energy back to DWs. This is corroborated by both
iWKE and WM simulations at q . 1; i.e., the GO ap-
proximation is adequate [Fig. 3(a)]. In contrast, at q & 1,
full-wave effects are essential. In this domain, the iWKE
(and the tWKE) is inapplicable, while WM simulations
show that the ZI is eventually reversed ; i.e., an intense
ZF transfers its energy back to DWs (Fig. 3). This re-
sults in predator–prey-type oscillations. They were also
reported in the past [6–9] but were assumed to require
ZF collisional damping. Our simulations show that this
is not necessary. Besides, the oscillations were previously
shown only within a tWKE-based model of drifton quasi-
linear diffusion, which assumes the GO limit and random
small-amplitude ZFs. Neither of these assumptions holds
in the regime when the oscillations occur in our simula-
tions. In this sense, our WM model is the first consistent
DW-kinetic model of these oscillations. Also, the impor-
tance of q as a bifurcation parameter is consistent with
our TI theory presented below.

IV. TERTIARY INSTABILITY

Suppose an intense ZF set up initially without DWs.
Such ZF is subject to an instability of the Kelvin–
Helmholtz type that we term TI. (The presence of DWs
can affect the instability rate, as shown in Refs. [21, 23]
and in our discussion of the nonlinear ZI. We do not
consider this effect here for it is hard to separate such
TI from the nonlinear ZI.) This definition of the TI is
different from that in Refs. [39, 40], where the TI was at-
tributed to the ion-temperature gradient (absent in our
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FIG. 3. Nonlinear simulations of the ZI with the same initial-
ization as in Fig. 1(a). (a) The ZF energy EZF

.
=

∫
U2 dy/2

versus t for various q: iWKE model (dashed) and WM model
(solid). At q . 1, the iWKE and WM models produce similar
results. At q & 1, WM simulations predict oscillations of EZF.
(b)-(d) Snapshots of W from WM simulations (q = 0.4) for
different t. The shape of the ∩ and ∪ structures is determined
by the R-trajectories [Fig. 2(c)]. Also see the movies in the
supplementary material [47].

model), but similar to those in the majority of relevant
papers [10, 17, 37, 38]. In Refs. [18, 37], a connection was
mentioned between the TI and the RK criterion, but the
sufficient and necessary conditions for the TI were not
explored analytically, and the mode structure has been
unknown [48]. Below, we propose two analytical and nu-
merical calculations of the TI [45].

Let us consider ϕ̃ = Re [φ(y)eikxx−iωt] and C
.
= ω/kx.

Linearizing the gHME gives[
d2/dy2 − (1 + k2

x)− (U ′′ − β)/(U − C)
]
φ = 0. (9)

We assume U = u0 cos qy and search for φ as a Flo-
quet mode, φ = ψ(y)eiq̄y, where ψ(y + 2π/q) = ψ(y)
and q̄ is a constant restricted to the first Brillouin zone,
−q/2 ≤ q̄ < q/2. Then, by following and correct-
ing [45] Kuo’s argument [41], we find that there are
at most two unstable modes. The maximum of their
growth rates, which we denote as the TI growth rate
γTI,1 = max (kxImC), is given by

γTI,1 = |kxu0|ϑH(ϑ)
√

1− %−2, (10)

where ϑ
.
= 1− (q̄2 +1+k2

x)/q2, % = u0q
2/β, and H is the

Heaviside step function. (The index 1 denotes that this
is our first model of γTI.) This growth rate is largest at
q̄ = 0 and positive if % > 1 and q2 > 1 + k2

x > 1. Similar
inequalities hold for nonsinusoidal ZF [45]. Hence, the
necessary and sufficient conditions for the TI onset is
twofold: (i) % & 1 and (ii) q2 & 1. The latter implies a
violation of the GO approximation. As a corollary, there
is no TI in the GO limit. These findings also differ from
those in Ref. [10], where the %-dependence is missed.

For comparison, we also calculated γTI numerically.
First, we represent Eq. (9) as an eigenvalue problem,

Â−1(UÂ + β − U ′′)ψ = Cψ, where Â
.
= d2/dy2 +

2iq̄d/dy − (q̄2 + 1 + k2
x). Then, we adopted ψ in the

form ψ =
∑N
m=−N ψme

imqy, with truncation at a large
enough N . Then, C is found as an eigenvalue of a
(2N+1)×(2N+1) matrix. As seen from Fig. 4, Eq. (10)
is in reasonable agreement with the simulations but only

FIG. 4. (a) γTI(kx) at β = 0.5 and (b) γTI(β) at kx = 0.4.
In both cases, U(t = 0, y) = u0 cos qy, u0 = 1, q = 1.6,
and q̄ = 0. Shown are the analytical approximations (10)
(red) and (11) (green). Also shown are numerical solutions
of the eigenvalue equation for C (blue) and results of WM
simulations (circles) with W (t = 0, y,p) = W1δ(px − kx)e−p2y

(with small W1).
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FIG. 5. Nonlinear simulations of the TI with the same initial-
ization as in Fig. 4 (β = 1, kx = 0.4). (a) The energy of the
ZF (blue), DWs (green) [19], and the total energy (red) versus
t. (b)-(d) Snapshots of the normalized Wigner function W̄ for
different t. Figures (c) and (d) show the presence of multi-
ple harmonics in the py spectrum, which is because DWs are
Floquet modes rather than point particles. Also, substantial
regions of negative W̄ are present. Hence, unlike in GO, W
cannot be understood as the probability distribution. This
shows the importance of full-wave effects. The energy oscil-
lations seen in figure (a) are correlated with the horizontal
shifts of the phase space structures; compare figures (c) and
(d). Also see the movie in the supplementary material [47].

when ϑ � 1. In contrast, the WM approach allows for
a calculation that extends to general ϑ, namely, as fol-
lows. The numerical solution of the above eigenmode
equation for ψ can be used to calculate the eigenvector
ψm, so we also obtain w̃ = (∇2−1)ϕ̃ and W . In the spec-
tral representation W(t, λ,p)

.
=
∫
W (t, y,p)e−iλy dy, the

Floquet mode is a series of delta functions, W(t, λ,p) =∑
mnWm,n(px)δ(λ − mq)δ(p − nq/2), where Wm,n de-

crease with m and n. As an approximation, we retain
only W0,0, W±1,±1, W±2,0, and W0,±1. Then, from
Eq. (1), we obtain the eigenvalue

γTI,2 = |kxu0|[
√

2(1 + δ)]−1
√

1− δ2 − (2δ2%2)−1, (11)

where δ
.
= (1 + k2

x)/q2. The conditions for the TI onset
within this model are 2%2δ2(1− δ2) > 1 and q2 > 1 + k2

x.

This implies % >
√

2 and q2 > 1, which is in qualitative
agreement with Eq. (10). Some discrepancy is explained
by the fact that our series truncation is not a rigorous

asymptotic approximation. For the same reason, γTI,2 is
not always a better approximation of γTI compared to
γTI,1, but it does not require the smallness of ϑ. Results
of WM simulations of the TI are presented in Fig. 5,
which also illustrates the phase-space dynamics during
the nonlinear stage. Our findings are in agreement with
the direct numerical simulations reported in Ref. [37].

V. CONCLUSIONS

We report the first consistent phase-space modeling
of the key basic effects associated with inhomogeneous
DW turbulence and DW–ZF interactions. The turbu-
lence is modeled as kinetics of an effective plasma where
DWs act as quantumlike particles and the ZF velocity
serves as their collective field. The drifton Hamiltonian
is very different from that of conventional particles, so the
phase-space dynamics is unusual and the applicability of
the GO approximation is a subtle matter. Our findings
show that traditional wave kinetics, which assumes the
GO limit, misses essential physics in many aspects of
the DW–ZF interaction problem. In contrast, the WM
formulation is more robust and can be used as an effi-
cient and intuitive tool for both analytical and numerical
studies of DW turbulence. Our specific finding include a
revised understanding of the nonlinear ZI and predator–
prey oscillations and also a new theory of the TI within
the gHME model. Applications of the WM formulation
to other models of DW turbulence are anticipated in the
future.
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