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Through quantum molecular dynamics (QMD), utilizing both Kohn-Sham (orbital-based) and
orbital-free density functional theory, we calculate the equation of state of warm dense iron in the
density range 7-30 g/cm3 and temperatures from 1 to 100 eV. A critical examination of the iron
pseudopotential is made, from which and we find a significant improvement at high pressure to
the previous QMD calculations of Wang et al. [Phys. Rev. E 89, 023101 (2014)]. Our results
also significantly extend the ranges of density and temperature which are attempted in that prior
work. We calculate the shock Hugoniot and find very good agreement with experimental results to
pressures over 20 TPa. These results are then incorporated with previous studies to generate a five
phase equation of state for iron.

I. INTRODUCTION

Iron is among the most well-studied materials at am-
bient conditions as well as extreme pressure and temper-
ature conditions. The case of iron in extreme conditions
has been of primary interest as the essential component
of the Earth’s core, in both the liquid state and as a
high temperature and pressure solid [1]. The need for
understanding the thermodynamic properties of iron at
much higher temperatures and pressures than at Earth’s
core conditions is exemplified by the cases of giant planet
and exoplanet cores [2] as well as giant-impact simula-
tions and theories of the Earth-Moon system formation
[3]. Shock experiments have continued to press results to
even higher pressures and temperatures [4, 5]. There also
exist many investigations from a theoretical perspective.
One recent effort has been the ab initio examination of
bcc and hcp phase iron up to 1500 GPa and up to 1 eV
through QMD, including calculations of the melt curve
[6]. A later effort is the QMD study of fluid iron by Wang
et al. [7]. For our work, while we sought to extend the
range of results (in density and pressure) given by Wang
et al. we found issues at high pressure in their method
in terms of the pseudopotential usage.

In this paper first we present our QMD results for the
liquid regime of iron for wide ranging densities of 7 to 30
g/cm3 and temperatures from 1 to 100 eV. We begin with
a description of our QMD approach with special atten-
tion to the pseudopotential issue. Then we present and
analyze our results for the liquid iron equation of state,
including the shock Hugoniot. Second based on these cal-
culations and solid regime QMD calculations [6] as well as
significant experimental results we construct a five phase
equation of state (EOS) for iron, which is available in
the Los Alamos National Laboratory SESAME equation
of state database [8]. Previous wide-ranging multiphase
EOS have been developed [9, 10], as well as more re-
cent examinations up to Earth core conditions [11]. Our
EOS however is based on ab initio calculations at high
pressures and temperatures, where experimental results
are not available, as well as the most recent experimental
results for a both wide ranging and highly accurate EOS.

II. QUANTUM MOLECULAR DYNAMICS

A. Methods

Kohn-Sham based QMD simulations have become the
gold standard for calculations of warm dense matter. The
success lies in the accurate treatment of the quantum na-
ture of the electrons, through the Mermin-Kohn-Sham
density functional theory (DFT) [12], and the ionic, pos-
sibly strongly coupled, motion, through the molecular dy-
namics of the classically treated ions. Yet this approach
suffers a prohibitive scaling issue with increasing temper-
ature due the increasing number of Kohn-Sham orbitals
that must be calculated. An alternative approach with-
out such issue, is provided by orbital-free DFT, the issue
here however is the accuracy of the necessary approxima-
tion for the kinetic (plus entropic) free energy functional.
While the simple Thomas-Fermi approximation has been
used successfully at very high temperatures there is sig-
nificant loss of accuracy at lower temperatures [13]. Re-
cently we have developed and applied an approach cor-
recting the Thomas-Fermi approximation through an ad-
ditional density gradient term which is determined by
matching Kohn-Sham calculations at lower temperatures
[14]. This then allows for extension through very high
temperatures. It is this approach we use in this work, for
which the development and implementation details may
be found in Ref. 14.

In the current case of iron, we have performed Kohn-
Sham DFT QMD simulations with unit cells containing
54 to 60 atoms from 1 to 5 eV in temperature using
the Quantum-Espresso code [15]. Each simulation in-
cluded at least 4000 time steps after equilibration and a
time step of 0.5-0.25 fs was used. We used the Perdew-
Burke-Ernzerhof exchange-correlation functional [16] and
for densities less than 17.5 g/cm3 we used a projector
augmented wave (PAW) [17] 8-electron pseudopotential
while for greater densities we used a 16-electron pseu-
dopotential. The Andersen thermostat was used for the
NVT (constant number of atoms, volume and tempera-
ture) simulations.

The use of a pseudopotential is critical to making the
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FIG. 1: Zero temperature calculation for bcc iron. Overlap of
the cutoff radius, and the lack of sufficient number of valence
states, causes the VASP 8-electron pseudopotential to be valid
only for densities less than 18 g/cm3.

QMD simulations computationally tractable. Two keys
are first there is a cutoff radius below which the ion
Coulomb potential is regularized, and second core elec-
trons are frozen and do not participate in the calculation.
Semi-core orbitals have lower energy levels than typical
valence electrons, but as pressure and temperature in-
crease may begin to interact and need to be included
in the calculation. We validated our pseudopotentials
in part by examining bcc phase, T = 0 pseudopoten-
tial calculations in comparison with all-electron calcula-
tions, which an accurate pseudopotential should repro-
duce. As can be seen in Fig. 1 the only pseudopotential
which reproduces the all-electron calculations is the 16-
electron pseudopotential used in the Quantum-Espresso
(QE) code. The 8-electron Vienna Ab initio Simulation
Package (VASP) pseudopotential [18] is valid to no more
than 18 g/cm3. While validating pseudopotentials is al-
ways important, in the case of warm dense matter the
issues as demonstrated here can be pronounced and hav-
ing sufficiently small cutoff radii as well as inclusion of
enough semi-core orbitals is critical.
Using the approach described in Ref. [14] we per-

formed gradient corrected orbital-free DFT calculations.
Here the free energy is given by standard Thomas-Fermi
approximation plus a gradient correction coefficient of
varying strength given by λ,

Fs[n] = FTF [n, T ] + λ

∫

|∇n(r)|2

8n(r)
dr . (1)

To determine λ, for each density we found the value which
reproduced the Kohn-Sham calculated pressures at T = 5
eV. It is then fixed at all higher temperatures for that
density. At 5 eV, the Kohn-Sham calculations are all
ready getting computationally expensive, however, after
performing the pressure match at 5 eV, we found the
slope in pressure with respect to temperature increase to
match between the two methods which lends confidence

to using the orbital-free approach at that low of temper-
ature. For iron λ was found to increase from 0.240 at 7
g/cm3 to 0.296 at 30 g/cm3. For the orbital-free simula-
tions 60 atoms were included in the unit cell, and 6000
times steps were completed after 2000 time steps of equi-
libration. The time steps varied with temperature from
0.25 to 0.0125 fs, and the simulations were thermostatted
via the isokinetic ensemble. All-electron local pseudopo-
tentials were employed using the method given in Ref. 13
and a cutoff radius of 0.6 times the Wigner-Seitz radius.
For aluminum this means all 13 electrons per atom are
included in the density being calculated and above the
cutoff radius the ion potential is −13/r, while below it is
regularized going to a finite value at r = 0.

B. Results

In Fig. 2 pressure isotherms from our QMD calcu-
lations are plotted from both moderate and high tem-
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FIG. 2: Upper panel: Pressure isotherms at T = 1, 5, 10, 15
eV from the current work compared with the fit from Wang
et al. [7]. The pseudopotential used in Ref. 7 is insufficient at
the higher densities it is employed at and those results deviate
from ours starting below 17.5 g/cm3. Lower panel: High
temperature pressure isotherms at T = 10, 15, 20, 50, 100
eV. Curves at 10 eV and above are from the orbital-free QMD.
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peratures. First in the upper panel we compare with
the fit results of Wang et al.’s QMD calculations, over
their stated range of applicability which is from 12.5 to
25 g/cm3 and 1 to 15 eV. In Ref. 7 they state their
calculations are made using the VASP code and PAW
formalism though they do not state what is the exchange-
correlation functional or which pseudopotential is used.
Comparing Figs. 1 and 2, it seems clear they used the
standard iron PBE PAW with 8 electrons beyond its re-
gion of applicability. Whether it is in fact PBE is not
the issue, this order of discrepancy cannot be accounted
for by exchange-correlation. Rather the issue is the pseu-
dopotential they used has too large of a cutoff radius and
does not include enough semi-core orbitals to accurately
describe the higher densities it is applied to. Thus the
results of Wang et al. should be regarded as low in pres-
sure except for the region up to two-fold compression
(∼16 g/cm3). Between temperatures of 10 and 15 eV
lower energy states, which are frozen in the Wang pseu-
dopotential, begin to ionize as well, though this only a
few percent at 15 eV and so does not have much effect
on the pressure.
Our results, however, span from 7 to 30 g/cm3 and 1 to

100 eV. For the Kohn-Sham QMD (up to 5 eV) we tran-
sition from an 8-electron pseudopotential to a 16-electron
pseudopotential at 17.5 g/cm3, at which density full cal-
culations from both pseudpotentials were done and found
to be in agreement for the pressure. The results above
5 eV are from the orbital-free QMD. There is if course
a shift in the energy from the change in pseudopotential
for both the local pseudopotentials used in the orbital-
free calculations and the 8 to 16 electron PAW pseudpo-
tentials, which has been accounted for in the following
calculation of the Hugoniot.
In Fig. 3 we present our QMD results for the shock

Hugoniot of iron, which is calculated via the Rankine-
Hugoniot equations

E − E0 = (P + P0)(V0 − V )/2 , (2)

(P − P0) = ρ0Usup , (3)

ρ = ρ0Us/(Us − up) . (4)

Here E, P , V and ρ are the internal energy, pressure,
volume and mass density respectively, and the 0 sub-
script denotes the initial state. While Us and up are the
shock and particle velocities. From our QMD calcula-
tions smooth fits along individual isochores or isotherms
are used to solve Eq. (2). All of our Hugoniot results are
in the liquid regime between 12.5 and 30 g/cm3, and are
shown in the upper panel of Fig. 3. In the lower panel we
focus on the Hugoniot up to two-fold compression. Here
we show for reference the experimental completion of the
shock melt (that is when the system is completely lique-
fied) at 270 GPa [4]. We find that pressure at ρ = 12.50
g/cm3 and T = 6025 K, whereas the values calculated
from experiment are 12.51 g/cm3 and 6300 K [4]. Over
the entire range we find good agreement with the col-
lection of experimental results [19–41], which are shown
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FIG. 3: Shock Hugoniot of iron with ρ0 = 7.874 g/cm3. Our
QMD results (triangles) are shown along with our Us(up) fit,
and are seen to be in good agreement with available experi-
mental results [19–41]. The SESAME 2140 Hugoniot begins
to soften relative to our results and experiment from just be-
low the shock melt completion at about 12.5 g/cm3 and 270
GPa. The uncertainty in the experiments is mostly conveyed
by the scatter in the data, except at the highest densities,
above 24 g/cm3, where the uncertainty in density is 1 g/cm3

or more.

sans error bars for clarity. Also shown in both panels is
the SESAME 2140 table results [8], which show soften-
ing with respect to ours results and experimental results
from the shock melt onward.
We have fit our Hugoniot results in terms of Us and up

through Eqs. (3) and (4), where ρ0 = 7.874 g/cm3. The
fit uses the exponential form as given in Ref. 42,

Us = a+ bup + cupe
−dup , (5)

with Us and up in km/s and parameters a = 3.7885,
b = 1.25524, c = 0.518106, and d = 0.0866344. Though
the parameters were determined by fitting only to our
liquid regime results, the fit comes into agreement with
the SESAME 2140 curve below 11 g/cm3 and also agrees
with the solid regime experiments. Our fit curve is shown
in both panels of Fig. 3.
As a matter of course we also have the QMD tempera-
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FIG. 4: Temperature along the iron shock Hugoniot. Our
calculated Hugoniot temperatures and current fit, are shown
along with the SESAME 2140 temperatures and the melt
curve of Bouchet et al. [6]. Also marked is the experimental
shock melt completion at 270 GPa.

TABLE I: Fit parameters, ci, for the temperature along the
Hugoniot according to TH =

∑
4

i=0
ciP

i
H , with TH in eV and

PH in GPa.

0 < PH < 2500 2500 < PH < 20000

c0 0 0.550988

c1 1.24182×10−3 2.93777×10−3

c2 2.80723×10−6 -7.75673×10−8

c3 -1.31703×10−9 1.31292×10−12

c4 1.88449×10−13 0

tures along the Hugoniot, which are plotted up to 2 TPa
in Fig. 4. Additionally we have fit the Hugoniot temper-
ature in terms of the Hugoniot pressure up to 40 eV and
20 TPa by a polynomial fit as given in Table I, which
is also shown in Fig. 4. The QMD based melt curve of
Bouchet et al. [6] is plotted here for reference, and it
is seen that the intersection of our temperature curve is
very near the completion of the shock melt at 270 GPa.
The intersection is in fact slightly lower at 253 GPa. Tak-
ing into account that the initialization of melt from the
bcc phase is at 243 GPa [4], this is completely reasonable
since the two-phase method used by Bouchet et al. to
calculate the melt curve should be expected to, on av-
erage, yield the midpoint of the transition region which
would be about 256 GPa. We note here that our Us(up)
and Hugoniot temperature fits are accurate over the liq-
uid region, and though we have extrapolated through the
solid region, this is at best an approximate average over
the features that should be found due to the iron phase
transitions.

III. MULTIPHASE EQUATION OF STATE

A. Construction

The multiphase iron equation of state (EOS) consists
of the liquid phase, the ambient magnetic alpha phase,
the high pressure epsilon (hpc) phases, as well as the
higher temperature gamma and delta phases which lie
primarily between the alpha phase and melt. Our EOS
follows the standard SESAME modeling which separates
the Helmholtz free energy into three components,

F = F0(ρ) + Fi(ρ, T ) + Fe(ρ, T ), (6)

where ρ is the material density, T is the temperature,
F0 is the zero temperature energy curve, and Fi and Fe

are the thermal contributions of the ions and electrons re-
spectively. Each phase is determined separately and then
the phase boundaries are determined by examining the
Gibbs free energy. Each component is based on models
with a set of physical parameters to be determined. The
reasoning for the use of models is that the EOS must
cover a very broad range of densities, from tiny frac-
tions to tens or hundreds times ambient solid densities,
and temperature from zero to tens of millions K. These
model parameters may be known to some degree from
experiment, for example ambient pressure measurement
of thermal expansion and heat capacities, or isothermal
compression from diamond anvil experiments. However,
for the warm dense matter regime we have little data,
which is essentially only shock Hugoniot data. This is
where the QMD is valuable in that as shown in Section 2,
it reproduces the the experimental shock data accurately,
validating the method, and further providing significant
data off-Hugoniot where there is lack of experiments.
For all of our phases the cold curve is give by

a Birch-Murnaghan finite-strain form, which connects
to a Lennard-Jones model below ambient density
(7.874g/cm3) and a Thomas-Fermi-Dirac approximation
at high compression. The finite strain equation is of the
form

F0(ρ) =

{

9

2

[

η2/3 +

(

dB

dP

∣

∣

∣

∣

ρ0

− 4

)

η3

]

+

Nterms
∑

j=1

Ciη
j+3

(i+ 3)!

}

B|ρ0

ρ0
+ Eshift . (7)

Here η = 1/2[(ρ/ρ0)
2/3−1], and the input parameters are

the bulk modulus B and its pressure derivative dB/dP
at the reference density ρ0 as well as the expansion coef-
ficients Ci and the overall energy shift Eshift. The tran-
sition the to the Lennard-Jones model at low density is
given by[43]

F0(ρ < ρLJ) = f1ρ
f
2 − f3ρ

fLJ + Ecoh , (8)

where ρLJ is the lower compression cutoff matchpoint,
fLJ is an input exponent, and Ecoh is the input cohesive
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TABLE II: Parameters from the cold curve models for iron

Phase alpha epsilon gamma delta liquid

ρ0 (g/cc) 7.98 8.38 8.15 8.10 7.85

B (GPa) 175 185 175 175 165

dB/dP 4.8 4.75 4.8 4.8 3.65

C1 - - - - 120

ρLJ (g/cc) 7.480 7.874 7.401 7.401 7.401

fLJ 1.2 1.0 0.65 0.65 0.65

Ecoh (kcal/mol) 54 99.4 54 54 54

ρTF (g/cc) 23.62 10.63 23.62 23.62 10.23

Eshift (MJ/kg) 0.0 -0.055 0.05 0.125 0.42

energy. f1, f2, and f3 are then found by requiring that
the energy, pressure and dP/dρ are continuous at ρLJ .
Lastly at high compression the cold curve is given by

F0(ρ > ρTF ) = [ETF (ρ)− ETF (ρTF )]y(ρ) + ∆E , (9)

with

y(ρ) = 1 +
b1
ρ

+
b2
ρ4/3

. (10)

Here ETF is the zero temperature result of an average
atom Thomas=Fermi-Dirac calculation. The parame-
ters ∆E, b1, and b2 are again found by matching the
energy, pressure and dP/dρ at the input upper compres-
sion matchpoint ρTF . The cold curve model parameters
for all phases are presented in Table II.
The thermal electronic term is from a set of Thomas-

Fermi-Dirac (TFD) average atom calculations [44,
45]. Here every temperature-density grid point in the
SESAME table is calculated and the difference between
the energy at finite temperature and the zero tempera-
ture results at the same density is the electronic contri-
bution, Fe(ρ, T ). This is the same for all phases, with the
exception of the alpha phase. The alpha phase is mag-
netic and we must add a contribution for this to the TFD
free energy result. This contribution has been found ex-
perimentally [46–48] to be pressure independent and fit
to the form

Fmag = a3b

[

(

1−
T

a2

)

ln

(

1 +
√

T/a2

1−
√

T/a2

)

− 2

√

T

a2
+

4

3

(

T

a2

)3
]

(11)

for temperatures up to the Curie temperature TC = 1043
K, with parameters a2 = 1135 K and a3b = 4680 J/mol.
After adding Fmag to Fe for the alpha phase we are
able to reproduce to experimental total heat capacity,
as shown in Fig. 5. With just the TFD energy no peak
for the heat capacity is produced for the alpha phase.
For the solid phases the ion thermal contributions are

given by a Debye model. Here the free energy is given by

Fi(ρ, T ) =
R

M

[

9

8
θ + 3T ln (1− e−θ/T )− TD(θ/T )

]

,

(12)

where

D(x) =
3

x3

∫ x

0

y3

ey − 1
dy (13)

is a Debye function for the energy, R is the ideal gas con-
stant, M is the atomic weight (55.845), T is the temper-
ature. Also θ is the Debye temperature which is depen-
dent on the density through the Grüneisen parameter, γ,
by the relation γ = d ln θ/d ln ρ. We impose an analytic
model for γ in order to determine θ. The model is given
by the following equations,

γ(ρ ≥ ρref) =γ∞ +
ρref
ρ

(2γref − 2γ∞ + γ′

R)

+ (
ρref
ρ

)2(γ∞ − γref − γ′

R) , (14)

γ(ρ < ρref) =γ0 +
ρ

ρref
(2γref − 2γ0 − γ′

L)

+ (
ρ

ρref
)2(γ0 − γref + γ′

L) . (15)

Here γ0 and γ∞ are the values at ρ = 0 and ρ = ∞. γ′

L

and γ′

R are the left and right logarithmic density deriva-
tives of γ at ρref . ρref is the reference density (7.874
g/cm3 in all cases) and γref is the value of γ at that
density. Additionally θref , the value of θ at the refer-
ence density, is specified to fix the constant of integration
when solving for θ. The ion model parameter values are
summarized in Table III.
For the liquid regime we use the model of Johnson, in

particular version 2 from Ref. 51, which was found to
reproduce the QMD isotherm data well. In general this
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TABLE III: Parameters from the ion thermal model for iron

Phase alpha epsilon gamma delta liquid

θref 470 380 275 256 -

γref 1.95 1.8 2.35 2.55 2.35

γ′R -1.95 -1.0 -1.35 -0.75 -1.0

γ′L -1.95 -1.0 -1.35 -0.75 -1.0

γ0 20. 1.0 1.0 1.0 1.0

γ∞ 0.6667 0.6667 0.6667 0.6667 0.5

model interpolates from Debye-like at low temperatures
to the ideal gas limit at very high temperatures. Here
we use Johnson’s suggested value for a = 1.25/M5/3 =
θ2/Tmρ2/3, which relates the Debye and melt, Tm, tem-
peratures in eV along with the density ρ, in g/cm3. Ad-
ditional parameters for the model are the initial melt
temperature and density which we set as 290 K and 6.9
g/cm3. The melt temperature parameter is not realistic,
but was found as the best value for the model to match
the QMD results. It should be noted the EOS melt tem-
perature at 1 atm is 1800 K determined by Gibb’s energy
comparison between the phases. Lastly the liquid model
requires a Grüneisen model for which we use the same as
for the solid phases, the parameters are given in Table
III, note that θref is determined within the model.

B. Results

We first consider the ambient pressure isobaric results
for the EOS. This encompasses the ambient temperature
magnetic alpha phase, followed by two solid-solid phase
transitions, first to gamma phase and then to delta phase
as the temperature increases. Then at 1800 K the delta
phase melts. The four phases are seen in Fig. 6 where
both the thermal expansion, shown in terms of density
vs. pressure and the entropy are shown. The EOS is
in very good agreement with the experimental results as
was shown previously for the specific heat, Fig. 5
Next we consider the isothermal compression at 300 K.

Diamond anvil cell (DAC) data [54–56] is shown in Fig.
7 along with the EOS results. Here the individual alpha
and epsilon phases are shown by dashed lines and the
multiphase EOS is shown with the solid line transitioning
from alpha to epsilon at about 13 GPa. Good agreement
is seen with all data up to 300 GPa.
In Fig. 8 the Hugoniot from the current EOS is com-

pared with QMD based Us(up) fit, which was shown
above to be in good agreement with experiment. In ad-
dition we show the results from two previous SESAME
EOSs 2140 and 2150 [9]. The SESAME 2140 EOS is
soft compared to the QMD beginning at pressure below
the shock melt, while the SESAME 2150 EOS is in good
agreement up to 10 Mbar (1 Mbar = 100 GPa), where
it stiffens by comparison. Our current EOS is in good
agreement to 50 Mbar, but at that point also stiffens rel-
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FIG. 6: Isobaric results for thermal expansion [52, 53] and
entropy [50] at 1 atm for iron. Transitions from alpha to
gamma to delta to liquid for the EOS can be seen to be in
good agreement with experiment.

ative to the QMD fit. At very high pressure of 200 Mbar,
the SESAME 2150 and the current EOS come into agree-
ment, which is due to both using models that go to the
same limit. The issue in the current EOS is that the
thermal models are not correct in the interpolation to
this limit, in such a way that we can not preserve accu-
racy at the very high and at the same time moderately
high pressures. This will involve future work of develop-
ing new models.

Next in Fig. 9 isotherms of the EOS are compared
with the QMD results for temperature up to 8 eV, and
the Hugoniot path is shown by the dotted line up to 30
Mbar. Also we compare with the SESAME 2150 results,
which are stiffening too much with temperature increase
which results in the over stiff Hugoniot. The accurate
modeling of this warm dense liquid regime is one of the
main advancements of this work.

At lower temperatures, from 300 K to 17000 K, we
agree with the QMD results of Bouchet et al.[6] for the
HPC and liquid phases and the melt curve up to 1500
GPa. The maximum difference is 3 percent at the highest
pressure and lowest temperature, but generally less than
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the multiphase EOS 300 K isotherm (solid line) which transi-
tions from alpha to epsilon phase at 13 GPa. The individual
phases are shown with dashed lines.

1 percent difference. For the gamma phase we compare
with the preheated shock data of Chen and Ahrens [57].
Here iron is heated at ambient pressure to 1573 K and
then shocked. Our EOS results are plotted against the
experiment in Fig. 10. Along with the isobaric thermal
expansion this fixes our EOS for the gamma phase, which
then yields an alpha-gamma-epsilon triple point at about
10.8 GPa and 890 K, as well as a gamma-epsilon-liquid
triple point at about 100 GPa and 3400 K.

Lastly we consider the overall phase diagram for iron.
As shown in Fig. 11, the room temperature alpha-epsilon
transition occurs at 13 GPa which is in agreement with
the DAC data of Fig. 7. The principle shock Hugoniot
passes through those two phases before begining to melt
at about 195 GPa and 4800 K, completion of melt is
then at about 290 GPA and 5850 K. The gamma phase
extends to a maximum pressure of 100 GPa. It has been
speculated in the past that there exists a phase other
than epsilon below the melt curve at higher pressures
than this, but current theory [6] and experiment [58, 59]
do not support this and we have no such phase in our
EOS. The epsilon phase has been shown through DFT
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FIG. 8: Iron Hugoniot for ρ0 = 7.874 g/cc. Here the current
EOS and 2 previous EOSs are compared to the QMD fit. The
current EOS gives the best agreement up to 50 Mbar, while
the previous Kerley EOS (SES 2150) diverges at 10 Mbar.

studies to be the stable ground-state phase up to 7 TPa
[60], where fcc, and at much higher pressure bct phases
become the stable phase. We do not include these higher
pressure phases in the EOS. Our melt curve is in good
agreement with the results of Anzellini et al. [61] and the
QMD results [6], including at 1500 GPa where we have
a melt temperature of 12800 K.



8

 0

 500

 1000

 1500

 2000

 2500

 3000

 6  8  10  12  14  16  18  20

P
re

ss
ur

e 
(G

P
a)

Density (g/cm3)

Hugoniot

FIG. 9: Pressure isotherms from the EOS (solid lines) are in
good agreement with QMD results (triangles) for T=1,4,8 eV.
The SESAME 2150 EOS (dashed line) isotherms are shown
to be overly stiff with temperature and pressure increase. The
Hugoniot path is also shown.

IV. CONCLUSION

We have performed wide ranging quantum molecular
dynamics calculations for the equation of state of warm
dense iron. At temperature lower than 5 eV the Kohn-
Sham method remains computationally tractable. A crit-
ical issue is the correct use of a pseudopotential with suf-
ficiently small cutoff radius and inclusion of a sufficient
number of valence electrons to properly account for com-
pression as well as temperature ionization effects. We
point out that the previous calculations of Wang et al.

use an inappropriate pseudopotential and hence, their
results are low in pressure densities above 16 g/cm3. In
order to achieve accurate results for temperatures up to
100 eV we have used a gradient corrected orbital-free den-
sity functional theory. This method relies on matching
Kohn-Sham method results at sufficiently high tempera-

 0

 20

 40

 60

 80

 100

 7.5  8  8.5  9  9.5  10

P
re

ss
ur

e 
(G

P
a)

Density (g/cm3)

Chen and Ahrens
EOS

FIG. 10: Hugoniot for gamma iron shocked from ambient
pressure and 1573 K.
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FIG. 11: Phase diagram for iron from the current EOS. The
five phases including the liquid phase are shown along with
the priciple Hugoniot, ρ0 = 7.874 g/cm3.

ture to determine the strength of the gradient correction.
In total then our calculations cover fluid regime iron from
7 to 30 g/cm3 and temperature from 1 to 100 eV. Finally,
we calculated the Hugoniot to over 20 TPa, and found
very good agreement with available experimental shock
Hugoniot data, thus generally validating our QMD ap-
proach and calculations. In addition we have used the
warm dense QMD data in conjunction with other recent
low temperature QMD and experimental results to pro-
duce a new SESAME EOS for iron. This has highlighted
some limitation in our ionic thermal model at very high
pressures, but below 50 Mbar we provide an accurate
representation of the liquid and solid phases.
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016403 (2006).

[14] T. Sjostrom and S. Crockett, Phys. Rev. B 92, 115104
(2015).

[15] P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502
(2009).

[16] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
Lett. 77, 3865 (1996).
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