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Fluid motions in the inertial range of isotropic turbulence are fractal, with their space-filling
capacity slightly below regular three-dimensional objects, which is a consequence of the energy
cascade. Besides the energy cascade, the other often encountered cascading process is the momentum
cascade in wall-bounded flows. Despite the long-existing analogy between the two processes, many
of the thoroughly-investigated aspects of the energy cascade have so far received little attention in
studies of the momentum counterpart— e.g., the possibility of the momentum-transferring scales
in the logarithmic region being fractal has not been considered. In this work, this possibility is
pursued, and we discuss one of its implications. Following the same dimensional arguments that
lead to the D = 2.33 fractal dimension of wrinkled surfaces in isotropic turbulence, we show that the
large-scale momentum-carrying eddies may also be fractal and non-space-filling, which then leads
to the power-law scaling of the mean velocity profile. The logarithmic law of the wall, on the other
hand, corresponds to space-filling eddies, as suggested by A. A. Townsend. Because the space-filling
capacity is an integral geometric quantity, the analysis presented in this work provides us with a
low-order quantity, with which, one would be able to distinguish between the logarithmic law and
the power law.

I. INTRODUCTION

A visually striking feature of turbulence is that it is in-
termittent, with regions of vigorous fluid motions among
regions that are quiescent. Being spatially intermit-
tent, turbulence and turbulent eddies are not necessarily
space-filling [1]. After the pioneering work of Kolmogorov
in 1962 [2], it is commonly acknowledged that eddies in
the inertial range are fractal, with their space-filling ca-
pacity slightly below regular 3D objects [3]. The flow
intermittency and the resulting fractality are often mod-
eled using the fractal [4] and multi-fractal models [5], and
such work dates back to Ref. [6], where isotropic turbu-
lence (HIT) was modeled as a hierarchy of self-similar
eddies. Eddies being fractal in the inertial range has im-
plications on a number of flow processes. The process of
interest here is the turbulent transport process. Figure
1 sketches such a transporting process. The transported
quantity φ has a finite difference across the self-similar
wrinkled interface. Statistically, coarse-graining this sur-
face at scales lL, lS within the inertial range yields similar
flow structures. The coarse-grained turbulent flux F (l)
can be modeled as

F (l) = νT,l
dφl
dl
S(l), (1)

where νT,l is the eddy viscosity at the coarse-graining
length scale l, dφl/dl is the gradient of the coarse-
grained quantity φl at the scale l, and S(l) is the sur-
face area of the wrinkled interface at the scale l [3, 7–
9]. In the inertial range, dimension arguments suggest

νT,l ∼ 〈ε〉1/3 l4/3 and dφl/dl ∼ ∆φ/l, where 〈ε〉 is the
mean dissipation rate. The turbulent flux, F (l), is a
conserved physical quantity and cannot depend on the
coarse-graining length scale l, therefore it follows from
Eq. (1) that S(l) ∼ l−1/3. The area of a fractal sur-
face coarse-grained at a length scale l can be measured
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FIG. 1. A sketch of a coarse-grained wrinkled interface, across
which a transported quantity φ has a finite difference ∆φ. The
interface is self-similar across a range of scales lS < l < lL,
where lL and lS are two coarse-graining length scales. Flow
structures are statistically similar at the two coarse-graining
length scales.

by box counting, where the area is S(l) ∼ N(l)l2, and
N(l) ∼ l−D is the number of intersecting boxes. The
exponent D is the fractal dimension of S. In Eq. (1)
S(l) ∼ l−1/3, it then follows that the space dimension of
S is D = 2 + 1/3 ≈ 2.33. (See Ref. [10] for detailed
discussion on the above dimensional arguments.) The
fractal scaling D = 2.33 may be tested by considering a
turbulent-non-turbulent-interface (TNTI), which can be
defined based on the vorticity magnitude [11], the tur-
bulent intensity [9], etc.. A recent work [12] confirmed
the power-law scaling of S(l) ∼ l2−D, and the measured
D ≈ 2.31 is not inconsistent with the fractal model.

In the inertial range of HIT, the dominating process
is the energy cascade from large-scale motions to small-
scale motions. Turbulence is fractal as a result of this
process (see detailed discussion in Ref. [4]). The other
often encountered cascade process is the momentum cas-
cade in wall-bounded flows [13]. While early investiga-
tions on the two cascade processes were rather indepen-
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dent, recently there have been attempts to model the
momentum cascade using tools that were developed for
the energy cascade [14–17]. Nevertheless, analysis as the
one in Eq. (1) has not been pursued in the context of
wall-bounded flows, and we have not yet considered the
possibility of momentum-carrying scales being fractal in
wall-bounded flows. This work is to fill this gap.

II. FRACTALITY

A. Fractal formalism

At a wall-normal location y ∼ O(0.2δ), the flow is not
everywhere turbulent because of intrusions of non/less-
turbulent fluid from the freestream/bulk [18, 19]. Turbu-
lent transport of the streamwise momentum in the wall-
normal direction is only possible in regions where there
is active turbulence. Hence, momentum transport is not
a space-filling process. To parameterize non-space-filling
processes, one often uses a space whose dimension is be-
low a regular object in the base dimension. Using the
same dimensional arguments that lead to Eq. (1), we
can model the momentum flux in the inertial range of
wall-bounded flows (which is often referred to as the log
region) as

F (y) = νT,y
dU

dy
S(y), (2)

where y is the wall-normal coordinate and U is the mean
velocity. Momentum flux is constant in the log region,
hence F (y) ∼ y0. Dimension arguments suggest that
in the inertial range, νT,y ∼ uτy [20], where uτ is the
friction velocity, and is the only relevant velocity scale in
the log region. dU/dy can be computed from the law of
the wall. The two most often quoted mean-flow scalings
are the logarithmic scaling [21, 22] and the power-law
scaling [23, 24]. The log law reads as follows

U+ =
1

κ
log(y+) +B, (3)

where “log” is natural log, the superscript + indicates
normalization by wall units, κ is the von Karman con-
stant and B is an additive constant. According to the log
law dU/dy is ∼ 1/y, and it follows that S(y) ∼ Const is
independent of the wall-normal distance. This is trivial,
and simply means that the momentum-carrying eddies in
the inertial range (log region) are space-filling [25]. On
the other hand, the power law reads as follows

U+ = Cy+
α
, (4)

where C > 0 and α < 1 are constants that depend on
the friction Reynolds number and flow configuration. For
flows at moderate Reynolds numbers, α = 1/7 is often
quoted [26]. According to the power law, dU/dy ∼ yα−1
and S(y) ∼ y−α, and the momentum-carrying turbulence
is fractal.

While it has long been acknowledged that the energy-
transferring scales in the inertial range are fractal, the

possibility of momentum-carrying eddies in wall-bounded
flows being fractal has not been thoroughly explored, and
the above analysis suggests that an implication of non-
space-filling momentum-carrying eddies is the power-law
scaling of the mean velocity profile. The analogy between
the energy cascade and the momentum cascade was con-
sidered by Jimenez [13]. Because the energy cascade is
from large scales to small scales and the momentum cas-
cade is from the freestream to the wall (from the chan-
nel/pipe center-line to the wall), the analogy is between
the coarse-graining length scale in the context of HIT and
the wall-normal distance.

Considering the difference in the scaling of S(y) when
the mean flow follows a log scaling (S(y) ∼ y0) and a
power-law scaling (S(y) ∼ y−α), the space-filling capacity
S(y) may be used to discriminate between a power-law
scaling and a log scaling. It is worth noting that discrim-
inating between a log scaling and a power-law scaling
is many times not straight-forward because both scalings
provide good fits to the mean velocity in the near-wall re-
gion [27]. The difference between a log law and a power
law is only evidenced when one considers dU/dy (where
the log law leads to ydU/dy ∼ Const and the power law
leads to ydU/dy ∼ yα), but differentiating measurements
that already suffer from experimental uncertainties can
bring in errors that defy even the power-law scaling of
dU/dy. The space-filling capacity S(y) is therefore useful
here—S(y) is a low-order statistical quantity, and there-
fore its measurement is less susceptible to experimental
uncertainties.

We still need to define S(y). Before doing that, we
briefly review the definition of the coarse-grained in-
terface S(l) in HIT. S(l) in HIT is usually defined by
thresholding a physical quantity. The commonly used
quantities include the turbulent kinetic energy [12], the
vorticity magnitude [11, 28], and the scalar concentra-
tion [10, 29]. Although not without trial and error,
measurements of iso-surfaces of those quantities have
yielded D = 2.2 to D = 2.4 for S(l). For wall-bounded
flows, because φ in Eq. (2) is the streamwise momen-
tum U , S(y) can be defined by thresholding the stream-
wise velocity fluctuation. In this work we formally define
S(y) =

∫
|u+(x,y,z)−U+(y)|>c dx dz, where u is the instanta-

neous streamwise velocity. This definition is to capture
the momentum-transporting motion, i.e., the large scale
and very large scale motions and the low-momentum
streaks in the near-wall region [30, 31], where the ve-
locities are far from the local mean values. However,
thus defined S(y) is affected by intrusions of the non-
turbulent freestream [18]. Therefore we consider instead
the complementary dimension and define

S(y) =

∫
|u+(x,y,z)−U+(y)|<c

dx dz, (5)

For S(y), the log law and the power law lead to S(y) ∼ y0
and S(y) ∼ yα, respectively.
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B. Internal flows and external flows

The above discussion does not discriminate between
internal flows and external flows, and we have argued
that fractality in wall-bounded turbulence is because of
intrusions of the irrotational freestream, which presents
only for external flows but not for internal flows. Internal
flows including channel and pipe are often considered to
be fully turbulent. However, according to a few recent
works, the above physical picture may need to be revised
slightly. Using channel flow data up to Reτ = 4000,
Kwon et. al. [32] found a quiescent core in turbulent
channel flow. The quiescent core has high velocity mag-
nitude and low turbulence intensity, and it very much re-
sembles the free stream of boundary layers. Hence there
is good reason to believe that for this work we do not have
to discriminate between internal and external flows.

While it might not be directly relevant to this work,
the β- model [4] models HIT as a mixture of quiescent
and turbulent flows despite the fact that HIT is often
considered as being fully turbulent.

C. Fractal dimension, coarse-graining and
wall-normal distance

The analogy between the energy cascade and the mo-
mentum cascade was thoroughly discussed in Ref. [11],
and it follows that the coarse-graining length scale in
the context HIT is analogous to the wall-normal dis-
tance in boundary-layer flows. Here we show that the
filtered streamwise velocity at a wall-normal height cor-
responds to the unfiltered streamwise velocity at a higher
height. We do that by resorting to the Townsend at-
tached eddy hypothesis [25]. Townsend hypothesized
that, at high Reynolds numbers, wall-bounded turbu-
lence may be modeled as collections of wall-attached ed-
dies (see figure 2 for a sketch). The velocity at a generic
location in the flow field is the superposition of the eddy-
induced velocities there. For example, the velocity fluc-
tuation at the wall-normal height C contains incremen-
tal contributions from eddy-hierarchy I, eddy-hierarchy
II, and eddy-hierarchy III, while the velocity fluctuation
at the wall-normal height A contains incremental contri-
bution from only eddy-hierarchy I. Because of the wall-
attachment, the eddy population density is inversely pro-
portional to the wall-normal distance y, i.e. P (y) ∼ 1/y.
If the wall-attached eddies are self-similar, the variance
of the streamwise velocity is〈

u′
2
〉
∼
∫ δ

y

P (y)dy = log(δ/y), (6)

which scaling has gained much empirical support [22, 27,
34, 35]. Here, u′ is the streamwise velocity fluctuation, δ
is an outer length scale and 〈·〉 denotes ensemble averag-
ing.

Here, we consider the scaling of
〈
u′l

2
〉

, where u′l is the
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FIG. 2. (a) A sketch of the hypothesized wall-bounded tur-
bulence at high Reynolds numbers. Three hierarchies of wall-
attached eddies are sketched I, II, III. An eddy affects the
flow within. The eddies are wall-attached, and are inclined
towards the flow direction. The sizes of the eddies scale with
their distance from the wall, and therefore the number of the
eddies double as the size halves. Here, there are one hierarchy-
I eddy, two hierarchy-II eddies, and four hierarchy-III eddies.
A, B and C are at three wall normal heights. (b) Filtered
streamwise velocity at y+ = 100 as a function of the variance

of the streamwise velocity fluctuation.
〈
u′l

2
〉

is a function

of the filtering length scale l, and
〈
u′

2
〉

is a function of the

wall-normal distance y. By relating y and l, i.e., z = l tan(θ),

we can relate
〈
u′l

2
〉

to
〈
u′

2
〉

, which leads to the plot shown

here. Here θ = 12◦ is the inclination angle of a typical wall-
attached eddy [33]. We have used the top-hat filter in Fourier
space. While not shown, using a top-hat filter in physical
space leads to similar results. The two thin solid lines are at〈
u′

2
〉∣∣∣
y=0.3δ

and
〈
u′

2
〉∣∣∣
y+=100

. The bold solid line indicates

the proportionality between
〈
u′l

2
〉

and
〈
u′

2
〉

.

filtered streamwise velocity fluctuation at a given wall-
normal height, and l is the filtering length scale. For ex-

ample, let us consider the scaling of
〈
u′l

2
〉

as a function of

l at the wall-normal height C. According to the Townsend
attached eddy hypothesis, the velocity fluctuation at the
wall-normal height C bears footprints of eddy-hierarchy
I, eddy-hierarchy II, and eddy-hierarchy III. Because the
sizes of the eddies scale with their distances from the
wall, contributions from eddy-hierarchy III are at com-
parably smaller scales than those from eddy-hierarchy I
and II. Hence we may remove contributions from eddy
hierarchy-III by applying a low-pass filter to the velocity
fluctuations. After low-pass filtering the velocity fluctua-
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tion,
〈
u′l

2
〉

corresponds to
〈
u′

2
〉

at a wall-normal height

y = l tan(θ), where θ ≈ 12◦ is the inclination angle of
a typical wall-attached eddy [33]. If the attached eddies
are self-similar,〈

u′l
2
〉
∼
〈
u′

2
〉∣∣∣
z=l tan(θ)

. (7)

Figure 2 (b) shows
〈
u′l

2
〉

as a function of
〈
u′

2
〉

, and the

expected proportionality is indeed found within y+ = 100
and y/δ = 0.3. Hence we have formally connected the
wall-normal distance with a properly defined filtering
length scale. It also follows from the discussion that
what was observed through S is, strictly speaking, self-
similarity.

Marusic and co-authors have also explored the relation
between filtered velocity at one wall-normal height and
the unfiltered velocity at a higher wall-normal height, and
the reader is directed to Refs. [36, 37] for details.

D. Measurements

We analyze the hot-wire data of boundary layer flow at
Reτ=13,000 and measure S(y) directly. The data were
from the Melbourne High-Reynolds-Number-Boundary-
Layer-Wind-Tunnel. The experiments were not con-
ducted by the authors of the paper. As hot-wire data are
one-dimensional, S(y) is simply

∫
|u+(x,y)−U+(y)|<c dx.

Details of the experimental facility and the hot-wire data
can be found in Refs. [38, 39] and the references cited
therein. In Ref. [39], one can also find details of mea-
surements at lower Reynolds numbers.

Figure 3 (a) shows the measured S as a function of
the wall-normal distance. We have used c = 2. S is
roughly a constant within 50 < y+, y+ < Cy

√
Reτ ,

where Cy ≈ 4.4, and it follows a power law in the region
0.1 < y/δ, y/δ < 0.3. Intrusions of freestream/quiescent-
core to the viscous boundary layer are expectedly weak
in the near-wall region where viscous effects are not neg-
ligible, and therefore the fractal to space-filling transition
location is expectedly at the wall-normal location where
the viscous effects are negligible above this location. Wei
et al. [40] considered the balance of terms in the mean
momentum equation and showed that viscous effects are
non-negligible up to y+ ∼

√
Reτ , which conclusion was

later confirmed in Refs. [41, 42]. Following these works
and the works by Mckeon & Sharma [43] and Marusic et.
al. [22], here we scale the fractal-space-filling transition
location with the y+ ∼

√
Reτ . According to the analysis

in section II A, the mean flow follows a log scaling in the
region 50 < y+, y+ < Cy

√
Reτ , and a power-law scaling

in the region 0.1δ < y, y < 0.3δ, with an power-law ex-
ponent α = 0.13. Figure 3 (b) shows the corresponding
mean velocity as a function of the wall-normal distance.
The log scaling in Fig. 3 (b) is the best fit for U in the
region where S ∼ y0, and the resulting von Karman con-
stant is κ = 0.39. The power law is the best fit for U

in the region where S ∼ y0.13, and the resulting power-
law exponent is indeed α = 0.13, confirming the fractal
model. Throughout this work, we keep only two signifi-
cant digits for all the log-law and power-law parameters.
We make a few observations. First, the mean velocity fol-
lows the power-law scaling in the region Cy

√
Reτ < y+,

y/δ < 0.3. Second, the log law can be used as the
law of the wall in the region 30 < y+, y/δ < 0.1 [44].
Third, both the log and the power-law scalings may be
used for U in the intermediate wall-normal distance range
Cy
√
Reτ < y+, y/δ < 0.1.

The momentum-transferring scales being non-space-
filling is possibly because of intrusions of non/less-
turbulent flows from the freestream/bulk [18]. The signif-
icance of freestream intrusion increases as y/δ increases,
and the momentum-carrying scales are fractal away from
the wall. At a wall-normal distance where y/δ is not suf-
ficiently close to 0 and y+ is not sufficiently large, the
flow may be at an intermittent state, where it is space-
filling sometimes and non-space-filling the other times.
Because the presence of the logarithmic scaling relies on
the flow being space-filling at all times and the presence
of the power-law scaling relies on the flow being non-
space-filling at all times, in principle, neither the log-
arithmic scaling nor the power-law scaling may be used
for approximating the mean velocity profile within the in-
termediate wall-normal range. The data, however, shows
that both scalings may be used.

In Fig. 3 (a), we have set c = 2. S depends on
the threshold c and fluctuations from non-momentum-
transferring motions (small-scale intermittency). The
fractal model in section II A is further tested in Fig. 4
by using a different threshold and by filtering the veloc-
ity signals. The same y0 and y0.13 scalings survive when
using a c that changes the measured S by ≈ 40%. No no-
ticeable changes are found in S when the hot-wire signals
are filtered using a top-hat filter that spans ∆x+ ≈ 100
(this is to preclude the small scales).

We also test the usefulness of the fractal formalism at
low and moderate Reynolds numbers. Figure 4 (b) shows
S(y) in a Reτ ≈ 5200 channel. Details of this dataset
can be found in Ref. [35]. DNS provides the full 3D
flow field, and S(y) can be measured using data on x− z
planes. Nonetheless, as the flow field is homogeneous
in the spanwise direction, measuring S(y) using data on
the x − z planes is not different from measuring S(y)
using one-dimensional hot-wire data [45]. At a moder-
ate Reynolds number, neither the y0 scaling nor the yα

scaling can be found. Therefore the analysis in §II A is
really only useful at high Reynolds numbers. Following
the discussion in the previous section, this is because, at
moderate Reynolds numbers, there is not a wall-normal
location where y/δ is sufficiently close to 0 and y+ is suf-
ficiently large simultaneously, and fluid across the entire
boundary layer is at the intermediate state where it is
sometimes space-filling and other times non-space-filling.
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FIG. 3. (a) The measured S(y) as a function of the wall-
normal distance on a log-log scale. We have normalized S(y)
using the length of the signal. The two solid lines indicate
∼ y0 and ∼ y0.13, respectively. The dashed lines are at wall
normal distances y+ = Cy

√
Reτ , y/δ = 0.1 and y/δ = 0.3,

respectively, where Cy = 4.4. (b) The mean velocity (bold
line) as a function of the wall-normal distance on a semi-log
scale. The constants in the log scaling and in the power-law
scaling are κ = 0.39, B = 4.4, and C = 9.7, α = 0.13.

III. THE LAW OF THE WALL

The mean flow behavior in wall-bounded turbulence
has received sustained attention over the past few
decades [46, 47]. Although other mean-flow scalings may
be found in the literature [40, 48], the most often quoted
scalings are the log law and the power law.

A. Dimension arguments

Both the log law and the power law can be derived
using just dimension arguments. We briefly summarize
these arguments and discuss how the analysis in section
II may be incorporated. We start by considering a range
of wall normal distances where uτ is the only relevant
velocity scale. Dimension arguments suggest

dU

dy
∼ uτ

y
f
(
y+,

y

δ

)
, (8)

where uτ =
√
τw/ρ, and τw equals the momentum flux

in the inertial range, y+, y/δ are the only two non-
dimensional numbers that may be formed with the rel-
evant length and velocity scales. For the log law, we
take the limit y+ → ∞, y/δ → 0, and assume f is finite
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FIG. 4. (a) Measured S(y) as functions of the wall-normal
distance. c = 1.5 and c = 2 are used. ∆x is the filtering
length scale. The resolution of the hot-wire data is ∆x+ ≈ 10
(assuming a constant convective velocity Uc = 0.8U∞, and
invoking the Taylor’s frozen turbulence hypothesis. U∞ is the
free-stream velocity). (b) S(y) in a DNS channel at Reτ =
5200 [35]. c = 2 is used.

and non-zero at that limit. It then follows from Eq. (8)
that dU/dy ∼ uτ/y, which then leads directly to the log
law. For the power law, on the other hand, one needs
to argue that the a non-zero f at the limit y+ → ∞,
y/δ → 0 does not exist, and f(y+, y/δ) follows instead a
power law in the near wall region (taking the leading or-
der term). This then leads to dU/dy ∼ uτ/y1−α, which in
turn gives rise to the power law. The above dimensional
analysis is incomplete. To make that clear, we quote the
interesting argument by Kazakov (2016) [48], where the
author took one step further and considered the scaling
of dUp/dy, which, according to the same dimension argu-
ments, scales as upτ/y. If f is finite at the limit y+ →∞,
y/δ → 0, Eq. (8) leads to U ∼ [log(y+)]1/p , instead of
the log law.

To make the above dimension arguments complete, one
needs to account for the fractality of the momentum-
transferring eddies. Before we do that, we briefly sum-
marize the dimension arguments Kolmogorov used for
the 2/3 scaling in isotropic turbulence. In the inertial
range, the two-point velocity increment ∆u2 scales as
(εl)2/3g(l/(ν3/ε)1/4, l/L), where l is the two-point dis-
placement, L is an integral length scale and g is a general
function of l/(ν3/ε)1/4 and l/L. Kolmogorov [6] assumed
that g is non-zero and finite at the limit l/(ν3/ε)1/4 →∞,
l/L → 0 and obtained ∆u2 ∼ l2/3. Kolmogorov [6] then
concluded that ∆up ∼ (εl)p/3, which was later refuted by
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FIG. 5. A sketch of the wall layer.

experimental measurements. Although the existence of a
non-zero finite g at the limit l/(ν3/ε)1/4 → ∞, l/L → 0
was not formally proven, the flaw in Ref. [6], as Kol-
mogorov himself [2] later pointed out, is really in that
it failed to account for the fact that turbulence is frac-
tal in the inertial range in HIT. The complete dimension
arguments for ∆up accounts for the fractal dimension
of turbulence, and is ∆up ∼ (εl)p/3 · (l/L)3−Dp , where
(l/L)3−Dp is the fractal scaling. Hence the argument in
Ref. [48] can be augmented by accounting for the fractal
dimension.

Hence taking the limit y+ → ∞, y/δ → 0 in Eq. (8)
is probably not problematic, but assuming the momen-
tum cascade process in wall-bounded flows being a space-
filling process is. As fractal dimension scalings are power-
law scalings, the postulated f ∼ yα in the so-called in-
complete similarity [49, 50] is really to account for the
fractal scaling of turbulence in wall-bounded flows. Last,
it is worth noting that dUp/dy in wall-bounded flows
scales as upτ/y · (y/δ)2−Dp , where (y/δ)2−Dp is to account
for turbulence being fractal.

B. Law of the wall

In the above sections, we have provided both theoreti-
cal arguments and empirical evidence for the fractal na-
ture of the momentum-carrying eddies in wall-bounded
turbulence. Here we provide indirect evidence by exam-
ining the mean velocity profiles.

Conventionally, the extent of the log range is deter-
mined by first fitting a log scaling to a velocity profile
and then using the fitted log scaling to determine the ex-
tent of the log range. The above procedure is based on a
circular logic. Ideally, one needs to use a separate diag-
nostics for the extent of the log range, and then fit a log
scaling to that range. The usefulness of the log scaling
can then be tested by examining the quality of the fitting.
This is where the analysis in section II becomes useful.
The quantity S is a separate metric for determining the
extent of the log-range/power-law-range. Following the
discussion in the previous section, the following wall-layer
composition in Fig. 5 will be tested using the data. The
wall-layer composition in Fig. 5 is found to provide good
working approximations of the velocity profiles in chan-
nel, pipe and boundary-layer flows (see appendix A). It
is worth noting that the space-filling capacity of bound-
ary layer turbulence was recently discussed in [18] and
[51], albeit in different contexts.

Compared to the log law, the power law is less practical
because of the Reynolds number dependence of the two
power-law parameters. The analysis in section II may
be used to provide estimates of the power-law parame-
ters. From to Fig. 3 (a), we conclude that the transi-
tion from being space-filling to being non-space-filling is
continuous. Therefore, the power-law parameters are in
principle functions of the log-law parameters. Because
both the power-law and the log-law can be used to ap-
proximate the mean velocity in the overlap region, the
constants in the power law may be determined by fitting
a power law scaling to a log scaling in the overlap region,
i.e. C and α are such that e in the following equation is
at its minimum

e =

∫ y+=0.1δ+

y+=Cy
√
Reτ

(
1

κ
log(y+) +B − Cy+α

)2

d log(y+). (9)

This problem can be solved numerically, and both C
and α are functions of κ and B. However, because this
procedure relies on the existence of an overlap region
(0.1δ+ > Cy

√
Reτ ), it provides predictions only for flows

at a friction Reynolds number Reτ & 2, 000. In Fig. 6,
the predicted C and α are compared against the mea-
surements. We have used κ = 0.44, B = 6.2 for pipe
flow, κ = 0.39, B = 4.2 for boundary layer flow and
κ = 0.41, B = 5.2 for channel flow (the constants κ and
B for each flow are the averages among the cases of that
flow configuration). As a result, the predicted C and α
are different for pipe, boundary layer and channel. The
empirical function in Ref. [52] is included for comparison.
The predicted power law constants agree reasonably well
with the measurements, and the current predictions are
not very different from previous empirical functions, ex-
cept for the dependency on κ and B. Hence the fractal
analysis in Sect. II is further supported.

IV. CONCLUSIONS

A fractal model is developed for the momentum trans-
fer process in wall-bounded flows. The presence of the
logarithmic law relies on the momentum-transferring ed-
dies being space-filling, and the power law corresponds to
non-space-filling momentum-transferring scales. A low-
order quantity, i.e., the space-filling capacity, is identified
that allows us to probe directly the derivative of the mean
velocity. Data analysis of this low-order quantity shows
that log scaling provides a reasonably good fit for the
mean velocity profile in the region 30 < y+, y < 0.1δ
and the power law fits the mean velocity quite well in
Cy
√
Reτ < y+, y < 0.3δ, where Cy ≈ 4.4. The region

Cy
√
Reτ < y+, y/δ < 0.1 is an overlap region, where

the flow transitions from a space-filling state to a non-
space-filling state. The dimension arguments that lead
to the log law and the power law are also revisited, and
we discuss how the fractal scaling may be incorporated
in conventional dimension arguments.
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FIG. 6. (a) power law exponents and (b) prefactor as func-
tions of the friction Reynolds number. Symbols are measure-
ments, and are best fits of power-law scalings to U in the
wall-normal distance range 0.1 < y/δ < 0.3, within which re-
gion S(y) follows a power-law. The bold line, thin line and
the dashed line correspond to Eq. (9) for boundary layer, pipe
and channel, respectively. The thin red line in (a) corresponds
to the empirical correlation by [52]: α = 1.085/ log(Re) +
6.535/(log(Re))2, where Re is the bulk Reynolds number,
and is defined based on the pipe diameter and the flow rate.
The bulk Reynolds number Re can be related to the fric-
tion Reynolds number Reτ using the Karman-Prandtl resis-
tance relation, i.e., 1/

√
f = −1.930 log(1.90/(Re

√
f)), where

f = 8τw/(ρŪ
2), and Ū is the mean flow rate. The thin red

line in (b) corresponds to C = 0.7053 log(Re) + 0.3055 [52].

The discussion on the asymptotic regime within which
a universal law of the wall can be expected is likely to
continue [53–55], so as theoretical and modeling inves-
tigations on possible functional forms of the law of the
wall [40, 56–63]. We do not attempt to conclude these
discussions in this work. Neither have we discussed im-
portant issues such as the universality of the von Karman
constant [64, 65], nor the implication of the present work
on rough wall boundary layer flows [66–68]. This work
is only to provide a new perspective to the historical re-
search topic of the law of the wall, and we hope a few new
insights can be gained by making an analogy between the
energy cascade and the momentum cascade.

Appendix A: Empirical evidence

We use experimental data from the Princeton super-
pipe [49, 69], the Melbourne HRNBLWT [39] and DNS
data in Refs. [35, 70–73]. The constants κ, B in the log
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FIG. 7. Mean velocities as functions of the wall-normal dis-
tance for pipe flow at (a) Reτ ≈ 3, 300 and (b) Reτ ≈ 452, 000
on a semilog scale. Legends are the same as in Fig. 3 (b).

law and C, α in the power law are allowed to vary from
case to case. For most datasets, a log scaling is fitted in
the region 50 < y+ < Cy

√
Reτ , within which region,

S(y) is independent of the wall-normal distance. For
high Reynolds number datasets (e.g. the Reτ ≈ 452, 000
dataset), where the first off-wall measuring wire is at a
wall-normal height y+ > Cy

√
Reτ , we fit a log scaling

in the wall-normal range between the first off-wall mea-
suring height and y/δ = 0.05. For low Reynolds number
datasets, where Cy

√
Reτ > 0.1δ+, we fit a log scaling in

the region 50 < y+, y/δ < 0.1. The power law is fitted
in the region 0.1 < y/δ < 0.3, within which region S(y)
follows a power law. Similar exercise has been done in
the literature. Here we do not seek to repeat those anal-
yses. As we have discussed, the extents of both the log
scaling and the power-law scaling are determined using a
separate measure S(y), and in this section, we test first
the usefulness of the two scalings in the respective region
and second the fractal model .

Figure 7 shows the pipe flow results. For brevity, we
show only data at a moderate Reynolds number, i.e.,
Reτ ≈ 3, 300, and data at a high Reynolds number, i.e.,
Reτ ≈ 452, 000. For the Reτ ≈ 3, 300 case, the mean flow
follows the power law scaling from y+ ≈ 30 to y/δ ≈ 0.5.
For the Reτ ≈ 452, 000 case, the mean profile follows
the fitted power law scaling from the first off-wall mea-
suring height, which is slightly above y+ = Cy

√
Reτ ,

to y/δ = 0.5. Both the power law and the log law
provide good fits to the mean flow in the wall distance
range Cy

√
Reτ < y+, y/δ < 0.1. Figure 8 shows the

channel flow results. For brevity, we show only data
at two Reynolds numbers, i.e. Reτ ≈ 1, 000 [73] and



8

10
1

10
2

10
3

y+

10

15

20

25

U
+

y+=4.4
√

Reτ

y/δ=0.1

y/δ=0.3

(a)

Channel, Reτ ≈ 1, 000

U+ = 1/0.41 log(y+) + 5.2

U+ = 8.3y+
0.15

10
1

10
2

10
3

10
4

y+

10

15

20

25

30

U
+ y+ = 4.4

√

Reτ

y/δ = 0.1

y/δ = 0.3

(b)

Channel, Reτ ≈ 5, 200

U+ = 1/0.41 log(y+) + 5.2

U+ = 9.7y+
0.12

FIG. 8. Mean velocities as functions of the wall-normal dis-
tance for channel flow at (a) Reτ ≈ 1, 000 and (b) Reτ ≈
5, 200 on a log-linear scale. Legends are the same as in Fig.
3 (b).

Reτ ≈ 5, 200 [35]. The log scaling provides a reason-
ably good fit for the mean velocity up to y/δ ≈ 0.15 at
both Reynolds numbers. The power law scaling, on the
other hand, is a good fit for the mean flow in the region
y/δ ≈ 0.1 to y/δ ≈ 0.3. For channel and pipe flow, where
the fluid is forced by a favorable pressure gradient, the
mean velocity profile is only slightly above the power law
in the wake region. In Fig. 3 (b), we have already shown
the Reτ ≈ 13, 000 boundary layer results. In Fig. 9, we
show the results for boundary layer at Reτ ≈ 4, 800. The
log scaling deviates from the mean profile at y/δ ≈ 0.1.
The mean velocity profile follows the power-law scaling in
the region 100 < y+, y/δ < 0.3. Hence the fractal model
is supported by the data—logarithmic scaling provides a
good fit for the mean velocity near the wall, and the in
the bulk region the mean profile follows a power law. The
extents of the log and power-law regions predicted by the
fractal model are, however, conservative. Near the wall,
the flow becomes space-filling, and the transition from
non-space-filling to space-filling is in the wall-normal ex-
tent Cy

√
Reτ < y+, y/δ < 0.1. In addition, comparing

Fig. 9, Fig. 3 (b) with Fig. 7, Fig. 8, one may have pre-
ferred the power law over the log law for pipe and channel
flow [74], and preferred the log law over the power law
for boundary layer flow [22].

Both the von Karman constant κ and the addend B in
the log law depend on the friction Reynolds number and
the flow configuration, e.g. κ ≈ 0.38 to 0.40 in boundary
layer flow, κ ≈ 0.42 to 0.44 in pipe flow, and κ ≈ 0.41 in
channel flow. Despite this variation, κ ≈ 0.4 to a single

digit. The multiplier C and power exponent α in the
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FIG. 9. Mean velocity as functions of the wall-normal distance
for boundary layer flow at Reτ ≈ 4, 800 on a semi-log scale.

power law, on the other hand, depends more explicitly
on the friction Reynolds number.

Appendix B: A remark on the wall-layer composition

Data analysis in section II D suggests that neither a log
scaling nor a power-law scaling may be used for U in the
overlap region (Cy

√
Reτ < y+, y/δ < 0.1), however, in

this appendix A, the data suggest that both scalings can
be used for U in the overlap region. At infinite Reynolds
number, the overlap region spans an infinite number of
scales and a log scaling is incompatible with a power law
scaling, thus the law of wall as is in Fig. 5 is in prin-
ciple not possible. Here we examine at what Reynolds
number a power-law scaling can no longer be used to
approximate a log scaling (and vice versa). The atmo-
spheric boundary layer on Earth is at a friction Reynolds
number Reτ ≈ O(106). Atmospheric boundary layers on
other planets and stars may be at higher Reynolds num-
bers, but it is unlikely that we would be dealing with wall-
bounded flows at friction Reynolds numbers Reτ > 1020.
At Reτ = 1020 the overlap region extends more than
eight decades of scales. The uncertainty in von Karman
constant is ±0.02, i.e. κ = 0.38 ∼ 0.42. This uncertainty
in κ is a ±5% uncertainty in the mean velocity. If we
fit a power law scaling to a perfect logarithmic scaling
U+ = 0.4 log(y+) + 5.0 in the overlap region. The fitted
power law is well within the ±5% uncertainty. Hence
we conclude that, for all practical purposes, the sketched
wall layer in Fig. 5 can be used, and the mean velocity
in the overlap region can be approximated using either
the log law or the power law.
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und längs platten,” Ergeb. Aerodyn. Versuch., Series 4,
18–29 (1932).

[21] T von Karman, “Mechanische ähnlichkeit und turbu-
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