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Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas
in the strong-field regime, where collective plasma scales are not well-separated from relativistic-
quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions
between charged bosons and electromagnetic fields. To solve this model on a computer, we first
discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior
calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-
statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using
classical field equations obtained by extremizing the discrete action. To demonstrate the capability
of our numerical scheme, we apply it to two example problems. The first example is the propagation
of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The
second example is an intense laser interacting with a 1D plasma slab, where we demonstrate natural
transition from wakefield acceleration to pair production when the wave amplitude exceeds the
Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation
laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain
decomposition, and the ensemble may be computed using quantum parallelism in the future.

I. INTRODUCTION

Lattice QED, a scheme usually used to study vacuum
quantum electrodynamics, can also be used to simulate
plasmas. By allowing for dynamical background fields,
we remove unnecessary restrictions on field configura-
tions, making lattice QED a useful tool also for plasma
physics, especially when plasmas are dense or when fields
are strong. Under these extreme conditions where col-
lective QED effects are important, the commonly adop-
ted classical plasma kinetic model is no longer sufficient.
An example is the production of electron-positron pairs
when intense lasers interact with plasma targets [1–4].
To describe such phenomena in the classical framework,
source terms must be inserted into kinetic or fluid equa-
tions [5–9], which can then be solved by numeric integra-
tion [10, 11] or QED-PIC simulations [12–14]. However,
prefabricated source terms take little account of the in-
terplay between coexisting processes [15], which may in-
terfere quantum mechanically. While classical approxim-
ations may be applicable when scales are well separated,
large source-term errors are expected when fields, such as
those of x-ray lasers, evolve on scales comparable to in-
trinsic QED scales. Moreover, in classical treatments,
there is no obvious way to conserve both energy and
momentum, when strong fields produce pairs or when
particles radiate high-energy photons. Although errors
may be tolerable in some cases, disrespecting energy-
momentum conservation will likely have nonphysical con-
sequences. Therefore, lattice QED is in fact an indispens-
able tool when relativistic-quantum and collective effects
are both important.
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While lattice simulations may be unfamiliar for plasma
physics, they have been used extensively in quantum
chromodynamics (QCD) to describe the strong inter-
action [16] and quark-gluon plasmas [17, 18]. In con-
ventional lattice-QCD simulations, quantum correlation
functions are computed using numerical path integrals,
from which observables are extracted as coefficients of
scaling laws [19]. This scheme can be analytically con-
tinued to imaginary time to describe statistical systems
in thermal equilibrium [20]. For out-of-equilibrium sys-
tems, real-time simulations can be carried out using the
Schwinger-Keldysh time contours [21, 22]. The above for-
mulations, based on numerical path integrals, are capable
of capturing genuine quantum loop effects, but are nu-
merically expensive. Fortunately, the computational cost
can be dramatically reduced when the occupation num-
bers of quantum states are high and when the coupling
is weak. This is precisely the case for plasma physics,
where a large number of particles are present, and the
coupling coefficient e ≈ 0.3 is small. In this classical-
statistic regime, tree-level effects dominate loop effects
[23–27], and the quantum system can be adequately de-
scribed by time-advancing the classical field equations
with an ensemble of statistically equivalent initial con-
ditions [28–31]. Based on this approach, lattice spinor-
QED simulations have been carried out to demonstrate
production of fermion pairs from the vacuum by self-
consistent background electric fields [32–34]. However,
the role of non-vacuum plasma backgrounds during pair
production has not been investigated.

In this paper, we demonstrate plasma effects during
pair productions using the scalar-QED model. Keeping
in mind that the derivation for spinor QED proceeds ana-
logously, the scalar-QED model enables a clean demon-
stration of collective plasma effects, without the com-
plication of spin and chiral effects associated with Dirac
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fermions [35–38]. The scalar-QED model governs inter-
actions between electromagnetic (EM ) fields and spin-0
charged bosons, such as charged pions or Cooper pairs.
Although laboratory plasmas are typically made of spin-
1/2 charge fermions, classical plasma physics takes no ac-
count of particle spin-statistics at all. Therefore, lattice
scalar QED, which has been used to study laser-plasma
interactions [39, 40], provide a sufficient demonstration.
In the classical-statistics regime, scalar QED is governed
by the Klein-Gordon-Maxwell (KGM) equations

(Dζ,µD
µ
ζ +m2

ζ)φζ = 0, (1)

∂µF
µν = jν , (2)

where we have used the natural units ~ = c = ε0 = 1.
In the above equations, φζ is the complex scalar field,
describing spin-0 bosons of species ζ, whose charge is qζ
and mass is mζ . The real-valued 1-form Aµ is the gauge
field, describing spin-1 bosons, and Fµν = ∂µAν − ∂νAµ
is the field strength tensor. Charged bosons couple to
the gauge field through the covariant derivative Dζ,µ =
∂µ−iqζAµ, and the gauge field couples with charged fields
through the gauge-invariant current density

jν =
∑
ζ

qζ
i

[
φ̄ζ(D

ν
ζφζ)− c.c.

]
, (3)

where φ̄ζ denotes complex conjugation of φζ . By the
famous Klein paradox [41], the charged scalar field φζ
cannot be interpreted as the probability amplitude of
a single particle. A more appropriate interpretation
is that the classical field φζ is intrinsically a many-
particle field, which can be represented as φζ(x) =∫ √

V Φζ(x, x2, x3, . . . ), where Φζ(x, x2, x3, . . . ) is the
symmetrized many-body wave function, and the integ-
ration is carried out on the many-body configurations
space [40]. Regardless of the interpretation, we can solve
the KGM equations as coupled partial differential equa-
tions, whose solutions model the tree-level behavior of
charged bosons interacting with EM fields.

This paper is organized as follows. In Sec. II, we de-
velop a variational algorithm for solving the KGM equa-
tions. In Sec. III, we apply this algorithm to two ex-
ample problems in plasma physics. The first example is
the propagation of linear waves, where we compare nu-
merical spectra with analytical dispersion relations. The
second example is wakefield acceleration and pair produc-
tion, when intense lasers interact with a 1D plasma slab.
Conclusion and discussion are given in Sec. IV. In Ap-
pendix A, we discuss local conservation laws underlying
our algorithm. In Appendix B, we summarize an explicit
numerical scheme using the Lorenz gauge condition.

II. VARIATIONAL ALGORITHM

In the continuum, the KGM equations can be derived
from the action S =

∫
d4xL, where the Lorentz invariant

and U(1)-gauge invariant scalar-QED Lagrangian

L = (Dµφ)(Dµφ)−m2φ̄φ− 1

4
FµνF

µν . (4)

Here we have omitted the species subscript ζ, and the
summation of charged species is implied. By Noether’s
theorem, the U(1)-gauge symmetry of the action

φ→ φeiqα, Aµ → Aµ + ∂µα, (5)

implies charge conservation ∂µj
µ = 0, where the cur-

rent density jµ is given by Eq. (3). Similarly, by the
Lorentz symmetry, energy and momentum are also con-
served ∂µT µν = 0, where the gauge-invariant stress-
energy tensor

T µν = (Dµφ)(Dνφ) + (Dµφ)(Dνφ)

+ FµσF ν
σ − gµνL. (6)

Here, gµν is the Minkowski metric with characteristics
(+,−,−,−). This scalar-QED theory, omitting the φ4

self-coupling, is the underlying model of our algorithm
on the discrete spacetime lattice. In fact, a variational
algorithm for solving the KGM equations has already
been developed in the numerical analysis community [42],
which shows superior charge conservation property when
gauge symmetry is respected. In this paper, we rederive
the variational algorithm in arbitrary gauge, using local
energy conservation to justify the choice of Yee-type ac-
tion [43] over Wilson-type action [16], and emphasize on
the application of such algorithm to plasma physics.

A. Discretization of fields and action

To solve the continuous system numerically, let us dis-
cretize the spacetime manifold. Here we use a rectangular
lattice, keeping in mind that other lattices are also viable.
Then the scalar field φ, namely, a 0-form, naturally lives
on the vertexes of the discrete manifold

φni,j,k := φ(tn, xi, yj , zk), (7)

where (tn, xi, yj , zk) is the coordinate of the vertex. In
comparison, the gauge 1-form A = Aµdx

µ naturally lives
along the edges of the discrete spacetime manifold. For
example, the t- and x-components

A
n+ 1

2

i,j,k := +A0(tn +
∆t

2
, xi, yj , zk), (8)

Ani+ 1
2 ,j,k

:= −A1(tn, xi +
∆x

2
, yj , zk), (9)

where ∆t = tn+1−tn and ∆x = xi+1−xi. The minus sign
comes from the Minkowski metric gµν , which lower the
index Aµ = gµνA

ν . In the above discretization, a half-
integer index indicates which edge does the field resides

along. For example, A
n+1/2
i,j,k resides along the edge con-

necting vertices (tn, xi, yj , zk) and (tn+1, xi, yj , zk), and
is therefore the A0 component of A. Notice that since A
is a 1-form living along edges, only one of its four indices
can take half-integer values, while the other three indices
must take integer values. Moreover, to each edge of the
lattice, the discrete 1-form only assigns the component
of A that is parallel to this edge (Fig. 1), while other
components of A are not assigned.
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FIG. 1. Discretization of the txy-submanifold of spacetime us-
ing a rectangular lattice. The discrete function φv lives on the
vertexes (blue squares). For example, φn

i,j,k = φ(tn, xi, yj , zk)
lives on the vertex (n, i, j, k). The discrete 1-form Ae lives
along edges (red circles). For example, the t-component

A
n+1/2
i+1,j,k = A0(tn + ∆t/2, xi+1, yj , zk) lives along the time-like

edge connecting vertexes (n, i+ 1, j, k) and (n+ 1, i+ 1, j, k),
and the x-component An

i+1/2,j,k = −A1(tn, xi + ∆x/2, yj , zk)
lives along the space-like edge connecting vertexes (n, i, j, k)
and (n, i+1, j, k). The discrete 2-form Ff lives on faces (green

crosses). For example, electric field E
n+1/2

i+1/2,j,k = Ex(tn +

∆t/2, xi + ∆x/2, yj , zk) lives on the time-like face spanned
by vertexes (n, i, j, k), (n + 1, i, j, k), (n + 1, i + 1, j, k) and
(n, i + 1, j, k); magnetic field Bn+1

i+1/2,j+1/2,k = Bz(tn+1, xi +

∆x/2, yj + ∆y/2, zk) lives on the space-like face spanned by
vertexes (n+ 1, i, j, k), (n+ 1, i, j+ 1, k), (n+ 1, i+ 1, j+ 1, k)
and (n+ 1, i+ 1, j, k).

Now that we have discretized the fields, the gauge-
covariant derivatives can be computed using the Wilson’s
lines [16]. Since the gauge-covariant derivatives are 1-
forms, they also lives along edges when discretized. For
example, the t- and x-components of the pull-back gauge
covariant derivatives are

(D<
0 φ)

n+ 1
2

i,j,k =
1

∆t

(
φn+1
i,j,ke

−iq∆tA
n+1

2
i,j,k − φni,j,k

)
, (10)

(D<
1 φ)ni+ 1

2 ,j,k
=

1

∆x

(
φni+1,j,ke

−iq∆xAn

i+1
2
,j,k−φni,j,k

)
.(11)

These pull-back covariant derivatives transform under
the discrete U(1)-gauge symmetry [Eqs. (A3)-(A5)] as
φni,j,k [Eq. (A6)]. Analogously, one can define push-
forward covariant derivatives, which we shall not use in
this paper. The gauge field A serves as the 1-form de-
fining the connection on the U(1)-bundle, which enables
parallel transport φ on the spacetime manifold.

To compute the field strength tensor Fµν , notice that
F = dA is the curvature 2-form and hence lives on faces
of the lattice upon discretization. For example, the time-
like component F01 = E1 is the electric field in the x-
direction, which can be computed by

E
n+ 1

2

i+ 1
2 ,j,k

=
An+1
i+ 1

2 ,j,k
−An

i+ 1
2 ,j,k

∆t
−
A
n+ 1

2

i+1,j,k−A
n+ 1

2

i,j,k

∆x
. (12)

This component lives on the time-like face spanned by
four vertices (n, i, j, k), (n, i + 1, j, k), (n + 1, i + 1, j, k),

and (n + 1, i, j, k). Analogously, we can compute the
space-like components of F . For example, F12 = −B3 is
the magnetic field in the z-direction

−Bni+ 1
2 ,j+

1
2 ,k

=
1

∆x

(
Ani+1,j+ 1

2 ,k
−Ani,j+ 1

2 ,k

)
− 1

∆y

(
Ani+ 1

2 ,j+1,k−A
n
i+ 1

2 ,j,k

)
. (13)

This z -component of the magnetic field lives on the space-
like face spanned by four vertices (n, i, j, k), (n, i+1, j, k),
(n, i+ 1, j+ 1, k) and (n, i, j+ 1, k). Notice that the sign
of the discretized F is determined by the orientation of
the face. Since the above discretization respects geomet-
ric structures of exterior calculus, the Bianchi identities,
namely, ∇ ·B = 0 and the Faraday’s law, are automatic-
ally and exactly satisfied (Appendix A).

Using the discrete gauge-covariant derivatives and the
discrete field strength, the action can be discretized by

Sd =
∑
c

∆V Ld[φv, Ae], (14)

where φv and Ae are the discrete fields. Here the sub-
script v denotes vertexes, and e denotes edges. In the
discrete action, ∆V is the volume 4-form, and the sum-
mation runs over all cells of the lattice. In each unit cell,
the discrete Lagrangian function

Ld = (Dµφ)e(D
µφ)e −m2φ̄vφv +

1

2
(E2

f −B2
f ), (15)

where summations over unique e, v, and f are implied.
Here, the subscript f denotes faces. Notice that in favor
of local energy conservation, we choose the non-compact
FµνF

µν instead of the standard Wilsonian plaquettes
Re[1−exp(ieFµν∆µ∆ν)] for the gauge sector. The Wilso-
nian formulation is numerically convenient, because it
uses gauge links Uν = exp(ieAν∆ν) and thereby avoids
computing exponentiations. However, this compact for-
mulation introduces an O(∆2) local energy error, which
can be eliminated using our non-compact formulation,
when the coupling goes to zero (Appendix A). Since cap-
turing long-time dynamics accurately is what concerns
real-time lattice simulations, we choose local energy con-
servation over numerical convenience.

B. Equations of motion for discrete fields

Having discretized the action, the classical equation of
motion (EOM) for the discrete field φv can be obtained
by extremizing Sd. Taking variation with φ̄v and set
δSd/δφ̄v = 0, a discrete version of Eq. (1) is

1

∆t2

(
φn+1
s e−iq∆tA

n+1
2

s − 2φns + φn−1
s eiq∆tA

n− 1
2

s

)
(16)

=
1

∆2
l

(
φns+le

−iq∆lA
n

s+ l
2 −2φns + φns−le

iq∆lA
n

s− l
2

)
−m2φns ,

where the time index is explicit, the vertex-centered spa-
tial index is abbreviated as s = (i, j, k), and summations
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over l = i, j, k directions are implied. By taking vari-
ation with φv, we can obtain the EOM for φ̄v, which is
the complex conjugation of the above equation. The fi-
nite difference equation (16) is centered around vertexes,
and couples φv with its eight nearest neighbors though
Ae, as illustrated by Fig. 2(a) in the tx-submanifold.

To find the equation for the electric field, take variation

of Sd with respect to the time-like component A
n+1/2
s .

Setting δSd/δA
n+1/2
s = 0, we obtain a discrete version of

the Gauss’ law, centered along time-like edges

1

∆l

(
E
n+ 1

2

s+ l
2

− En+ 1
2

s− l
2

)
= Jn+1/2

s . (17)

The charge density 1-form J
n+1/2
s is the hodge dual of

the charge density 3-form j0 = ?j0, discretized by

Jn+1/2
s =

iq

∆t

(
φ̄n+1
s eiq∆tA

n+1
2

s φns − c.c.
)
. (18)

When there are multiple charged species, the right-hand
side (RHS) should sum over charge densities of all species.
In Fig. 2(b), we illustrate the coupling pattern of the
above finite difference equation.

To find the equations involving components of the
magnetic field, take variation of Sd with respect to the
space-like components Ans+l/2. For example, by setting

δSd/δA
n
i+1/2,j,k = 0, we obtain an equation advancing Ei

in time by

E
n+ 1

2

s+ i
2

− En−
1
2

s+ i
2

∆t
= εijk

Bn
r− k

2

−Bn
r− k

2−j

∆j
+ Jns+ i

2
. (19)

Here, r = (i + 1/2, j + 1/2, k + 1/2) is the abbreviated
index for the body center, εijk is the Levi-Civita symbol,
and summations over repeated indexes are implied. The
current density 1-form Jns+i/2 is the hodge dual of the

current density 3-form ji = ?ji. The hodge dual gives
rise to a negative sign, so that the x -component of the
current density −jx is discretized by

Jn
s+ l

2
=

iq

∆l

(
φ̄ns+le

iq∆lA
n

s+ l
2 φns − c.c.

)
. (20)

The finite difference equation (19) is the discrete ver-
sion of the Maxwell-Ampère’s law ∂tEi = εijk∂jBk − ji
centered around space-like edges, whose coupling pattern
is illustrated in Fig. 2(c). When computing the RHS,
summation over charged species is implied.

In order to advance the above finite difference equa-
tions in time, we need to fix a gauge to eliminate the extra
degree of freedom. Since the discrete action Sd is U(1)-
gauge invariant (Appendix A), we can choose any gauge.
For example, one convenient choice is the Lorenz gauge
∂µA

µ = 0. When discretized, the Lorenz gauge condition

allows time advance A
n−1/2
s → A

n+1/2
s in a very simple

way [Fig. 2(d), Eq. (B2)]. Another convenient choice is

the temporal gauge A0 = 0. When discretized, A
n+1/2
s

remains zero on all time-like edges.

FIG. 2. Coupling pattern of φv (blue squares), Ae (red circles)
and Ff (green crosses) in the tx-submanifold. (a) The discret-
ized KG equation [Eq. (16)] couples φv with its nearest neigh-
bors though Ae. (b) The discretized Gauss’ law [Eq. (17)]
couples Ei−1/2 and Ei+1/2 through φv, centered around the
common time-like edge. (c) The Maxwell-Ampère’s law

[Eq. (19)] couples En+1/2 to En−1/2 through φv and Bn (not
depicted here), centered around the common space-like edge.
(d) The Lorenz gauge condition couples Ae’s that share the
same vertex.

Having obtained discrete equations and fixed the
gauge, an explicit time advance scheme can be construc-
ted (Appendix B). We first initialize the simulation by
giving values of φns at both n = 0 and n = 1 for every
spatial lattice points s. This is necessary because the
KG equation [Eq. (1)] is a second order partial differen-
tial equation and therefore needs two initial conditions.
Similarly, we need to give initial values of Ae at n = 0
and n = 1/2. Second, we use the discrete Gauss’ Law
to calculate Ae at n = 1 by solving a system of lin-
ear equations [Eq. (B1), Fig. 2(b)]. Notice that the
continuous version of this equation can be written as
∂t∇ · A = −∇2A0 − ρ, where the RHS is known. Be-
cause the unknowns on the left-hand side (LHS) involve
only first order spatial derivative, the discrete Gauss’ law
couples less number of points than the discrete Poisson’s
equation, and is therefore easier to solve. Third, we use
the Lorenz gauge condition to advance (An−1/2, An) →
An+1/2 [Eq. (B2), Fig. 2(d)]. Fourth, we use the discrete
KG equation to calculate φn+1 in terms of φn and φn−1

[Eq. (B3), Fig. 2(a)]. This involves exponentiation of
An and An+1/2, whose values are already known at this
step. Simultaneously, we can compute An+1 in terms of
Ae at previous time steps [Eq. (B4), Fig. 2(c)], using the
discrete Maxwell-Ampère’s law. Notice that the discrete
Gauss’ Law is preserved during time advance, which is
a consequence of the discrete local charge conservation
law [Eq. (A8)]. Finally, having computed both φv and
Ae at t = n + 1, we can move forward in the time loop
by updating n → n + 1, with proper boundary condi-
tions supplied. In similar fashion, explicit time advance
schemes can be constructed when other gauge conditions
are used.
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FIG. 3. Time evolution scheme for discrete KGM equations
using the Lorenz gauge. As initial conditions, the values of
φv(n = 0) and φv(n = 1) are given (blue squares), so are
Ae(n = 0) and Ae(n = 1/2) (red circles). Then the Gauss’
Law [Eq. (17)] is used to calculate Ae(n = 1). On entering

the time loop, the first step is to calculate An+1/2 using the
Lorenz gauge condition. The second step is to use the KG
equation [Eq. (16)] to calculate φn+1, and concurrently, use
the Maxwell-Ampère’s law [Eq. (19)] to calculate An+1. The
time loop is advanced by n→ n+ 1 and then repeat.

III. NUMERICAL EXAMPLES

In this section, we demonstrate our numerical scheme
using two examples. The first example is the propagation
of linear waves, and the second example is laser-plasma
interaction in one spatial dimensional (1D).

A. Linear wave spectra

To test our code implementation, we compare numer-
ical spectra with analytical linear wave dispersion rela-
tions [39, 40, 44, 45]. For small-amplitude waves, the
dispersion relation constrains the wave frequency ω as
function of the wave vector k. In unmagnetized cold
scalar-QED plasma, the tree-level dispersion relation of
the transverse EM wave is

ω2 = ω2
p + k2, (21)

where ω2
p =

∑
ζ ω

2
pζ is the total plasma frequency, and

ω2
pζ = q2

ζnζ0/mζ is the plasma frequency of individual
charged species ζ. The other eigenmode is the longitud-
inal electrostatic wave, whose dispersion relation is

1 + χp = 0, (22)

where the cold plasma susceptibility

χp =
∑
ζ

ω2
pζ(k

2 − ω2 + 4m2
ζ)

(ω2 − k2)2 − 4m2
ζω

2
. (23)

The dispersion relation of electrostatic wave contains
three branches. The gapless branch is the acoustic wave,
the gapped low-frequency branch is the Langmuir mode,
and the gapped high-frequency branch is the pair mode.
While acoustic mode and Langmuir mode exist in clas-
sical plasmas, the pair mode only exists in relativistic-
quantum plasmas [46]. The pair mode can be excited
when gamma photons (ω > 2m) inelastically scatter in
high density plasmas, creating longitudinal oscillations in
which virtual pairs are created and annihilated to carry
the wave quanta.

We compute the numerical spectra in a single species
plasma, in which immobile ions serve as homogeneous
neutralizing background. To initialize the simulation
so that a broad spectrum of linear waves are excited,
the initial values of Ae are given using small amplitude
white noise with mean µ(Ae) = 0 and standard devi-
ation σ(Ae) = 10−4m. Assuming the charged field is
initially free, then its initial conditions can be given us-
ing the free field expansion φ(x) =

∫
d3p[ap exp(−ipx) +

b†p exp(ipx)](2π)−3(2Ep)−1/2, where px = Ept − p · x
is Minkowski inner product, and Ep =

√
p2 +m2 is

the relativistic energy corresponding to momentum p.
From the above expansion, the momentum space dis-
tribution functions for particles and antiparticles are
fa(p) = a†pap and the fb(p) = b†pbp, respectively. Con-
sider the simple example where the plasma is initially

FIG. 4. Power spectra (color) of the transverse electric field
Ey (a) and the longitudinal electric field Ex (b) are well-traced
by tree-level dispersion relations (black lines) up to the grid
resolution. The power spectra are averaged over an ensemble
of 100 simulations with statistically equivalent initial condi-
tions. In these simulations, immobile ion background is ho-
mogeneous. The charge q = 0.3, such that the fine structure
constant q2/4π ≈ 1/137 is physical. The unperturbed back-
ground plasma density is extremely high, such that the plasma
frequency ωp = 0.85m can be shown on the same scale as m.
The resolution m∆x = 0.04 and m∆t = 0.02. The number
of spatial grid point is L = 512, and the total number of
time steps, including the initial conditions, is T = 1024. The
dashed gray lines is the light cone.
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homogeneous and constituted of cold particles, namely,
fa(p) = n0δ

(3)(p) and fb(p) = 0, where n0 is the back-
ground plasma density. Then, the free charged field
φ(x) =

√
n0/2m exp(−imt + iα), where α is some ran-

dom phase. When discretized, this free field corres-
ponds to the initial conditions φ0

v =
√
n0/2m exp(iα)

and φ1
v = φ0

s exp(−im∆t). An ensemble of statistically
equivalent initial conditions can then be constructed by
randomly sample the phase α and the gauge field.

After advancing the initial conditions in time using
periodic boundary conditions, numerical spectra can be
read out from simulations by taking discrete Fourier
transforms of electric field components. Since the un-
magnetized plasma is isotropic, it is sufficient to read
out the dispersion relation in the tx -submanifold. In this
submanifold, the spectra of either Ey or Ez correspond
to the dispersion relation of transverse EM modes, and
the spectrum of Ex corresponds to the dispersion rela-
tion of longitudinal electrostatic modes. The ensemble-
averaged power spectrum of Ey [Fig. 4(a)] is indistin-
guishable from that of Ez, and is well-traced by the
analytical dispersion relation (black line) of the trans-
verse EM wave [Eq. (21)], until k∆x ∼ 1 where the
spatial resolution is no longer sufficient. Similarly, the
ensemble-averaged power spectrum of Ex [Fig. 4(b)] is
localized near three bands, corresponding to the cold
acoustic mode, the Langmuir mode and the pair mode
[Eq. (22)]. That the analytical dispersion relations are
recovered by numerical spectra indicates that our solu-
tions faithfully capture the propagation of linear waves
up to the grid resolution.

B. Laser-plasma interaction

Having verified our code implementation, let us study
laser-plasma interaction as another example, which can
no longer be described self-consistently under the clas-
sical framework once the laser wavelength becomes too
short or the field strength becomes too large. For illus-
trative purposes only, as opposed to suggesting a futur-
istic device, we use the example of gamma lasers to show
that our method now enables simulations in a regime that
was not accessible through previous methods.

Before discussing our simulations in the relativistic-
quantum regime, it is helpful to recall what happens in
the classical regime [47]. Classically, when the plasma
slab is under-dense, namely when the laser frequency
ω > ωp, much of the laser will travel through the plasma
slab, with some reflection and inverse Bremsstrahlung
absorption. In an initially quiescent slab, the laser will
propagate uneventfully, if its frequency stays away from
the two-plasmon-decay resonance, and its intensity is
not strong enough to grow instabilities within the pulse
duration. Beyond nonlinear wave instabilities, when
the laser field becomes relativistically strong, namely
when a = qE/mω & 1, the ponderomotive force of
a short laser pulse can expels a significant fraction of
plasma electrons and form wakefield [48]. The wake-

field can then accelerate particles, generating energetic
beams of particles and radiations trailing the laser pulse.
When the beams are energetic enough, they may pro-
duce gamma photons through synchrotron radiation or
Bremsstrahlung. The virtual gamma photons may then
decay into electron-positron pairs through the trident
process [49]. Alternatively, the on-shell gamma photons
may produce pairs when interacting with ion potentials
through the Bethe-Heitler process [50], or interacting
with other photons through the Breit-Wheeler process
[51]. Finally, when the laser field becomes even stronger,
namely when qE/m2 & 1, pairs may also be produced
directly through the Schwinger process [52].

Many aspects of laser-plasma interaction can be stud-
ied using our numerical scheme. Here, to validate that
our code can capture genuine relativistic-quantum ef-
fects, we select parameters in our 1D simulations to
demonstrate transition from wakefield acceleration to
Schwinger pair production as we increase the laser in-
tensity. Notice that in 1D, the phase space is highly
constrained. Using periodic boundary conditions in dir-
ections transverse to laser propagation, Schwinger pair
production by laser fields is suppressed. This is because
when transverse fields try to pull e−/e+ pairs apart,
their wave functions are enforced to be the same by the
periodic boundary condition, which prevents pairs from
emerging out of vacuum fluctuations. Therefore, in 1D
simulations, Schwinger pair production requires longit-
udinal field Ex. To generate Ex beyond the Schwinger
field Ec = m2/q through wakefield, the plasma density
must be extremely high. Heuristically, to produce on-
shell pairs, the critical electric field needs to separate the
pair by Compton wavelength 1/m within the Compton
time T ∼ π/m, namely, qExT

2/m & 1/m. In the wave-
breaking regime, Ex ' amωp/q, so the inequality re-
quires that the plasma density be high enough such that
the plasma frequency ωp/m & 1/aπ2. In reality, at those
densities, we should treat the electron Fermi degeneracy
to capture the full physical effects. However, simulating
instead a high-density bosonic plasma is just a toy model
that tests our code, with the density picked so high that
we can already see laser Schwinger pair production in 1D
simulations.

With this basic understanding of how laser pair pro-
duction happen in 1D, we choose parameters to suppress
the trident and Bethe-Heitler processes, by treating ions
as immobile homogeneous neutralizing background, so
that there is no spiky ion potentials from which ener-
getic “electrons” and gamma photons can scatter. The
smooth ion background provides an electrostatic poten-
tial that initially confines the “electrons”. We initialize
the charged boson wave function according to φ(x) =√
n0(x)/2m exp(−imt), where n0(x) is the background

ion density with a plateau of width L ≈ 100/m and Gaus-
sian off-ramps with σ = 20/m. For density of the bosonic
plasma to be high enough to enable pair production, we
take n0 = m3 so that the plasma frequency ωp = 0.3m
is enormous. The above wave function is a linear su-
perposition of many eigenstates of the system. In our
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FIG. 5. Charge density (a, b) and energy density (c, d)
of the φ field. When the gamma-ray laser (ω0 = 0.7m)
is relativistic (a ≈ 1), but not strong enough to produce
Schwinger pairs (Ex ≈ 0.3Ec), “electrons” are expelled by the
laser ponderomotive force, accelerated by the wakefield, and
splashed from the plasma boundaries (a, c). On the other
hand, when the laser field exceeds the Schwinger threshold
(a ≈ 16, Ex ≈ 5Ec), copious pairs are produced when laser
interacts with plasma waves (b, d). The spin-0 “electrons”
are initially confined by a smooth immobile neutralizing back-
ground, with a density plateau n0 = m3 and a Gaussian off-
ramp σ = 20/m. The trajectories of the pulse center (black
lines) and the pulse half widths (dashed lines) are well traced
by geometric optics. Both the charge density (normalized by
em3) and the energy density (normalized by m4) are averaged
over an ensemble of size 200. The resolutions are such that
m∆x = 0.04 and m∆t = 0.005.

simulations, we let the wave function evolve to statist-
ically stationary states through phase mixing, before we
start to draw samples at random time intervals. The
sampled wave functions are then used as initial condi-
tions for φv, which are combined with initial values Ae of
a Gaussian pulse to construct an ensemble. The linearly-
polarized Gaussian pulse is initialized in the vacuum re-
gion with zero carrier phase Ay ∝ exp(−ξ2/2τ2) cosωξ,
where ξ = x − t and τ = 20/m. For the laser to be
able to transmit the high-density plasma slab, we use
a gamma-ray laser with frequency ω0 = 0.7m, for which
classical treatments are far from valid. The laser envelope
is slowly varying (ω0τ = 14), and has full width at half
maximum about twice the plasma skin depth. When in-
tense laser pulse propagates, it can excite plasma waves,
from which the laser can be Raman scattered.

With the above setup, the laser pulse simply travels
through the plasma with some refraction and reflections
when the laser field is weak (a � 1). More interesting
phenomena happen when the laser field becomes strong.
For example, when a ≈ 1 is relativistically strong but the
resulting Ex ≈ 0.3Ec is below the Schwinger field, our
simulation recovers what happens in classical plasmas
[53–55]. First, let us look at what happens to charged
particles. After the laser enters the plasma, beams of
“electrons” are formed in the forward direction by both
ponderomotive snow-plow and laser wakefield accelera-
tion. At the same time, some “electrons” are splashed
in the backward direction from strongly-driven plasma

boundaries [Fig. 5(a), (c)]. Next, for the laser pulse, its
center (solid black lines) and half widths (dotted black
lines) are well-traced by geometric optics in the xt-space
[Fig. 6(a)], as well as in the kt-space [Fig. 6(c), dashed
white line], because the background plasma is smooth on
the laser wavelength scale. Beyond geometric optics, as
the laser travels through the plasma slab, ponderomotive
expulsion of “electrons” cause the laser pulse to adiabat-
ically loose a small amount of energy in the form of fre-
quency redshift ω < ω0 [Figs. 6(a), (c) and 7(b)]. In addi-
tion, the laser excites plasma waves, from which the laser
is Raman-scattered in both forward and backward direc-
tions. In the insert of Fig. 6(c), the final spectrum (red)
shows distinctive Raman scattering peaks at ω+ nωp up
to n = 8, and second harmonics peaks 2ω and 2ω+ωp in
the forward direction. In the backward direction, peaks
at ω− ωp, ω, ω+ ωp and 2ω can also be identified unam-
biguously.

When we increase the laser field beyond the Schwinger
threshold (ac = m/ω). For example, when a ≈ 16
(Ex ≈ 5Ec), a large amount of e−/e+ pairs are pro-
duced [Figs. 5(b), (d)]. A very small fraction of pairs
are produced and trapped in the laser wakefield, form-
ing low-luminosity “electron” (negative charge density,
blue) and “positron” (positive charge density, red) beams
that leave the plasma slab from its right boundary. On

FIG. 6. Total energy density of EM fields (a, b), and the
power spectral density of its transverse components (c, d).
The inserts show the initial (blue) and final (red) spectra of
EM waves. When a ≈ 1 (Ex ≈ 0.3Ec) is below the Schwinger
field, the laser excites plasma waves and is Raman scattered
(a, c). The time evolution of the main pulse is well-traced by
geometric optics (dashed lines). On the other hand, when the
laser field a ≈ 16 (Ex ≈ 5Ec) is above the Schwinger field, a
noticeable amount of energy is lost due to pair production (b),
and the k-spectrum is substantially broadened (d). The field
energy density is normalized by the Schwinger field E2

c , and
are averaged over an ensemble of size 200. The resolutions are
such that m∆x = 0.04 and m∆t = 0.005. The dotted gray
lines mark where the geometric-optics trajectory of the pulse
center crosses the plasma plateau boundaries.
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the other hand, a much larger fraction of pairs are pro-
duced when the backscattered EM wave, whose intens-
ity is near the Schwinger threshold [Fig. 6(b)], interacts
with forward-propagating plasma waves. “Positrons”
produced in this way form high-luminosity collimated
beams, leaving the plasma slab from its left boundary.
Apart from these beams, many “positrons” never man-
age to leave the plasma slab. These trapped “positrons”
have large probabilities to annihilate with “electrons” in
the highly constrained 1D phase space. Due to pair cre-
ation and particle acceleration, the laser initially looses
a significant amount of energy, until pair creation and
annihilation roughly balance [Figs. 6(b), (c) and 7(b)].
At that point, the k-spectrum of the laser is substan-
tially broadened [Fig. 6(d)]. Such a spectral broaden-
ing is expected from general wave action considerations
[56, 57], which predict frequency up-shift due to pair cre-
ation, and frequency down-shift due to pair annihilation
and plasma expulsion. In the insert of Fig. 6(d), the
final EM wave spectrum (red) shows distinctive anni-
hilation bumps near integer multiples of “electron” rest
mass. These annihilation peaks are very broad since
“electrons” and “positrons” annihilate with large kinetic
energy. Finally, notice that no pair is produced when
the laser travels through the vacuum region, which is ex-
pected in 1D. It is remarkable that very rich physics can
already be captured by simply solving the classical field
equations with proper initial conditions.

To extract observables from simulations, the charge
density [Figs. 5(a), (b)] is computed using Eq. (18),
which includes no contribution from background ions.
Therefore, negative charge (blue) indicates “electron”
density in excess of “positron” density, whereas positive
charge (red) indicates the contrary. The energy dens-
ity of the charged field [Figs. 5(c), (d)] and the EM
fields [Figs. 6(a), (b)] are computed using Eqs. (A12) and
(A13), respectively. To compute k-spectra of EM waves
[Figs. 6(c), (d)], notice that a monochromatic EM wave
satisfies kxEy = ωBz. Upon discretization, this relation
remains exactly satisfied if we take kx = sin(k∆x)/∆x
and ω = 2 tan(ωk∆t/2)/∆t, where ωk > 0 is the pos-
itive solution of the local numerical dispersion relation
4 sin2(ωk∆t/2)/∆t2 = 4 sin2(k∆x/2)/∆x2. In the dis-
crete version of kxEy = ωBz, it is necessary that we

take Ey = E
n+1/2
s+j/2 , and center Bz on time-like faces

B
n+1/2
r−k/2−i/2 = (Bnr−k/2+Bnr−k/2−i+B

n+1
r−k/2+Bn+1

r−k/2−i)/4.

A similar relation holds for the Ez and By components,
which are subdominant in our simulations. Using these
momentum-space Faraday’s law, the k-spectrum of right-
propagating EM waves (k > 0) and left-propagating EM
waves (k < 0) can be separated from the spatial Fourier
transforms of electric and magnetic fields.

Results presented in Figs. 5-7 are averaged over an
ensemble of 200 simulations with statistically equivalent
initial conditions. The ensemble average starts to show
convergence for tens of realizations. In these simulations,
temporal gauge A0 = 0 is used, and periodic boundary
conditions are employed for both φv and Ae. We choose
resolutions mdx = 0.04 and mdt = 0.005, high enough so

that the fastest dynamics is resolved and the simulation
results converge. The 1D box is large enough such that
the laser does not transit the spatial domain before we
terminate the simulations.

IV. DISCUSSION AND SUMMARY

In this paper, we develop an algorithm for solving
the Klein-Gordon-Maxwell’s equations [Eqs. (1) and (2)],
which can be used to model bosonic plasmas in the
relativistic-quantum regime. This algorithm is derived
by first discretizing the action [Eq. (14)] in a way that
respects the U(1)-gauge symmetry. We then take vari-
ations with respect to the discrete fields to find their
classical equations of motion. The resultant variational
algorithm guarantees that the Bianchi identities, namely,
∇ ·B = 0 and the Faraday’s law, are automatically and
exactly satisfied. The remaining equations of motions are
the discrete Gauss’s law [Eq. (17)], which can be used
to initialize the simulation; the discrete Klein-Gordon’s
equation [Eq. (16)], which can be used to advance the
charged field; and the discrete Maxwell-Ampère’s law
[Eq. (19)], which can be used to advance the gauge field.
After fixing a gauge, explicit scheme for advancing the
discrete fields in time can be constructed (Appendix B,
Fig. 3). Our variational scheme respects local conserva-
tion laws (Appendix A), and can be easily parallelized
using domain decomposition. Moreover, the numerical
scheme we have developed can be inherently mimicked by
quantum systems with local couplings [58, 59], which can
be efficiently realized using quantum parallelism [60, 61].

The numerical scheme we have developed has a number
of advantages over conventional methods for simulating
plasmas. As comparison, the two conventional methods
that can fully simulate kinetic effects are the particle-in-
cell (PIC) solvers and the Vlasov solvers. The PIC solvers
represent particles in the continuum, while representing
EM fields on grids. Particles feel EM fields through in-
terpolations, and EM fields feel particles through depos-
itions. Using proper smoothing functions, these two steps
can preserve gauge symmetry and symplectic structures,
thereby respect local conservation properties when used
in geometrical algorithms [62–65]. Nevertheless, interpol-
ation and deposition introduce artificial collisions, which
are absent in physical systems. In the other scheme, the
Vlasov solvers, EM fields are represented on the three-
dimensional space, while particles are represented in the
six-dimensional phase space. Particles are directly forced
by fields on spatial grids, while the fields feel particles
though velocity space integrals, which requires resolving
three extra dimensions with substantial computational
cost. In contrast, our algorithm represents both particles
and EM fields on the same grid. Therefore, there is no
need for interpolations and depositions as in the case of
PIC solvers, nor is there need for resolving extra velo-
city space dimensions as in the case of Vlasov solvers.
Our algorithm folds the phase space dynamics of charged
particles into the complex plane, and enables modeling
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of relativistic and quantum dynamics in regimes where
classical treatments are not applicable. In the example
of linear waves (Sec. III.A), we show that relativistic-
quantum wave dispersion relations, including the pair
mode, can be recovered. Moreover, using the example
of a gamma-ray laser interacting with a dense plasma
slab (Sec. III.B), we show that our algorithm naturally
allows pair production when the laser intensity exceeds
the Schwinger threshold.

Of course, the advantages of our algorithm come at an
expense. The cost comes from the necessity of resolv-
ing the relativistic-quantum scales, which can be much
smaller than scales that classical plasma physics typically
deals with. The coarsest resolution needed in relativistic
quantum plasma simulations is determined by the low-
est energy scale of the problem, which is the rest mass
of electrons ∼ 0.5 MeV, corresponding to time scale of
∼ 10−21 s, and spatial scale of ∼ 10−12 m. This resolu-
tion requirement can be seen from the discrete KG equa-
tion [Eq. (B3)], in which we must have m∆t� 1 in order
for δφv � φv. Moreover, since we are solving a system
of hyperbolic partial differential equations, the Courant–
Friedrichs–Lewy (CFL) condition ∆t < ∆x must be sat-
isfied. Finally, it is worth noting that high resolution is
required for large gauge fields. Since the gauge field ap-
pears through the Wilson’s lines in complex exponentials
[Eqs. (10) and (11)], the discrete theory is invariant under
the gauge transformation Ae → Ae + 2π/(q∆). There-
fore, the discrete gauge field Ae lives on the torus T1,3,
which has a very different topology than R1,3. Therefore,
the step size must be small enough such that qA∆ < 2π,
in order to avoid exciting topological modes that are ab-
sent in the continuous theory.

These stringent resolution requirements make lattice
plasma simulations excessively expensive for some prob-
lems. For example, to simulate ∼ 1µm lasers inter-
acting with plasmas, at least ∼ 106 grid points are
needed in each dimension. In such cases where QED
scales are well-separated from classical plasma physics
scales, schemes based on semiclassical approximations
may be more suitable. However, in other plasma physics
problems, the lack of scale separation renders semiclas-
sical approximations invalid. For example, to simulate
∼ 50 KeV free-electron lasers interacting with plasmas,
the Compton wavelength of electrons is only ∼ 1/10 of
the laser wavelength. In such cases where relativistic-
quantum scales overlap with plasma physics scales, real-
time QED plasma simulations are indispensable.

In summary, we develop a variational algorithm for
solving the Klein-Gordon-Maxwell equations, which de-
scribe tree-level scalar QED in the classical-statistical re-
gime, and may be solved using quantum computers. We
demonstrate that remarkably rich physics are contained
in solutions to classical field equations, which can be used
to model high-density plasmas interacting with strong
electromagnetic fields. Our work uses scalar QED as a
toy model to demonstrate that real-time lattice QED is
a powerful tool not only for vacuum effects, but also for
plasma physics in the strong-field regime.
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APPENDIX A: GEOMETRIC IDENTITIES AND
LOCAL CONSERVATION LAWS

When discretizing the gauge 1-form A and calculat-
ing the curvature 2-form F = dA in Sec. II.A, geomet-
ric structures of discrete exterior calculus are respected.
Consequently, the identity d2 = 0 holds for the discrete
exterior derivative. In components, this Bianchi iden-
tity can be written as 0 = dF = (∂σFµν + ∂µFνσ +
∂νFσµ)dxµ∧dxν∧dxσ/3!. One nontrivial identity, corres-
ponding to all indexes being spatial, is ∇ ·B = 0. When
discretized, this identity becomes

1

∆l

(
Bn
r+ l

2
−Bn

r− l
2

)
= 0. (A1)

The other nontrivial identity, corresponding to two spa-
tial indexes and one temporal index, is the Faraday’s law
∂tB = −∇×E, whose discrete version is

1

∆t

(
Bn+1
r− i

2

−Bnr− i
2

)
=
εijk
∆k

(
E
n+ 1

2

s+ j
2 +k
− En+ 1

2

s+ j
2

)
.(A2)

The above finite difference equations are automatically
satisfied in our algorithm by geometric constructions, in
contrast to standard elecromagnetic algorithms, such as
the Yee’s algorithm [43], in which the Faraday’s law needs
to be solved as a dynamical equation.

In addition to the above geometric identities, we also
have a number of local conservation laws. The first is
local charge conservation, which is a direct consequence
of local U(1)-gauge symmetry. Under the continuous
U(1)-gauge transformation

φns → φns e
iqαn

s , (A3)

A
n+ 1

2
s → A

n+ 1
2

s +
1

∆t
(αn+1
s − αns ), (A4)

An
s+ l

2
→ An

s+ l
2

+
1

∆l
(αns+l − αns ), (A5)

where αns is any real-valued function living on vertexes.
These transformations leave the discrete face-centered
field strength tensor Ff invariant, while transforming the
pull-back covariant derivative by

(D<
µ φ)ns → eiqα

n
s (D<

µ φ)ns . (A6)
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FIG. 7. Evolution of total charge (a) and total energy (b) in
the numerical example discussed in Sec. III.B, where periodic
boundary conditions are used. The total charge remains con-
stant up to machine precision, both when E < Ec (cyan) and
E > Ec (blue). When E < Ec is below the Schwinger field, a
small amount of energy is transfered from the electromagnetic
field (magenta) to the charged field (cyan) due to wakefield
acceleration and plasma wave excitation, while the total en-
ergy (gray) remains constant. In contrast, when E > Ec, a
large amount of laser energy (red) is consumed by pair pro-
duction. The energy of the charged field (blue) significantly
increases, while the total energy (black) remains constant.

The total charge Qn+1/2 =
∑

s J
n+1/2
s is normalized by the

total ion charge, and the total energy Un+1/2 =
∑

sH
n+1/2
s

is normalized by m3/∆x. The vertical dotted gray lines mark
the time when the laser pulse center enters and leaves the
plasma plateau boundaries.

Using the classical field equations δSd/δφv = 0, we have

δSd
δφns

δφns + c.c. = 0. (A7)

Substituting in the infinitesimal transformation δφns =
iqαnsφ

n
s , the above identity is equivalent to the discrete

charge conservation law

1

∆t

(
J
n+ 1

2
s − Jn−

1
2

s

)
=

1

∆l

(
Jn
s+ l

2
− Jn

s− l
2

)
.

Here, the charge density J
n+ 1

2
s is given by Eq. (18), and

the current density Jns+l/2 is given by Eq. (20), and the

sign is due to the Minkowski metric. It is straightforward
to check that the above discrete charge conservation law
is compatible with the discrete Gauss’ law [Eq. (17)] and
the discrete Maxwell-Ampère’s law [Eq. (19)]. In the nu-
meric example discussed in Sec. III.B, the total charge

Qn+1/2 =
∑
i J

n+1/2
i is constant up to the machine pre-

cision [Fig. 7(a)], both when the laser field is below (Q<)
and above (Q>) the Schwinger field.

Moreover, the discrete action Sd is invariant under
translations on the discrete spacetime manifold. Al-
though the symmetry group in this case is discrete and
hence the Noether’s theorem does not immediately apply,
we do have local energy conservation laws for the charged

field and EM fields separately when their coupling van-
ishes. Using the classical field equations δSd/δφv = 0
and δSd/δA

n
s+l/2 = 0, as well as the Bianchi identity, we

have the following identity

0 =
δSd
δφns

(D0φ)ns +
δSd
δφ̄ns

(D0φ)ns

+
δSd

δAns+l/2

1

2

(
E
n+1/2
s+l/2 + E

n−1/2
s+l/2

)
(A8)

+ Bnr−l/2
1

2

[
(d2A)

n+1/2
r−l/2 + (d2A)

n−1/2
r−l/2

]
,

where the vertex-centered time covariant derivative

(D0φ)ns =
e−iq∆tA

n+1
2

s φn+1
s − eiq∆tA

n− 1
2

s φn−1
s

2∆t
. (A9)

After rearranging terms, the above identity gives rise to
the local energy conservation law

Hn+1/2
s −Hn−1/2

s

∆t
=
Pns+l/2−P

n
s−l/2

∆l
+O(q∆2), (A10)

where the sign is again due to the Minkowski metric. The
energy density can be separated into three terms

Hn+1/2
s = Hn+1/2

s [φ] +Hn+1/2
s [A] + hn+1/2

s , (A11)

where the energy density of the charged field is

Hn+ 1
2

s [φ]=
1

2

[
(D<

0 φ)
n+ 1

2
s (D<

0 φ)
n+ 1

2
s +m2φns e

iq∆tA
n+1

2
s φ̄n+1

s

+(D<
l φ)n

s+ l
2
eiq∆tA

n+1
2

s (D<
l φ)n+1

s+ l
2

]
+c.c.,(A12)

and the energy density of the EM fields is

Hn+ 1
2

s [A] =
1

2

[(
E
n+ 1

2

s+ l
2

)2
+Bn+1

r− l
2

Bn
r− l

2

]
. (A13)

The energy density correction h = O(q∆2) can take many
different forms, each has a corresponding error term at
finite-resolution. As expected, the energy density is U(1)-
gauge invariant, so is the momentum density, which can
be split into two terms

Pns+l/2 = Pns+l/2[φ] + Pns+l/2[A]. (A14)

The momentum density of the charged field is

Pn
s+ l

2
[φ] = (D<

l φ)n
s+ l

2
e
iq∆lA

n

s+ l
2 (D<0 φ)ns+l + c.c., (A15)

and the momentum density of the EM fields Pi = −Pi =
−(E×B)i is

Pns+ i
2
[A]= εijkB

n
r− j

2

1

2

(
E
n+ 1

2

s+i+ k
2

+E
n− 1

2

s+i+ k
2

)
. (A16)

Since the stress-energy tensor T µν is not a 2-form, neither
the energy density H nor the momentum density P is
well-defined on the discrete spacetime manifold. Hence,
it can be shown, by enumerating combinations of U(1)-
gauge invariant basis terms, that the resulting error in
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the local energy conservation law [Eq. (A10)] is always
second order. Except when the coupling q → 0, in which
case the conservation law becomes exact even at finite
spacetime resolutions. This remarkable feature would be
lost if we had used the Wilsonian plaquettes in the dis-
crete action instead. In examples discussed in Sec. III.B,

the total energy Un+1/2 =
∑
iH

n+1/2
i , whose error is of or-

derO(qn∆t2), is redistributed among φ and A [Fig. 7(b)].
The total energy fluctuates up to 6 ppm and 0.2% when
the laser wakefield is below (U<) and above (U>) the
Schwinger field, respectively.

APPENDIX B: NUMERICAL SCHEME

In this appendix, we list the four equations that are ne-
cessary for implementing the algorithm. We rewrite these
equations from Sec. II.B, such that the explicit nature of
our scheme becomes apparent. The first step in the simu-

lation is initializing values of φ0
s, φ

1
s, A

0
s+l/2, and A

1/2
s for

all spatial indexes. This step is crucial and determines
what physical system will be evolved subsequently.

The second step is calculating A1
s+l/2 using the discrete

Gauss’ law [Eq. (17)], which can be rewritten as

A1
s+l/2 −A

1
s−l/2

∆l
=
A0
s+l/2 −A

0
s−l/2

∆l
+ ∆tJ1/2

s (B1)

+
∆t

∆l2

(
A

1/2
s+l − 2A1/2

s +A
1/2
s−l

)
,

where all terms on the RHS are known. Since the LHS
couples only two adjacent A1

s+l/2 in each direction, the

discrete Gauss’ law is easier to solve than the Poisson’s
equation, which couples three nearest neighbors in each
direction.

The third step is advancing the time-component of the

gauge field (A
n−1/2
s , Ans+l/2) → A

n+1/2
s . This step de-

pends on the choice of the gauge condition. For example,
when the Lorenz gauge is used

An+1/2
s = An−1/2

s + Cl

(
Ans+l/2 −A

n
s−l/2

)
, (B2)

where Cl = ∆t/∆l is the dimensionless Courant num-
ber. In comparison, when temporal gauge is used in-

stead, A
n+1/2
s = 0 and the time advance is trivial. Us-

ing the temporal gauge, one only needs to store values
of Ae at integer time steps t = n. However, when a
background electric field is present, Ans+l/2 will grow in-

definitely in the temporal gauge. In this case, long-time
dynamics may be more accurately computed using the
Lorenz gauge instead.

In the fourth step, we can use the discrete KG
equation [Eq. (16)] to time advance the charged field

(φn−1
s , φns ;Ans+l/2, A

n±1/2
s ) → φn+1

s . The explicit time

advance is given by

φn+1
s =

[
(2− 2C2

l −∆t2m2)φns − φn−1
s eiq∆tA

n− 1
2

s (B3)

+ C2
l

(
φns+le

−iq∆lA
n

s+ l
2 + φns−le

iq∆lA
n

s− l
2

)]
eiq∆tA

n+1
2

s .

For free φ field, suppose the fluctuation is of the form
exp(iplx

l − iEt), then the numerical dispersion relation
of the massive particle is

4

∆t2
sin2 E∆t

2
=

4

∆2
l

sin2 pl∆l

2
+m2,

which is consistent with the continuum energy-
momentum relation E2 = p2 + m2 for relativistic
particles. For the numerical solution to be stable, E must
be real, which holds only if for each l = i, j, k, the CFL
condition Cl < 1 is satisfied.

Finally, without relying on the fourth step, we can use
the discrete Maxwell-Ampère’s law [Eq. (19)], concur-
rently with the KG equation, to advance the spatial com-

ponent of the gauge field (An−1
s+l/2, A

n±1/2
s , Ans+l/2;φns )→

An+1
s+l/2. The explicit time advance is given by

An+1
s+ i

2

= Ans+ i
2

+ Ci

(
A
n+ 1

2
s+i −A

n+ 1
2

s

)
+∆t2Jns+ i

2

+∆t
[
E
n− 1

2

s+ i
2

+ εijkCj

(
Bn
r− k

2
−Bn

r− k
2−j

)]
,(B4)

where the RHS is known. For free gauge field, it is
straight forward to show that the numerical solution is
stable if and only if the CFL condition Cl < 1 is satisfied.
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