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Abstract 
 

Dust particles immersed in a plasma environment become charged through the collection of 
electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value.  
Small grains (with radii less than 1 µm) or grains in a tenuous plasma environment are sensitive 
to single additions of electrons or ions.  Here we present a numerical model that allows 
examination of discrete stochastic charge fluctuations on the surface of aggregate grains and 
determines the effect of these fluctuations on the dynamics of grain aggregation.  We show that 
the mean and standard deviation of charge on aggregate grains follows the same trends as those 
predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from 
the predicted values.  In some plasma environments, these charge fluctuations occur on timescales 
which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models 
show that charge fluctuations tend to produce aggregates which are much more linear or 
filamentary than aggregates formed in an environment where the charge is stationary.   
 
 

I. INTRODUCTION 
 
 One of the fundamental processes which occurs in a complex plasma environment is the charging of 
dust grains, nm – mm-sized solid particulates immersed in the plasma.  Dust particles acquire charge 
through direct collisions with electrons and ions, and in most cases will become negatively charged due 
to the initial large flux of electrons to the uncharged grain.  In some plasma environments, secondary 
electron emission (SEE) or photoemission can contribute to the charging process, and dust grains can 
become positively charged.  
 The charge on the grains is gained or lost in discrete units of elementary charge at random time 
intervals, with the charge on a grain fluctuating about the average equilibrium charge. It was predicted 
theoretically [1], and later confirmed through numerical simulations of the fluctuations [2], [3] and 
solutions to master or Fokker-Plank (FP) equations [4]–[7] that the time-averaged charge on the grain is 
linearly proportional to the grain radius, while the standard deviation is proportional to the square root of 
the average charge.  Thus, the magnitude of the charge fluctuations relative to the equilibrium charge 
decreases as the grain size increases.  

For example, under typical experimental conditions using a RF plasma, grains collect ~1,000 
elementary charges per micron of radius, with a charge fluctuation on the order of 1% of the equilibrium 
charge [4]. However, in cases where the grain size is small, the plasma is cold or tenuous, or the dust 
density is large enough to remove a significant fraction of the electrons from the plasma, the average 
charge can be as small as hundreds or even tens of electrons. In this case, charge fluctuations can become 



a significant fraction of the equilibrium charge [4].  At the same time, the characteristic time scale for 
these charge fluctuations can become comparable to the time scales of the dynamic processes affecting 
the dust [3], [5].     

A particular case where discrete stochastic charge (DSC) fluctuations can play a role in the dynamic 
response of the dust grains is the growth of the dust through aggregation.  In the low pressure plasmas 
used for etching or chemical-vapor deposition, the formation and growth of fine particles can be 
detrimental to the system [8], although a similar process is often utilized to study the nucleation and growth 
process [9], [10]. The production of ultrafine powders with prescribed size ranges also takes advantage of 
thermal nucleation and particle charging, such as the nanoparticles produced for use in inhalation toxicity 
studies [11].  In protoplanetary disks, aggregate growth from small particles is a necessary preliminary 
step in the formation of the larger bodies which eventually form planetary systems.  In each of the above, 
charge fluctuations can affect the coagulation rate, aggregate porosity, and maximum grain size [12].  In 
some environments, fluctuating charge on very small grains can even allow them to become positively 
charged [2], [3] leading to oppositely charged grains in the overall population and sometimes creating 
runaway growth [13], [14].   

Our previous work on stochastic charging extended the stochastic charging model to non-spherical 
aggregate grains by treating charge as a continuous variable with charging time steps set as a fixed fraction 
of the equilibrium charging time [12]. As noted above, however, in many cases the grain charge is small 
enough that the gain or loss of charge should be quantized in units of the elementary charge, which also 
requires predicting the (random) elapsed time for the addition of a charged particle.  In this study, a 
methodology is developed to model discrete fluctuations over the surface of an irregular dust grain, with 
the addition of electrons and ions occurring at random times at random locations on the dust surface.     

The paper is organized as follows: Section 2 provides an overview of the charging currents calculated 
from OML theory, and describes how these currents are used to calculate the electron and ion currents to 
points on a grain surface.  Section 3 describes how the currents to the surface points are used to calculate 
the stochastic variation of the charge, by determining the random elapsed time, the charge (electron or 
ion) to be added and the location on the grain surface for the addition. As shown in Section 4, the model 
is validated by applying it to spherical grains and comparing the results to those found from previous 
models which treat the grain surface as an isopotential. The discrete stochastic charging method is then 
applied to aggregate grains to examine the time scale of the fluctuations.  Finally, a dynamic model of 
collisional grain growth including the effects of stochastic charge variations is presented in Section 5 to 
illustrate the effects of these fluctuations on aggregate grain growth.   
 
 

II. CHARGING CURRENTS 
 

In this paper, we limit our analysis to grain charging through collisional currents of primary electron 
and ion to the dust surface.  This method can easily be extended to include secondary charging effects 
such as photoemission and secondary electron emission [15].  Inherent assumptions we make in the 
following are that the particle radius is smaller than the Debye length of the plasma, which is smaller than 
the mean free path of the plasma particles, 𝑎 ≪ 𝜆$ ≪ 𝜆%&', and that the interparticle distance between 
dust grains is larger than the Debye length, such that the charge on a grain is independent of other grains.   
 
 
 
 



A. OML charging currents 
 
The charge on a dust particle is commonly determined using orbital-motion-limited theory to find the 

primary electron and ion currents to the grain as a function of the grain potential [16]. The current density
 to a point on the surface of a grain is determined by the flux of particles with enough energy to 

overcome the coulomb potential barrier to reach the surface 

   (1) 

where is the plasma density of species  (electron or ion) very far from the grain,  the charge of the 
incoming plasma particle of mass  and temperature ,  the velocity of the incoming plasma particle 
with a velocity distribution , and   the effective cross section of the charged target [16], which 
is  for particles with  and zero otherwise. The lower limit of 
integration for the particle velocity is the minimum velocity required for a charged plasma particle to reach 
a point on the surface of a dust grain having potential . Thus, the minimum velocity is either zero, when 

the plasma species and dust have opposite charge, or , for plasma species and dust of 
the same charge polarity. In the integration over the angles, g is the angle between the velocity vector and 
the surface normal, and   the solid angle from which the plasma particle approaches the 
surface.  Assuming that the electrons and ions have Maxwellian velocity distributions characterized by 
the temperatures  and , respectively, Eq. 1 can be integrated easily for a point on the surface of a 
spherical grain.  The current to the grain surface is then found by multiplying the current density by the 
surface area, yielding 
 

             (2) 

 
The coefficient  represents the currents to an uncharged grain of radius 𝑎; assuming the plasma is 
isotropic and not flowing past the grain, this is 

  (3) 

Initially, the electron current to an uncharged grain is greater than the ion current.  As the grain 
accumulates negative charge, slower moving electrons will not have the energy required to reach the grain 
surface, while ions continue to be attracted to the grain.  Eventually an equilibrium potential is reached 
when the electron and ion currents are equal, where  is the solution to 
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 .          (4) 

 
The equilibrium charge on a spherical grain is then given by 

.  (5) 
 

B. OML_LOS: Charging of non-spherical grains 
 

Non-spherical grains, such as aggregates 
comprised of spherical monomers, have a varying 
surface potential.  (This can be true for a spherical 
dielectric grain as well, if the rate of collection of 
electrons and ions is fast compared to the time scale for 
charge recombination on the surface, but not so fast as 
to keep all points on the surface in equilibrium.) In 
addition to the varying potential, the trajectories of 
incoming plasma particles to some points on the 
surface may also be blocked by other monomers in the 
aggregate. OML theory requires that all positive 
energy orbits connect back to infinity, and not originate 
from another point on the grain [17]. To numerically 
integrate the flux given in Eq. 1,  the surface is divided 
into patches surrounding points which are uniformly 
distributed over the surface of each sphere (see Fig. 1) 
[18]. It is assumed that an elementary charge (ion or 
electron) that arrives at the particle surface stays at the point of impact.   

The potential at the center of each patch ϕp is calculated from the charge qj on all other surface points 
(at distance rpj away) and the patch itself, . The potential at the center of the patch, 

, is approximated by the potential at the center of a spherical cap with 

surface charge density , where  is equal to the average angular separation 
between the points.   As each patch on the surface of a sphere is actually a polygon, the accuracy of this 
approximation increases with the number of patches used in the simulation. 

The current density incident on each patch is determined by numerical integration of Equation 1.  The 
integral over the speed 𝑣) is exact, and can be calculated once the potential  is known.  The integral 
over the angles is approximated by breaking up the solid angle into many sections characterized by test 
directions �̂� and determining which lines of sight (LOS) are blocked by other monomers in the aggregate, 
as illustrated in Figure 1.  The LOS factor , is obtained by summing 
over the open LOS (see Matthews et al. [18] for a complete description of this treatment). The electron 
and ion currents to a patch are then the same as those given by Eq. 2 with  replaced by the coefficient  
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FIG. 1.   A 2D representation of the open lines of 
sight to three points on the surface of an 
aggregate. The open lines of sight are determined 
by checking many test directions  �̂� to see if they 
intersect other monomers in the aggregate. The 
angle between the surface normal vector and the 
test direction is 𝛾- . 



          (6) 

where  is the area of the patch.   
 
 

III. DISCRETE STOCHASTIC CHARGING METHOD 
 

The electrons and ions in the plasma do not constitute a continuous fluid, but rather individually reach 
the grain surface at random times.  The Fokker-Planck equation for stochastic charging of aggregates 
developed by Matthews et al [12] treated the charge as a continuous variable, but here the charging model 
developed here allows for integer increments of elementary charges collected on the surface patches.  

As described in [12], a generalized form of the master equation given by Matsoukas and Russell [4], 
[5] and Shotorban [6] can be formulated to determine the charge collected on each patch, and hence the 
entire surface of the grain, utilizing the ion and electron currents to each patch. The set of elementary 
charges collected on the patches is defined by the vector , where there are n patches 
on the aggregate, (e.g., Z2 is the number of elementary charges collected on the patch number 2). Assuming 
that Z undergoes a Markov process [19], the master equation is 

 

      (7) 

 
where P(Z, t) is the joint probability density function. In this equation,  and  are the electron and 

ion attachment rates (i.e., the electron and ion currents divided by the charge), to patch p,  and  is 
the unit vector, e. g., e3 = {0, 0, 1, … , 0}. It is assumed no charge is transferred from one patch to another.  

In accordance with the master equation, the discrete stochastic method (DSM) is based on the 
following algorithm, which is a customized version of the stochastic simulation algorithm developed for 
chemical kinetics [20], [21], to calculate discrete charge fluctuations on patches. The system is initialized 
with the charges of patches set to Z = Z0 at t = t0, where Z0 is the initial condition. The attachment rates, 
Ii,p(Z) and Ie,p(Z), are found from the currents to each patch (Equation (6)), and then used to calculate the 
sum of the attachment rates to all patches,  

   (8) 

Then, a random number r1 is generated from a uniform distribution with  and used to determine 
the time interval  which elapses before the attachment of the next plasma particle  

   (9) 

 
The type of the plasma particle and the patch  to which the particle is attached is determined by 
generating a second random number, r2, and finding , the smallest integer satisfying   

   (10) 
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where we have defined 

   (11) 

 
If is odd, then the attached particle is an ion and the patch to which the particle is attached is

 .  If   is even, then the attached particle is an electron and the patch is  .  Following 
this notation, for instance,  is the ion current to patch number 4 and  is the 
electron current to patch number 4. The time is then updated from  to , and the charge is updated 
from Z to Z + ep if the attached particle is an ion, or Z to Z - ep if the attached particle is an electron.  The 
procedure is iterated until the desired length of time has elapsed. 

The charge on a grain fluctuates about the mean charge , as expressed in Eq. 5, with the variance 
of the charge state given by [5] 

 . (12) 

 
 

IV.  CHARGING WITH THE DSM 
 

 
In the following section we compare the DSM for calculation of charge collected on patches on the 

surface of a grain to previous studies which modeled the stochastic fluctuation of charge on spherical 
grains [3], [5]. 

We apply the model using two different plasma conditions, the first being a typical low-temperature 
plasma discharge environment with the second using conditions which may be found in an astrophysical 
plasma such as that found in a protoplanetary disk (PPD).  The two plasma environments will be referred 
to as LAB plasma and PPD plasma, respectively. Conditions for the LAB plasma assume singly ionized 
argon with electron and ion temperatures Te = 1 eV, Ti = 500 K,  and equal electron and ion number 
densities, ne = ni = 1016 m-3 [5].  The condition for the PPD plasma are chosen to represent a region of the 
disk where the dust density is large enough to deplete the electrons in the plasma [12], [18].  The ionized 
species is considered to be hydrogen with Te =  Ti = 900 K, ion density ni = 5×108 m-3, and electron density 
ne = 0.1ni. 

We first show that the discrete stochastic charging method recovers the results previously reported for 
stochastic fluctuations on charge on spherical grains and then apply the DSM to the charging of aggregates 
consisting of spherical monomers. 
 

A. Validation of DSM: Spherical Grains 
 

Charging simulations were carried out for spheres with radii a = 10, 20, 50, 100, 200, 500, and 1000 
nm, and varying number of patches on the surface with n = 10, 20, 40, and 90.  The simulations included 
100,000 time steps determined by eq. (9). Sample charging histories and probability distributions of the 
fluctuating charge are shown in Figure 2 for a 20 nm grain in a LAB plasma and a 100 nm grain in a PPD 
plasma.  
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The master equation in the DSM assumes attachment rates vary linearly with charge.  This condition is 
automatically satisfied for the ion current to a negatively charged grain, but the electron current to a 
negative grain varies exponentially with the potential (and hence the charge). This linearity criterion is 
satisfied by requiring a minimum grain radius for given plasma parameters, , as noted 
in [5]. Here we apply this as a criterion for the minimum patch size. Taking the area of a patch to be

, the radius of a patch  can be estimated from , so that the number of patches 

. The linearity criterion is well satisfied if  such that the maximum number of 

patches can be set by .  The effect of changing the number of patches used in calculating 
the charge is shown in Figure 3 for several different particle radii using the two different plasma 
conditions, where 𝑎∗ = 1.5 nm for the LAB plasma and 𝑎∗ = 19 nm for the PPD plasma. The average 
charge on each sphere (averaged over the last 70,000 time steps) differs from the charge predicted for a 
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FIG. 2. First 2500 time steps of the charging 
history and (insets) probability distribution of the 
fluctuating charge (for 70,000 time steps after 
equilibrium is reached).  a) 20 nm grain with 
resolution n = 20 in LAB plasma conditions, b) 
100 nm grain with resolution n = 10 in a PPD 
plasma.  

FIG. 3.  Percent difference between the 
equilibrium charge calculated with DSC and the 
predicted value as a function of the patch size. 
Points are shown for grain radii ranging from 10 
nm to 1 µm using resolutions of 10, 20, 40, and 
90 surface patches.  The two grains shown in 
Figure 2 are marked with stars. 
 



sphere (Eq. 5) by less than 2%, for   , as 
shown in Figure 3. Patch sizes comparable to  still 
produce reasonable results, with the average charge 
over-predicted by 10-15%.   

One of the main characteristics of the charge 
fluctuations on spherical grains is that the time scale 
of the fluctuations depends on the grain size, with 
small grains expriencing longer fluctuation times than 
larger grains in the same plasma environment [3], [5]. 
Figure 4 shows the growth and dissipation times for 
fluctuations of different magnitude for a 20 nm grain 
(LAB plasma) and a 100 nm grain (PPD plasma), 
calculated from the time history of the charge. The 
lines are analytic fits for the first-passage problem, as 
given by Matsoukas and Russell [5] 

 

  ,   (13) 

.  (14) 

The characteristic fluctuation time  is 
approximately equal to the point where the growth and 
dissipation curves cross, and can be calculated from  

 

   (13) 

 
where is the ion Debye length and is the average speed of the ions.  
 

The excellent agreement between the analytic solutions for mean grain charge (Fig. 3) and fluctuation 
times (Fig. 4) demonstrate that the patch model is a valid technique for calculating the fluctuating grain 
charge. 
 

B. Application of the DSM to Aggregates 
 

Having verified the accuracy of DSM for a sphere, this methodology is applied to aggregates of 
spherical grains.  We test the method using three different populations of aggregates built by ballistic 
particle-cluster aggregation of 1) monodisperse 500 nm spheres (n = 20 patches), 2) monodisperse 1.0 
micron spehres (n = 40 patches), and 3) polydisperse spheres with monomer radii 0.5 µm ≤ a ≤ 10 µm 
with a size distribution typical of astrophysical environments, . The number of patches 
used in the polydisperse case varied from n = 10 to n = 1000, depending on the monomer surface area. In 
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symbols are calculated from the charging time history 
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in a PPD plasma. The lines are analytic results for a 
sphere. 
 



all cases the patch size was greater than 10r*, as established above. Sample aggregates from the three 
populations are shown in Fig. 5.   The results for the aggregates are compared to those for spherical 
particles with radii ranging from 0.5 to 10 µm (n = 20 surface patches).    

As the charge and standard deviation are shown to be proportional to a particle’s radius (Eqs. 5 and 
12), here we define an equivalent radius for the aggregates, Rσ, which is calculated from an aggregate’s 
projected cross section averaged over many orientations [22].  The equivalent radius has shown to be a 
good measure of the effective particle size, with the charge on aggregate grains varying linearly with Rσ 
[18]. The equivalent radius is also used to define the compactness parameter, Φ0 =	∑ 𝑎45/𝑅054 , which is 
used characterize the aggregate structure and determine drag forces and collision cross sections in 
dynamical simulations.  

The charge and standard deviation shown for aggregate grains follow the same trends as for spherical 
grains. For illustrative purposes, we present the results calculated for PPD plasma conditions.  The average 
charge and standard deviation, calculated over 90,000 time steps using PPD plasma conditions, are shown 
in Figure 6a and 6b for spheres (filled circles) and aggregates of spherical monomers (open circles).  The 
average charge is proportional to the equivalent radius Rσ in agreement with Eq. 5, though aggregates 
collect a greater charge than spherical grains due to their increased surface area (Figure 6a). The inset 
shows the charge normalized by the predicted charge on a sphere with R = Rσ. It is evident that the 
difference is greatest for aggregates comprised of smaller monomers, as these aggregates tend to have the 
greatest surface area.  The standard deviation in the charge as a fraction of the predicted charge 

, shown in Fig. 6b, is inversely proportional to the particle radius, as the fluctuations 
become comparatively smaller as the equilibrium charge increases. However, comparing the standard 
deviation to that predicted for an equivalent sphere (Eq. 12)  shows that there is wide variation in σ and 
that the deviation is more likely to be greater than that predicted by theory (Fig. 6b inset).  

 The effect of the increased charge can be seen in the fluctuation times measured for the aggregates.  
Growth and dissipation curves for aggregate grains in the two different plasma conditions are shown in 
Figure 7a, along with the curves predicted for an equivalent spherical grain with radius equal to Rσ. In both 
cases, the growth and dissipation curves for the aggregates lie well below the predicted values. The 
predicted fluctuation times  calculated using the aggregate equivalent radius (Eq. 12) are compared to 
the  fluctuation times  calculated from the intersection of the growth and dissipation curves in Fig 7b.  
It is interesting to note that though the charge on aggregate grains may be increased by as much as 20% 

00 4 dQ Rsp f= Ú
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FIG. 5.  Sample aggregates from the three populations, shown to scale.  (Left) Aggregates with monomer radius 
a = 500 nm, (Center) aggregates with monomer radius a = 1 µm, (Right) aggreagates with monomer radii ranging 
from 0.5 to 10 µm.  Superimposed on each aggregate is a sphere with radius equal to Rσ, as described in the text, 
and a sphere with radius R (centered at the aggregate’s center of mass) which just circumscribes the aggregate.  



compared to the charge on spherical grains, the calculated fluctuation times tend to be shorter by a factor 
of ~3 and may differ by nearly a factor of ten. This is significant because the timescale of fluctuations on 
small grains may then become comparable to the time scale on which particles approach and collide with 
each other, affecting their collision dynamics.  



 
 

 

 

FIG. 6. Average charge (a) and standard deviation of 
charge as a fraction of the predicted charge (b) for 
aggregates of spherical monomers with radius a, as 
indicated in the legend.  Data calculated for spheres 
using the DSM are shown by filled circles.  The lines 
in (a) and (b) are theoretical predictions for spherical 
grains, and insets show the charge mean and standard 
deviation  normalized by the predicted values.  All data 
shown above were generated for PPD plasma 
conditions. 

FIG. 7. (Color online) a) Characteristic times for 
growth and dissipation of charge fluctuations on 
aggregate grains consisting of 10 monomers with 
radius 𝑎	= 500 nm. The dashed lines are analytic results 
using τf calculated for an equivalent sphere, while the 
solid lines are from the analytic fits using τc determined 
from the point where the growth and dissipation curves 
intersect. b) Ratio of predicted and calculated 
fluctuation timescales for aggregates in LAB plasma 
conditions (red, open symbols) and  PPD plasma 
conditions (blue, filled symbols).  The larger, darker 
symbols are for aggregates with a = 1 µm; smaller, 
lighter symbols are for aggregates with a = 500 nm.  



V. EFFECTS OF DSC FLUCTUATIONS ON DYNAMICS AND AGGREGATION 
 

The primary difference between our method and previous methods, which treated discrete fluctuations 
of charge on a spherical grain, is the asymmetry in the electrostatic potential.  The deviation from spherical 
shells of constant potential can be quite significant, resulting in a strong non-uniformity on the charge 
distribution on the surface of the sphere.  Figure 8a shows the contour lines for a 100 nm grain with five 
electrons on its surface, charged in PPD plasma conditions yielding an average grain charge of 4.7 e-. 
While the resolution used is n = 10 patches, only five of the patches carry a charge.  A similar plot is 
shown for the same 100-nm grain under LAB plasma conditions where the average grain charge is 214 e- 
(Fig. 8b).  In this case the charge on each patch ranges from 15 e- to 30 e-, and the deviation from circular 
contour lines is much less pronounced.   

 
 

 
Previous studies have shown that the distribution of charge over an aggregate surface changes the 

morphology of grains produced through collisions, primarily due to rotations of the aggregates caused by 
the electrostatic torques [23], [24].  Thus it is of interest to determine the effects of the fluctuating charge 
distribution on aggregate growth.  The effect on the dynamics is determined by the relative charging 
timescale and the particle interaction time during collisions. If the charge fluctuation time is long 
compared to the interaction time, then the charge can be considered to be constant during the interaction.  
This was the case modeled in [12] for a PPD plasma using a model for continuous stochastic charging.  
However, this study did not take into account the charge distribution on spherical monomers, which were 
treated as point charges. If the charge fluctuation time is shorter than or comparable to the interaction time, 

FIG. 8.  Contour lines for the electrostatic potential.  Green lines show the potential contours for a point charge centered 
at the origin, black lines show the potential contours calculated for charge located at each patch point.  a)  Grain charged 
in PPD plasma condition where the average grain charge is 4.7 e-.  Here five of the patches, designated by the blue dots, 
have one electron. The patches indicated by the red dots have no charge. b) Grain charged in LAB plasma conditions 
with an average charge of 214 e-.  The patch charges range from 15 e- (red) to 30 e- (dark blue).   
 



then the charge will continuously change as the two 
particles approach, altering the forces and torques 
acting on the two particles.  This is the case for the 
LAB plasma conditions.   

Here we examine aggregation in the two different 
plasma environments, modeling the growth through 
the addition of single spherical monomers, or particle-
cluster aggregation (PCA). Three different models of 
charge interactions are examined and compared to the 
coagulation of uncharged particles, as illustrated in 
Figure 9: 

  
Neutral:  The aggregates are not charged. 
Average: The time-averaged charge on each aggregate 

is used – no stochastic fluctuations are 
considered. 

Sphere:  The charge fluctuates stochastically, but only 
the average charge on each monomer is 
considered (i.e. spherical monomers are 
treated as point charges) 

Patch:   The charge fluctuates stochastically, and the 
surface charge on each patch is considered in 
calculating the forces and torques (therefore 
spheres will have higher-order multipole 
moments). 

 
A target particle is placed with its center of mass at the origin, and an incoming particle short towards 

the target from a rancom direction. The average equilibrium charge on the grains is estimated for the given 
plasma conditions by balancing the electron and ion currents to determine the grain potential.  Since we 
want to detect events which lead to collisions, the incoming particle is placed at a distance 
, where R is the maximum radius of the target aggregate, as indicated in Fig. 5, and given a velocity 
directed towards the origin plus  a random offset vector up to  in magnitude. As we are interested 
in detecting collisions which lead to growth, the magnitude of the incoming particle’s velocity vCoul is just 
large enough to overcome the Coulomb potential barrier at a distance , calculated using the 
average charge of each particle. Each particle is then charged employing the DSC algorithm for a 
sufficiently long time to cover several charge fluctuations of magnitude 1σ, such that each particle has an 
initial random deviation from the average charge.   

In the LAB plasma, we consider 25 nm melamine formaldehyde spheres (n = 10 patches) with mass 
density ρ = 1500 kg/m3.  The fluctuation time is on the order of 100 ns, which is comparable to the 
modeled interaction time . In the Sphere and Patch models, the charge is allowed to 
change during the interaction by calling the DSC algorithm and allowing fluctuations to occur (adding 
one electron or one ion each random time step) until the elapsed charging time equals the dynamic time 
step. In the PPD environment we model the dynamics and growth of silicate grains with mass density ρ = 
2500 kg/m3 using monodisperse spheres with a = 100 nm (n = 10 patches).  In this case, is on the order 
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FIG. 9.  (Color online) Four different charging 
cases considered in the aggregate dynamics. (a) 
All particles are uncharged, (b) the time-averaged 
charge is applied to each spherical monomer, (c) 
the total charge on each monomer fluctuates in 
time, (d) the charge on each patch fluctuates in 
time.  For the spheres, red indicates a large 
(negative) charge and blue indicates a small 
(negative) charge.  For the patches, red indicates 
the largest negative charge, and blue is the largest 
positive charge.  
 



of tenths of seconds while the interaction time τd is on the order of milliseconds. The charge is allowed to 
fluctuate with the Sphere and Patch models, but this happens infrequently as τd < τc.   

After each collision, the charge on the new aggregate is obtained by running the DSC algorithm for a 
time long enough to cover several fluctuations of magnitude 1σ.  A new monomer (with randomized 
charge) is set at a random incoming direction and shot towards the target. Aggregates are built up to 25 
monomers in size, with more than 100 aggregates built for each case.  

To speed up the calculations, outside of a distance of 4R, where R is the maximum radial extent of the 
target particle measured from the center of mass (COM) (see Fig. 5), multipole expansions of the particles’ 
potentials (up to the quadrupole terms) are used to calculate the electrostatic forces and torques acting on 
each aggregate.  Inside this distance, either the charge on each monomer (Average, Sphere) or the charge 
on each patch (Patch) is used to calculate the electric fields [24]. 

Figures 10-12 compare the physical characteristics of the aggregates formed using the different 
charging cases in both plasma environments.  In all three figures, the data points represent the average 
quantity for all aggregates with 𝑁 monomers.  One characteristic of particular interest for aggregate 
growth is porosity, or the amount of empty space, as this controls how well an aggregate couples to the 
gas and the surface area available for holding charge.  The equivalent radius can be used to define the 
compactness factor  which is the ratio of the volume of the constituent monomers to the volume of a sF

FIG. 10.  Compactness factor as a function of the 
number of monomers for (a) LAB plasma and (b) PPD 
plasma. 

FIG. 11. Aggregate size as a function of the 
number of monomers N for (a) LAB plasma, (b) 
PPD plasma.  The upper curves designate the 
average maximum radial extent, R, measured 
from the center of mass, while the lower curves 
show the average equivalent radius Rσ.   
 



sphere of radius Rσ [22].  Thus a sphere has a compactness factor of one, while < 1 for a fluffy, porous 
aggregate. As expected, charged grains are “fluffier” than uncharged grains as seen by the decreased 
compactness factor (Fig. 10), and the aggregates built with stochastic variations (Patch and Sphere cases) 
have the lowest (though indistinguishable) compactness factors.  Plots of the average aggregate size as a 
function of the number of monomers are shown in Figure 11.  Although Rσ is almost identical for each of 
the four cases on the scale shown, the maximum radial extent of the aggregates, R, is quite different.  The 
differences between the different charging models are more clearly seen in plots of Rσ /R (Figure 12), 
which is used as a proxy for the aspect ratio of the aggregates.  In both the LAB plasma and PPD plasma 
conditions, taking into consideration the fluctuations at each point on the surface (Patch) resulted in 
aggregates with the largest aspect ratios.  It is of interest to note that in the LAB plasma, where the 
fluctuation time is shorter than or comparable to the dynamical timescale for the particle interaction, the 
difference between the time-averaged charge (Average) and the charge on each monomer (Sphere) is 
small.  

 
Sample aggregates from the Patch, Average, 

and Neutral cases for the PPD plasma conditions 
are shown in Figure 13, which illustrates the 
difference in aspect ratios.  Here each aggregate 
has been rotated so that the direction of maximum 
extent (as measured from the COM) lies along the 
x-axis. As shown, the aggregate built with the 
Patch charge variations is much more elongated 
(Figure 13a). 

A consequence of the increased aspect ratio of 
the aggregates is that the incoming monomers are 
more likely to approach from a direction where 
they cannot overcome the Coulomb repulsion 
barrier before making contact with the target 
aggregate.  Thus the number of interactions 
between grains which do not lead to collisional 
growth increases as the aggregates grow.  The 
average cumulative number of misses in growing 
to an aggregate size of N monomers is shown in 
Fig. 14. The average number of missed collisions 
is the same for all of the charged grain models 
when the grains are small, but after reaching a 
certain size (or aspect ratio) the grains with 
fluctuating charges (Patch and Sphere models) are 
less likely to collide. 

 
    

sF

FIG. 12.  Ratio of the maximum radial extent to 
the equivalent radius as a function of the number 
of monomers for (a) LAB plasma, and (b) PPD 



 
 

 
 

  

FIG. 13.  Comparison of aggregates built using the different charging models in PPD plasma conditions. All 
aggregates have 25 monomers. a) Patch charge with DSC, b) constant Average charge, c) Neutral.  The inner 
sphere shows the extent of 𝑅0, which is approximately equal for the three aggregates, while the outer sphere 
indicates the maximum radial extent.   

(a) (b) (c) 

FIG. 14.  Cumulative number of misses in 
building aggregate to N monomers for (a) 
LAB plasma and (b) PPD plasma.  



VI. CONCLUSION AND DISCUSSION 
 

We have presented a numerical model that allows examination of the charge fluctuations on the surface 
of an aggregate grain created by discrete stochastic charging and the effect these fluctuations have on the 
overall dynamics of the aggregation process.  The discrete stochastic method (DSM) considers additions 
of single electrons or ions to patches on the surface of an aggregate based on calculated electron and ion 
currents to the surface points. The model recovers the results previously derived for spherical grains, 
where the sphere was treated as an isopotential surface [2]–[5].  It is shown that the mean and standard 
deviation of charge on aggregate grains follows the same trends as those predicted for spheres having an 
equivalent radius. 

An underlying assumption in the DSM is that the charging currents vary linearly with the grain charge, 
which leads to a minimum grain size which can be accurately treated by this method [5].  Here we have 
applied this minimum size criterion to the patches, thus the DSM becomes less accurate as the number of 
patches on the surface of the grain is increased (Figure 3). However it is important to note that the accuracy 
of the charge calculation using OML_LOS increases as the number of patches is increased for two reasons.  
First, the contribution to the patch potential from the charge on a patch itself is approximated assuming 
the patch boundary is essentially circular.  This assumption becomes less accurate as the number of patches 
decreases (with the exception being that it is exact for n = 2).  Second, for aggregate grains, the maximum 
number of patches used must be balanced against the minimum number of patches required to resolve the 
LOS_factor.  In order to accurately resolve the blocked lines of sight, the patch size needs to be comparable 
to the size of the smallest monomer (in the case of a polydisperse distribution of monomers) where in this 
case, .  This can lead to a contradiction where nmin > nmax, in which case a compromise 
must be reached.  Fortunately, the two constraints offset each other to a certain extent since using too 
many patches on the surface results in an over-estimation of the average charge on a particle (i.e., for a 
negatively charged grain, the number of electrons), while using too few patches results in the charge being 
underestimated, since additional LOS are blocked. The simulations presented here show that good results 
can be obtained for n as small as 10.  

When applying the DSM to aggregate grains, the average charge on the aggregates tends to be greater 
than the average charge collected by spherical grains, primarily due to the increased surface area as 
previously reported  [15], [18].  The primary difference between aggregates and spherical grains lies in 
the nature of the charge fluctutations, which differ two ways.  The first is that the standard deviation in 
the charge on aggregate grains tends to be greater than that predicted for a sphere of equivalent size (Figure 
6). The second is that the time scale of the fluctuations on aggregates tends to be shorter than that for a 
sphere of equivalent size (Figure 7). While the mean aggregate charge and its standard deviation may 
differ by as much as 20% from that on a spherical grain, the time scale of the fluctutations can differ by a 
factor of three to ten.   

While it is generally accepted that the distribution of charge over the irregular surface of an aggregate 
grain can influence its growth process, here we show that an uneven distribution of charge on a spherical 
grain due to charge fluctuations (Figure 8) can also impact both the growth process and physical 
characteristics of the aggregates.  In particular, this irregular distribution of charge tends to produce 
aggregates which are much more linear or filamentary (see Figures 12 and 13).  This becomes most 
important for submicron-sized grains  in environments where the charge fluctuations occur on timescales 
similar to the dynamical time scales. Additionally, at some point in the growth of filamentary aggregates, 
the collection of monomers becomes less efficient (Fig. 14), slowing the rate of growth or even halting it.   
The precise point at which this effect becomes important in an environment will depend on many factors 

( )2max min2n a a=



including coupling with the gas, the relative velocities between grains, other forces acting on the grains, 
and the number density of solid particles.   

These results may partly explain the observations of recent experiments wherein ice aggregates were 
grown from water vapor injected in an RF discharge.  The aggregates vary in both size and aspect ratio as 
the background gas pressure and type of gas is varied, having greater aspect ratios in lighter-mass gases 
and lower gas pressures [25], [26].  Both of these observations may be partly explained by the charge 
fluctuations occurring on the surface of the smallest ice droplets as they condense out of the vapor.   As 
the ion mass increases, the average charge on the grains increases, resulting in smaller charge fluctuations. 
Such smaller fluctuations mean that the dynamics will be more similar to those observed for the Sphere 
or Average cases, resulting in less linear aggregates.  As seen in Eq. 13, the fluctuation timescale is 
inversely proportional to the plasma density.  Thus, as the pressure is decreased, the fluctuation timescale 
increases, allowing the fluctuations to have greater influence on the dynamics, as seen in the Patch case, 
which formed elongated aggregates.  Of course, it should be noted that the aggregates in these experiments 
were formed in and aligned with a vertical electric field, which is required to levitate the grains against 
gravity. Thus collisions may occur along a preferred direction, increasing the overall linearity of the 
aggregates. 

The morphology of grains can have important implications in in many astrophysical environments.  
Most simulations which include the effects of dust in protoplanetary disks assume the dust to be spherical 
particles, though the polarization of sunlight from cometary dust (comets being the most primitive bodies 
in the solar system) suggests the presence of dust particles with ellipsoidal shapes and aspect ratios of 3:1 
[27]. The shape and porosity of grains determine the coupling of the grains with the gas, affecting the rate 
of growth of the aggregates [28]–[30].  In turn, aggregate dust grains absorb charged particles more 
efficiently than solid spheres, affecting the degree of ionization of gases in protoplanetary disks. The 
ionization levels affect the coupling of magnetic fields to the disk gas, and as the turbulent gas flows drive 
the collisional growth of grains, the  charge on the grains is an important feedback mechanism in disk 
processes [31]–[33].  Another area of interest is the dust in the interstellar medium (ISM).  It has long 
been recognized that the polarization of light passing through the ISM indicates that the dust grains are 
elongated with their long axes aligned perpendicular to the magnetic field [34]. Measurements in 
frequency bands dedicated to Cosmic Microwave Background studies have also shown strong evidence 
for a grain alignment mechanism throughout the ISM [35].  Charging of grains by photoemission is the 
main source of heating in the interstellar medium (ISM) (see [36] and the references therein), so a 
description of charging of irregular small particles could have profound implication for our understanding 
of the dynamical evolution of the ISM.  
 

 
ACKNOWLEDGMENTS 

Support from NSF/DOE Grant Nos. PHY-1414523 and PHY-1414552 is gratefully acknowledged.   
 
REFERENCES 
 
[1] Morfill, G. E., E. Grün, & T. V. Johnson, Planet. Space Sci. 28, 1087 (1980). 
[2] Draine, B. T. and B.  Sutin, Astrophys J, 320, 803 (1987). 
[3] Cui, C. and J. Goree, IEEE Trans. Plasma Sci. 22, 151 (1994). 
[4] Matsoukas, T. and M. Russell, J. Appl. Phys. 77, 4285 (1995). 
[5] Matsoukas, T. and M. Russell, Phys. Rev. E 55, 991 (1997). 
[6] Shotorban, B., Phys. Rev. E 83, 066403 (2011). 



[7] Shotorban, B., Phys. Plasmas 19, 053702-053702-6 (2012). 
[8] Selwyn, G. S., J. Singh, and R. S. Bennett, J. Vac. Sci. Technol. Vac. Surf. Films 7, 2758 

(1989). 
[9] Boufendi, L. and A. Bouchoule, Plasma Sources Sci. Technol. 3, 262 (1994). 
[10] Chai, K.-B. and P. M. Bellan, Geophys. Res. Lett. 40, 2013GL058268 (2013). 
[11] Sayes, C. M. et al., Inhal. Toxicol. 22, 348 (2010). 
[12] Matthews, L., B. Shotorban, and T. W. Hyde, Astrophys. J. 776, 103 (2013). 
[13] Matthews, L. S. and T. W. Hyde, IEEE Trans. Plasma Sci. 32, 586 (2004). 
[14] Ivlev, A. V., G. E. Morfill, and U. Konopka, U. Phys. Rev. Lett. 89, 195502 (2002). 
[15] Ma, Q., L. S. Matthews, V. Land, and T. W. Hyde, Astrophys. J. 763, 77 (2013). 
[16] Allen, J. E., Probe theory - the orbital motion approach. Phys. Scr. 45, 497 (1992). 
[17] Laframboise, J. G. and L. W. Parker, Phys. Fluids 16, 629 (1973). 
[18] Matthews, L. S., V. Land, and T. W. Hyde, Astrophys. J. 744, 8 (2012). 
[19] Van Kampen, N. G., Stochastic Processes in Physics and Chemistry. (Elsevier, Amsterdam, 

2007). 
[20] Gillespie, D. T., J. Comput. Phys. 22, 403 (1976). 
[21] Gillespie, D. T., Annu. Rev. Phys. Chem. 58, 35 (2007). 
[22] Paszun, D. and C. Dominik, Astron. Astrophys. 507, 1023 (2009). 
[23] Matthews, L. S. and T. W. Hyde, New J. Phys. 11, 063030 (2009). 
[24] Matthews, L. S., D. A. Coleman, and T. W. Hyde, IEEE Trans. Plasma Sci. 44, 519 (2016). 
[25] Chai, K.-B. and P. M. Bellan, Astrophys. J. 802, 112 (2015). 
[26] Chai, K. B., IEEE Trans. Plasma Sci. PP, 1 (2017). 
[27] Greenberg, J. M.  and J. I. Hage, Astrophys. J., 361, 260, (1990). 
[28]   Ormel, C. W., M. Spaans, and A. G. G. M. Tielens, Astron. Astrophys, 461, 18 (2007). 
[29] Gunkelmann, N., C. Ringl, and H. M. Urbassek, Astron. Astrophys., 589, A30, (2016). 
[30] Okuzumi, S., H. Tanaka, and M. Sakagami, Astrophys. J., 707, 1247, (2009). 
[31] Simon, J. B., X.-N. Bai, K. M. Flaherty, and A. M. Hughes, ArXiv171104770 Astro-Ph, 

(2017). 
[32] Turner, N. J., S. Fromang, C. Gammie, et al., Protostars and Planets VI, eds. H. Beuther, 

R. S. Klessen, C. P. Dullemond, and T. K. Henning, University of Arizona Press, (2014). 
[33] Okuzumi, S., Astrophys. J., 698, 1122 (2009). 
[34] Davis, L. and J. L. Greenstein, Astrophys. J., 114, 206, (1951). 
[35] Benoît, A., et al., Astron. Astrophys., 424, 2, 571–582, (2004). 
[36] Weingartner, J. C. and B. T. Draine, Astrophys. J. Suppl. Ser., 134, 263, (2001). 
 


