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We numerically examine ballistic active disks driven through a random obstacle array. Formation
of a pinned or clogged state occurs at much lower obstacle densities for the active disks than for
passive disks. As a function of obstacle density we identify several distinct phases including a
depinned fluctuating cluster state, a pinned single cluster or jammed state, a pinned multicluster
state, a pinned gel state, and a pinned disordered state. At lower active disk densities, a drifting
uniform liquid forms in the absence of obstacles, but when even a small number of obstacles are
introduced, the disks organize into a pinned phase-separated cluster state in which clusters nucleate
around the obstacles, similar to a wetting phenomenon. We examine how the depinning threshold
changes as a function of disk or obstacle density, and find a crossover from a collectively pinned
cluster state to a disordered plastic depinning transition as a function of increasing obstacle density.
We compare this to the behavior of nonballistic active particles and show that as we vary the activity
from completely passive to completely ballistic, a clogged phase-separated state appears in both the
active and passive limits, while for intermediate activity, a readily flowing liquid state appears and
there is an optimal activity level that maximizes the flux through the sample.

I. INTRODUCTION

There is a wide range of soft and hard matter sys-
tems that can be modeled as collectively interacting par-
ticles which, when driven over quenched disorder, ex-
hibit pinning-depinning behavior as well as transitions
between different types of sliding regimes [1, 2]. Such
dynamics occur for vortex motion in type-II supercon-
ductors [3, 4], sliding charge density waves [5], depin-
ning of classical Wigner crystals [6, 7], current driven
motion of skyrmions in chiral magnets [8, 9], colloids in-
teracting with random [10–15] or ordered substrates [16],
sliding in frictional systems [17], magnetic domain wall
motion [18, 19], erosion [20], granular matter [21, 22],
driven pattern forming systems [23], geophysical mod-
els of plate tectonics [24], and the motion of disloca-
tions in crystalline materials [25]. The substrate may
be random, ordered, or partially ordered, and it can be
modeled as localized pinning sites with a finite trapping
strength or as impenetrable obstacles. Under an ap-
plied drive, the particles exhibit a variety of pinned and
moving order-disorder transitions that can be character-
ized by the moving structure, pattern formation features,
changes in the velocity force curves, and fluctuation phe-
nomena [1, 2]. In the systems listed above, the particles
themselves are passive or experience only thermal fluctu-
ations, so the driving is strictly externally applied; how-
ever, recently a growing number of studies have focused
on what are called active matter systems containing self-
driven particles with an activity that is often modeled as
arising from driven diffusive or run-and-tumble dynamics
[26, 27]. In the absence of a substrate, active disks ex-
hibit a transition from a uniform gas or liquid state to a
phase-separated or cluster state consisting of a high den-
sity solid coexisting with a low density active gas [28–34].
This transition occurs for fixed activity as a function of
increasing density or for fixed density with increasing ac-

tivity level. Active matter systems have also been been
studied in the context of particle shape effects [27, 35],
active rotators [36], passive and active mixtures [37–39],
boundary effects [40–44], and ratchet effects [45–47].

Several studies have examined different types of ac-
tive matter systems coupled with ordered [48–50] or dis-
ordered substrates [33, 51–66]. Numerical simulations
show that when a drift force is applied to run-and-tumble
disks moving through a random obstacle array, the flux
through the system is non-monotonic as a function of ac-
tivity level, indicating that there is an optimal run length
or run correlation time that maximizes the flux of disks
through the obstacles [33]. At small run lengths, the
disks behave thermally and easily become trapped be-
hind the obstacles, giving a low disk flux. As the activity
level or run length increases, the disks can more readily
move around the obstacles, increasing the flux; however,
when the run length is too large, a self-pinning effect oc-
curs in which the disks self-cluster around the obstacles,
reducing the flux [33, 65]. As a result, the flux is max-
imized when the disks are active and the self-clustering
is weak, while it is reduced when the activity becomes
high enough for significant clustering or self-trapping to
occur. When the run lengths are very long, the average
flux under an applied drive is strongly reduced, but it
never reaches zero since there are still long-time dynami-
cal rearrangements that produce avalanches or intermit-
tent flow of disks in the direction of the drift force [65].
Analytic and theoretical studies of active systems with-
out a drift force also indicate that there is an optimal
activity level that maximizes the diffusion in the system
[64]. If the obstacles are replaced by pinning sites, the on-
set of clustering can have the opposite effect of increasing
rather than decreasing the flux, since the clusters act like
large rigid objects that are poorly trapped by individual
pinning sites [60]. When the activity is low, a uniform
liquid state appears and individual disks can be trapped
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readily by individual pinning sites [60]. These works also
showed that within the phase separated state, increas-
ing the number of obstacles or pinning sites produces a
disorder-induced transition from a phase-separated state
to a uniform disordered state [58, 60].

In addition to the run-and-tumble models, several sim-
ulation studies of swarming or flocking active systems
with quenched disorder show that there is an optimal
noise level for the appearance of flocking [51, 54], and
that increasing the disorder strength can induce a tran-
sition from a flocking to a non-flocking state [53]. Exper-
iments on colloidal rollers that exhibit flocking behavior
have also revealed a transition from a drifting flocking
state to a non-flocking state as a function of increasing
obstacle density, where the flow becomes increasingly fil-
amentary as the disordered state is approached [57].

In these systems, the activity is stochastic in nature.
For run-and-tumble particles, after each run interval the
particle randomly reorients and runs in a new direction,
while in driven diffusive models, there is a noise term
controlling the rate of rotational diffusion [27]. The de-
terministic limit of active matter is purely ballistic flow
where the swimming direction of each particle is perma-
nently fixed. This can be achieved in run-and-tumble
disk systems by setting the running time to infinity, or in
driven diffusive systems by setting the rotational diffu-
sion coefficient to zero [52]. In the deterministic regime,
the particles can form a cluster state even at very low
densities, and Bruss et al. [67] argue that phase sepa-
ration occurs when the mean time between collisions is
smaller than the mean duration of an individual colli-
sion. Previous studies [52] of an active ballistic system
showed that the disks can form a frozen cluster state
where almost all the fluctuations are lost. This frozen
state arises due to the lack of stochastic behavior in the
system, and the resulting cluster can be regarded as an
absorbed state. In contrast, at long but finite run times,
the cluster can gradually evolve over time due to the pos-
sibility of rare stochastic reorganizations [65].

Previous studies of the active ballistic limit did not
include an applied drift force, so no pinning-depinning
phenomena occurred. In this work we consider active
ballistic disks driven through an obstacle array, and we
measure the average drift mobility 〈V 〉 of the disks in the
direction of the driving force FD. We find that the system
can evolve toward a completely pinned or clogged state
with 〈V 〉 ≈ 0. We describe our simulation in Sec. II. In
Sec. III we compare the active pinning or clogging to that
observed in the zero activity or passive limit. The critical
density of obstacles needed to induce the formation of a
clogged state is much higher in the passive system than
in the active ballistic system, and we show that in gen-
eral the active ballistic disks are much more susceptible
to forming clogs than the passive disks. In the active sys-
tem, clogging is associated with the formation of a clus-
ter state. As a function of increasing obstacle density, we
identify four phases: a sliding state with either a fluctuat-
ing cluster or a liquid structure; a pinned single cluster or

jammed state consisting of a large cluster held in place by
a small number of obstacles; a pinned multicluster state
containing several distinct pinned clusters; and a pinned
disordered state in which the disk density remains spa-
tially uniform. As the active disk density increases, we
also find what we term a pinned gel state where the disks
form a percolating labyrinth structure. For low active
disk densities where a flowing uniform liquid appears in
the absence of obstacles, we find that introduction of a
small number of obstacles causes a transition to a pinned
cluster state, which we compare to the active wetting of
clusters around an obstacle. In Sec. IV we examine the
velocity-force relations and the behavior of the critical
depinning force Fc. The depinning threshold for a clus-
ter is finite, and there is a pronounced increase in Fc at
the transition from the pinned single cluster state to the
pinned disordered state, reminiscent of the “peak effect”
observed in superconducting vortex systems at a transi-
tion from a collectively pinned ordered or quasiordered
vortex crystal to a vortex glass state [2, 3]. In Sec. V
we show how passive clogging can be connected to the
ballistic clogging limit by considering finite but increas-
ing run times for run-and-tumble active disks in obstacle
arrays. In both the passive and ballistic clogged states,
the disks form a cluster, while between these two limits
a flowing liquid structure appears. There is an optimal
run time at which the disk flux is maximized, and the
flux decreases with increasing run length until the disks
form a completely clogged state at infinite run times. We
discuss how these results can be related to granular jam-
ming transitions [68–70] and jamming in systems with
quenched disorder [71, 72], where the activity or the ob-
stacle density represent an additional set of parameters
that can be used to induce a jammed state. In Sec. VI
we summarize our results.

II. SIMULATION

We consider a two-dimensional system with periodic
boundary conditions in the x and y-directions containing
Na active or mobile disks that interact through a stiff

repulsive harmonic spring, Fs = k(d − 2R)Θ(d − 2R)d̂,
where d is the distance between two disks, d is the dis-
placement vector, k = 100 is the spring constant, and the
disk radius is R = 0.5. For this value of k the disk-disk
overlaps remain very small, allowing us to define the ac-
tive disk density in terms of the area covered by the disks,
φa = NaπR

2/L2, where the system size is L = 100. In
the limit of no activity and no obstacles, the disks form
a hexagonal lattice at φa = 0.9. In addition to the mo-
bile active disks, we introduce Nobs obstacles that are
identical to the active disks but are permanently fixed
in place. The obstacles are initially placed in a hexago-
nal lattice and are randomly diluted until we reach the
desired obstacle density of φobs = NobsπR

2/L2. Placing
the obstacles in an initial hexagonal lattice ensures that
there is a fixed minimum distance between any two ob-
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stacles, thereby avoiding the rare obstacle density fluctu-
ations such as large gaps or tight obstacle clustering that
can arise from a completely random obstacle placement
and dominate the dynamics. The total disk coverage of
both active and fixed disks is φtot = φobs + φa. The dy-
namics of the active disks is obtained from the following
overdamped equation of motion:

η
dri
dt

= F
i
s,a + F

i
m + F

i
s,obs + FD. (1)

Here η = 1.0 is the damping constant and the interac-
tion with other active disks Fs,a has the form of the stiff
spring repulsion Fs. Each active disk has a motor force
F

i
m that is constant in magnitude and oriented in a ran-

domly chosen direction. In run-and-tumble systems, the
motor force orientation is held fixed during the run time
τr, after which a new random orientation is chosen for
the next running time. In the ballistic limit, we set τr
to infinity so that the running direction never changes.
The forces from the obstacles Fs,obs are also given by Fs,
and the external driving force FD = FDx̂ is applied uni-
formly to all active disks. We also consider the passive
particle limit in which Fm = 0 and the only driving force
is the externally applied FD. To initialize the system,
after establishing the location of the obstacles we place
mobile disks with artificially reduced radii in nonoverlap-
ping locations and allow the mobile disks to rearrange
while gradually expanding the radii to the final value of
R = 0.5. With this method we can reach disk densities
up to φtot = 0.86.
To characterize the system we measure the average

drift velocity of the disks 〈V 〉 = 〈N−1
a

∑Na

i=0 vi · x̂〉 in
the direction of the drive. We wait 1 × 106 simulation
time steps for the system to settle into a steady state and
then average over an additional 9 × 106 simulation time
steps to obtain 〈V 〉. We have found that increasing the
waiting time produces negligible changes in the results.
In this work, unless otherwise noted we set FD = 0.05,
|Fm| = 0.5, and τr = ∞; however, we also consider varied
FD and finite τr.

III. PHASES OF ACTIVE BALLISTIC DISKS

In Fig. 1(a) we plot the fraction Cmax/Na of active
disks in the largest cluster versus time in simulation time
steps for a system with FD = 0.05, Na = 4450, and
Nobs = 50, giving an active disk density of φa = 0.3495,
an obstacle density of φobs = 0.00393, and an overall
density of φtot = 0.3534. The largest cluster size Cmax is
defined as the largest number of disks in direct contact
with each other as determined using the cluster identifi-
cation algorithm described in Ref. [73]. Figure 1(b) shows

the corresponding disk velocity V = N−1
a

∑Na

i=0 vi · x̂ ver-
sus time. Both Cmax/Na and V exhibit strong fluctu-
ations during the first 2.5 × 106 time steps, indicating
that the system is in a dynamic unpinned fluctuating
state. The disks then become trapped in a single pinned
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FIG. 1: (a,b) An active ballistic system with an area coverage
of φa = 0.3495 active disks and φobs = 0.00393 obstacles for
a total φtot = 0.3534. An external drift force of FD = 0.05 is
applied in the positive x-direction. (a) The fraction of disks in
the largest cluster, Cmax/Na, versus time in simulation time
steps. (b) The drift velocity V of the active disks vs time.
There is a transition from a fluctuating cluster state that is
drifting in the direction of drive, illustrated in Fig. 2(a), to a
pinned single cluster, shown in Fig. 2(b). At the transition,
Cmax/Na abruptly increases to a value close to one and V
simultaneously drops nearly to zero. The letters a and b

indicate the times corresponding to the images in Fig. 2(a,b).
(c) Cmax/Na and (d) V vs time for the same system in the
passive |Fm| = 0 limit at φtot = 0.3534 and φobs = 0.1178.
For this value of φtot, the system can reach a pinned or clogged
state only when φobs ≥ 0.098. The system evolves over time
into a pinned state, with a gradual drop in V accompanied by
a gradual increase in Cmax/Na. The initial unclogged state at
the time marked c is illustrated in Fig. 2(c), while the V = 0
pinned state at the time marked d is shown in Fig. 2(d).

cluster, as shown by the sudden jump in Cmax/Na to
Cmax/Na ≈ 1.0 which is accompanied by a drop in V
to nearly zero. There are still some small fluctuations
in both Cmax/Na and V due to the presence of a small
number of freely running disks that do not join the clus-
ter. In Fig. 2(a) we show a snapshot of the depinned
fluctuating clusters at time 1.0 × 106, where the active
disks form temporary clusters. Here V = 0.046, which
is close to the expected obstacle-free value of V = 0.05.
A pinned single cluster state appears at time 3 × 106,
as illustrated in Fig. 2(b), where the active disks form a
single large immobile cluster. We find that even a small
number of obstacles (Nobs/Na = 0.011) can produce a
pinned state for active ballistic disks. In contrast, for
passive disks at the same total density of φtot = 0.3534,
the system does not reach a pinned or clogged state until
Nobs/Na ≥ 0.384, indicating that nearly 35 times more
obstacles are required to pin the passive disks compared
to the active ballistic disks.

In Fig. 1(c,d) we plot Cmax/Na and V versus time
for a passive |Fm| = 0 system with φtot = 0.3534
and φobs = 0.1178, where the disks reach a pinned or
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FIG. 2: (a,b) The active ballistic disk positions (red cir-
cles) and obstacle locations (blue circles) for the system in
Fig. 1(a,b) with φtot = 0.3534, φobs = 0.00393, and a drift
force FD = 0.05 applied in the positive x direction. (a) De-
pinned fluctuating clusters appear at time 1 × 106, marked
a in Fig. 1(a). (b) The pinned single cluster state at time
3 × 106, marked b in Fig. 1(a). (c,d) Passive disk positions
(green circles) and obstacle locations (blue circles) for the sys-
tem from Fig. 1(c,d) with φtot = 0.3534 and φobs = 0.1178.
(c) The initial flowing state at the time marked c in Fig. 1(c).
(d) The clogged or pinned state at time 3× 106, marked d in
Fig. 1(c).

clogged state. In contrast to the active ballistic system
in Fig. 1(a,b), the pinned state does not appear abruptly;
instead, the passive disks continuously evolve toward the
pinned state over time, with a growing number of pinned
clusters gradually emerging as indicated by the steady
increase in Cmax/Na and the gradual decrease in V . In
Fig. 2(c) we illustrate the initial uniform spatial distri-
bution of the passive disks, while in Fig. 2(d) we show
a snapshot of the disk positions in the clogged state at
a time of 2 × 106. Unlike the active ballistic disks in
Fig. 2(b), the passive disks in Fig. 2(d) do not form
a single clump but instead assemble into a number of
smaller clumps. This indicates that the passive and ac-
tive clogged or pinned states are very different in nature.

In Fig. 3(a,b) we plot CL = 〈Cmax/Na〉 and 〈V 〉 versus
φobs for the active ballistic system from Fig. 1(a) with
φtot = 0.3534 at FD = 0.05. For φobs < 0.0039 the
system is in a depinned fluctuating cluster state, labeled
phase Ifc, where 〈V 〉 is finite and the long-time average
of Cmax/Na is CL ≈ 0.5. For 0.0039 ≤ φobs < 0.025,
we find a pinned single cluster state, denoted phase II,
with CL > 0.9 and 〈V 〉 ≈ 0.0. In Fig. 4(a) we illustrate
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FIG. 3: (a) CL and (b) 〈V 〉 vs obstacle density φobs for ac-
tive ballistic disks with FD = 0.05 and φtot = 0.3534. For
φobs < 0.0039, 〈V 〉 is finite and the system is in phase Ifc, the
depinned fluctuating cluster state, while at the transition to
phase II, the pinned single cluster state, 〈V 〉 drops to zero.
Phase II extends from 0.0039 ≤ φobs < 0.025 and is illus-
trated in Fig. 4(a). For 0.025 ≤ φobs < 0.065, the system is in
phase III, a pinned multicluster state, illustrated in Fig. 4(b),
while for φobs ≥ 0.065 the system is in phase IV, the pinned
disordered phase illustrated in Fig. 4(c,d) at φobs = 0.0942
and φobs = 0.1963. The labels a to d in (a) indicate the val-
ues of φobs at which the images in Fig. 4 are obtained. (c)
CL and (d) 〈V 〉 vs φobs for passive disks at the same FD and
φtot. Here there are only two phases: a plastic flow state
φobs < 0.098, and a completely pinned or clogged state for
φobs ≥ 0.098. There is a peak in CL at φobs = 0.098 where
〈V 〉 drops to zero. The labels a to d in (c) indicate the values
of φobs at which the images in Fig. 5 are obtained.

phase II at φobs = 0.01178. Phase II can be viewed as a
pinned jammed state in which a single clump has nucle-
ated around the obstacles and acts as a rigid solid. Active
disks that are not adjacent to obstacles are pinned or pre-
vented from moving by other active disks through con-
tact interactions, so the collective pinning of the clump is
dominated by disk-disk interactions rather than by direct
disk-obstacle interactions. Since we are using monodis-
perse disks rather than the bidisperse disk mixture com-
monly studied in jammed systems, the particles form-
ing the cluster have a substantial amount of hexagonal
or crystalline ordering, whereas typical 2D jammed sys-
tems form amorphous rather than polycrystalline pack-
ings [69, 71]; however, in both our system and the jam-
ming systems, it is the disk-disk contact interactions that
cause the system to act like a solid that can be pinned
by a small number of obstacles. Previous work [52] on
active ballistic systems revealed similar large-scale frozen
cluster states, but did not include an external drift force.
In the present study, the formation of the single frozen
cluster in the presence of a drift force results in a pinned
state.

For 0.025 ≤ φobs < 0.065 in Fig. 3(a,b), we observe
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FIG. 4: The active ballistic disk positions (red circles) and
obstacle locations (blue circles) for the system in Fig. 3(a,b)
with FD = 0.05 and φtot = 0.3534 obtained at the values
of φobs marked by the letters a to d in Fig. 3(a). (a) The
pinned single cluster phase II at φobs = 0.01178. (b) The
pinned multicluster phase III at φobs = 0.039. (c) The pinned
disordered phase IV at φobs = 0.0942 consists of a group of
small clusters. (d) The pinned disordered phase IV at φobs =
0.1963 is composed of even smaller clusters.

a pinned multicluster state termed phase III in which
〈V 〉 = 0 where CL decreases from CL = 0.9 to CL = 0.12
with increasing φobs. A snapshot of the disk positions in
phase III at φobs = 0.039 appears in Fig. 4(b). For φobs ≥
0.065, the system is in phase IV, a pinned disordered state
with CL < 0.15 in which the disks form numerous small
clumps that gradually decrease in size with increasing
φobs, as illustrated in Fig. 4(c) at φobs = 0.0942 and in
Fig. 4(d) at φobs = 0.1963.

We plot CL and 〈V 〉 versus φobs for passive disks with
φtot = 0.3534 and FD = 0.05 in Fig. 3(c,d). The pas-
sive disks do not reach a pinned state with 〈V 〉 ≈ 0 until
φobs > φc = 0.098. Figure 3(c) shows that CL is small
for low φobs and increases to a peak value of CL = 0.5
just below φc. For φobs > φc, CL decreases with increas-
ing obstacle density. In Fig. 5(a) we show a snapshot of
the flowing state at φobs = 0.01178. Although no clus-
ters appear, the disks tend to form one-dimensional (1D)
flowing chains. In the flowing state at φobs = 0.055,
illustrated in Fig. 5(b), small clusters are beginning to
appear. The pinned cluster state near the peak value
of CL at φobs = 0.1178 is shown in Fig. 2(d). Above
the peak in CL, the size of the clusters decreases with
increasing obstacle density and a clogged state forms as
shown in Fig. 5(c) for φobs = 0.14137 and in Fig. 5(d)
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FIG. 5: Passive disk positions (green circles) and obstacle
locations (blue circles) for the system in Fig. 4(c,d) with FD =
0.05 and φtot = 0.3534 obtained at the values of φobs marked
by the letters a to d in Fig. 3(c). (a) The flowing state at
φobs = 0.01178. (b) At φobs = 0.055, clusters begin to form.
(c) The clogged state at φobs = 0.14137. (d) The clogged
state at φobs = 0.1963.
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FIG. 6: The scaling of V ∝ |φc − φobs|
β for the passive disks

in Fig. 3(d) with φc = 0.098 and β = 0.35.

for φobs = 0.1963, where the clusters have become quite
small.

The peak or divergence in CL for the passive disk sys-
tem in Fig. 3(c) suggests that the onset of complete clog-
ging at φc occurs at a critical point. We have tried per-
forming a power law fit CL ∝ |φc−φobs|

ν on either side of
the divergence; however, we find only a limited range for
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FIG. 7: (a) 〈Cmax〉, the average number of disks in the largest
cluster, vs φobs at FD = 0.05 for φtot = 0.668 (Ntot = 8500,
turquoise), 0.589 (7500, light green), 0.511 (6500, red), 0.432
(5500, dark green), 0.354 (4500, blue), 0.275 (3500, maroon),
0.196 (2500, violet), 0.118 (1500, orange), and 0.0786 (1000,
magenta). (b) The corresponding CL vs φobs curves. The I-II
transition is associated with a jump or increase in 〈Cmax〉 and
CL, while at large φobs, the system enters a pinned disordered
phase as indicated by the drop in Cmax and CL to nearly zero.
The labels a to d in (a) indicate the values of φobs at which
the images in Fig. 8 were obtained.

the fit resulting in strong variations in the exponent. We
find more consistent scaling of the average drift velocity
as φc is approached, with 〈V 〉 ∝ |φc − φobs|

β, as shown
in Fig. 6 where β = 0.35. We have studied the criti-
cal clogging behavior of passive disks in more depth in
Ref. [14], where we find a robust power law divergence in
the transient times near φc consistent with an absorbing
phase transition. The focus of the present work is active
ballistic jamming and we measure the passive disks for
comparison. Our results indicate that the onset of pinned
or clogged states for the active ballistic disks is very dif-
ferent in nature from the clogging of passive disks. In
particular, we find only two phases for the passive disks
and four phases for the active ballistic disks. The Ifc-II
transition marking the onset of a pinned state for the ac-
tive ballistic disks produces discontinuities in both 〈V 〉
and CL, consistent with a first order phase transition,
while for the passive disks, the onset of pinning or clog-
ging has the character of a second order phase transition
or a crossover phenomenon.
In Fig. 7(a) we plot 〈Cmax〉, the average number of

disks in the largest cluster, versus φobs for the active bal-
listic system at varied φtot to highlight the evolution of
phases I through IV. Figure 7(b) shows the collapse of
the curves when the same results are plotted in terms
of CL, the average fraction of disks in the largest clus-
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FIG. 8: The active ballistic disk positions (red circles) and
obstacle locations (blue circles) for the system in Fig. 7 ob-
tained at the values of φtot and φobs marked by the letters a

to d in Fig. 7. (a) The drifting liquid for φtot = 0.196 and
φobs = 0.003926. (b) The pinned gel phase containing a large-
scale percolating cluster at φtot = 0.589 and φobs = 0.1256.
(c) The pinned disordered phase at φtot = 0.589 and φobs =
0.283. (d) The high density depinned fluctuating cluster state
at φtot = 0.668 and φobs = 0.000156.

ter, versus φobs. For φtot ≤ 0.275, phase I is a uniform
drifting liquid with CL < 0.04, as illustrated in Fig. 8(a)
for φtot = 0.196 at φobs = 0.003926. As φobs increases,
there is a transition from the drifting liquid phase I to the
pinned single cluster phase II, as indicated by the large
increase in CL to a value of CL = 0.8 or higher. The
obstacle density φobs at which the I-II transition occurs
shifts upward as φtot decreases, and at the lowest values
of φtot that we consider, the system always remains in
phase I, as shown for φtot = 0.0786 in Fig. 7. We note
that the maximum allowed value of φobs decreases with
decreasing φtot since it is bounded by the total disk den-
sity. For φtot ≥ 0.35, instead of the drifting liquid phase
I, we find the depinned fluctuating cluster state Ifc as
described previously, and in all cases the I-II and Ifc-II
transitions are associated with a jump or increase in CL.
The II-III transition also shifts to higher values of φobs

with increasing φtot.

Within the pinned disordered phase IV in Fig. 7, an
additional feature emerges for φtot = 0.432 in the form
of a peak in 〈Cmax〉 and CL near φobs = 0.115. This
peak grows in both height and extent with increasing
φtot. At the onset of the pinned disordered phase IV,
CL is low and the disks form a small number of isolated
clumps. As φobs increases, these clumps break apart and
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FIG. 9: The locations of the phases in Fig. 7 as a func-
tion of φobs vs φtot. Phase I (magenta) is the drifting liq-
uid state; phase Ifc (pink) is the depinned fluctuating clump
state; phase II (yellow) is the pinned single cluster state; phase
III (dark green) is the pinned multicluster state; phase IIIpc
(light green) is the pinned gel state; and phase IV (blue) is
the pinned disordered state.

the disks are spread more evenly over the substrate. At
higher overall disk densities φtot ≥ 0.432, this produces a
percolation transition in which the broken clumps merge
to form a pinned gel or labyrinth state of the type il-
lustrated in Fig. 8(b) at the peak in 〈Cmax〉 and CL for
the φtot = 0.589 and φobs = 0.1256 system in Fig. 7.
For higher φobs, the active ballistic disks spread further
apart and the gel transforms to a pinned disordered state,
as shown in Fig. 8(c) for the φtot = 0.589 system from
Fig. 7 at φobs = 0.283. The emergence of the intermedi-
ate pinned gel state is responsible for the additional peak
in 〈Cmax〉 and CL. At the highest value φtot = 0.668 in
Fig. 7, the II-III transition is lost and the 〈Cmax〉 and
CL curves become nearly featureless below the transition
to the pinned disordered phase IV. When the total disk
density is high, motion in the depinned fluctuating cluster
phase Ifc becomes less intermittent and the steady state
value of CL increases to CL > 0.95. The high density de-
pinned fluctuating cluster state is illustrated in Fig. 8(d)
for φtot = 0.668 and φobs = 0.00156.

Using the results in Fig. 7, we can construct a phase
diagram showing the evolution of the different phases as
a function of φobs versus φtot, as shown in Fig. 9. The
unpinned state is a drifting liquid (phase I) for low φtot

and a depinned fluctuating clump state (phase Ifc) for
high φtot. Phase II is the pinned single clump state and
phase III is the pinned multiclump state. For large φtot

we find a window of phase IIIpc, the pinned gel state,
at φobs values above phase III. Phase IV is the pinned
disordered state. The features in the CL and 〈V 〉 curves
indicate that the I-II and Ifc-II transitions are first or-
der in nature, while the II-III and III-IV transitions are
continuous or show crossover behavior. In Ref. [14] we
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FIG. 10: (a) CL vs φtot for active ballistic disks with FD =
0.05. Light green circles: In the obstacle-free system φobs =
0, clustering begins near φtot = 0.28. Dark green squares:
A system with φobs = 0.00157, showing that inclusion of a
small number of obstacles can stabilize a cluster state at much
lower densities φtot ≈ 0.1. (c) Cmax/Na and (d) instantaneous
velocity V versus time for a system with φtot = 0.196 and
φobs = 0.00785 that remains in phase I but is near the I-
II transition. Drops in V indicate the temporary formation
of a pinned cluster as shown by the corresponding jumps in
Cmax/Na.

perform a detailed study of the behavior of passive disks
as a function of φobs versus φtot, where we find that the
pinned phase appears at much higher values of φobs than
in the active ballistic system. We note that there may be
additional phases in the active ballistic system at values
of φtot higher than those shown in Fig. 9, particularly
upon approaching φtot = 0.9 where the system crystal-
lizes into a close-packed lattice.

In nonballistic active particle systems that undergo
driven diffusion or have run-and-tumble motion with fi-
nite τr, a phase separated state appears in the absence of
quenched disorder as a function of disk density φtot and
activity. Typically there is a density φmin

tot below which
phase separation does not occur. For the ballistic active
matter system we consider, in the absence of obstacles a
phase separated state appears only for φtot ≥ 0.35. The
introduction of obstacles makes it possible for a cluster
state to nucleate at much smaller values of φtot. For
FD = 0.05, we find clustering at densities as small as
φtot ≈ 0.1. To illustrate this more clearly, in Fig. 10
we plot CL versus φtot for systems with φobs = 0 and
φobs = 0.00157. In the obstacle-free system, the cluster
size begins to increase near φtot = 0.28, reaching a value
of CL = 0.8 at φtot = 0.47. In contrast, adding a small
number of obstacles shifts the onset of clustering down
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FIG. 11: (a) 〈V 〉 and (b) CL vs FD for active ballistic disks
with φtot = 0.3534 and φobs = 0.00178. At FD = 0.05 the
system is in phase II, the pinned single cluster state, and at
FD = Fc = 0.1 it depins and enters phase Ifc. (c) 〈V 〉 and
(d) CL vs FD for passive ballistic disks at the same values of
φtot and φobs. There is no depinning threshold and clustering
does not occur.

to φtot = 0.095, and CL reaches a value of CL = 0.8
at φtot = 0.12. This indicates that the obstacles are
responsible for nucleating stable clusters over the range
0.12 < φtot < 0.28. The disorder-induced cluster state
can be viewed in terms of a wetting phenomenon where
the active particles accumulate not along walls [74] but
next to the obstacles.
The ability of a cluster to form at low obstacle densities

also depends on FD. As FD decreases, the transition from
the drifting liquid phase I to the pinned single cluster
phase II occurs at lower φobs. In general, even when FD

is too large to stabilize phase II for a given value of φobs,
a transient pinned cluster can still form on a temporary
basis. An example of this appears in Fig. 10(b,c) where
we plot Cmax/Na and instantaneous velocity V versus
time for a system with φtot = 0.196 and φobs = 0.00785,
which is close to the I-II transition on the phase I side.
There are a series of dips in V correlated with jumps
in Cmax/Na which arise when a pinned cluster forms,
reducing the velocity temporarily. The cluster quickly
breaks apart, restoring V and Cmax/Na to their steady
state average values.

IV. DEPINNING AND DRIVE DEPENDENCE

We next consider the effect of changing FD in order
to construct velocity-force (v − f) curves and measure
the depinning threshold Fc. We compare the depinning
of the active ballistic disks to that of passive disks. In
Fig. 11(a,b) we plot 〈V 〉 and CL versus FD for an active
ballistic system with φtot = 0.3534 and φobs = 0.00178,
which is in the pinned single cluster phase II at FD =
0.05. We find a drive-induced depinning transition at
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FIG. 12: (a) 〈V 〉 and (b) CL vs FD for active ballistic
disks with φtot = 0.3534 at φobs = 0.00235 (light blue),
0.01178 (red), 0.03927 (green), 0.0628 (dark blue), 0.0785
(violet), 0.0942 (brown), and 0.1256 (magenta). (c) 〈V 〉
and (d) CL vs FD for passive disks with φtot = 0.3534 at
φobs = 0.00235 (light blue), 0.01178 (red), 0.03927 (green),
0.0628 (dark blue), 0.094274 (violet), and 0.1267 (brown),
showing that a finite depinning threshold does not appear
until φobs > 0.094274.

FD = Fc = 0.1 from phase II to phase Ifc, as shown by the
sharp drop in CL that coincides with the onset of a linear
increase in 〈V 〉 with increasing FD. In Fig. 11(c,d) we
show 〈V 〉 and CL versus FD for a passive disk system with
the same values of φtot and φobs. There is no depinning
threshold and CL < 0.005 for all values of FD, indicating
a complete lack of clustering.

In Fig. 12(a,b) we plot 〈V 〉 and CL versus FD for the
active ballistic disks with φtot = 0.3534 at φobs = 0.00235
to 0.1256. We find that the II-Ifc transition, correspond-
ing to the depinning threshold, drops to lower values of
FD as φobs decreases, as indicated most clearly by the
φobs = 0.00235 curve in Fig. 12(a) which has Fc = 0.035.
The II-Ifc depinning transition is generally quite sharp,
and the system goes directly from the pinned state to
a fully flowing state without passing through a regime
in which moving and pinned active particles coexist. In
contrast, the depinning transition separating phases III
and IV for φobs ≥ 0.03927 is smooth or continuous and is
plastic in nature, so that above depinning only a portion
of the active disks are flowing while the other portion
remains pinned. In studies of depinning in other sys-
tems such as superconducting vortices or colloidal parti-
cles moving over quenched disorder, elastic depinning is
associated with a sharp transition in the v− f curve and
a scaling of V ∝ (FD − Fc)

α with α < 1.0. Plastic de-
pinning is accompanied by an extensive nonlinear regime
in the v − f curves with α > 1.0. In our active ballistic
disk system, the resolution of the v−f curves is not high
enough to perform a scaling analysis; however, the quali-
tative change in the v− f curve at the Ifc-II transition is
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FIG. 13: (a) Fc (red squares) and the value of CL at FD =
0.05 (green circles) vs φobs for the active ballistic disks at
φtot = 0.3534. The depinning threshold remains finite down
to φobs = 0.0008, and there is an increase in Fc at the onset of
phase IV. (b) Fc and (c) the value of CL at FD = 0.05 vs φtot

for φobs = 0.09427. The behavior of Fc is nonmonotonic, and
Fc increases with increasing φtot for φtot > 0.6 when CL = 1,
indicating the formation of a jammed state. The labels a to
d in (c) indicate the values of φtot at which the images in
Fig. 14 were obtained.

consistent with an elastic or collective depinning at low
φobs crossing over to plastic depinning for higher φobs.
For the III-IV depinning transition, there is generally a
small peak in CL at Fc produced when the disks start to
accumulate behind the obstacles, and in all cases there
is an overall drop in CL at higher values of FD in the
moving phase. For φobs = 0.1256, depinning does not
occur until FD = Fc = 1.35.
In Fig. 12(c,d) we plot 〈V 〉 and CL versus FD for the

passive disks with φtot = 0.3534 at φobs = 0.00235 to
0.1267. There is no finite depinning threshold for φobs ≤
0.094274. We find an extended regime of nonlinear flow
for φobs > 0.0628 associated with a coexistence of flowing
and clogged disks. In Fig. 12(d), CL < 0.01 at all FD for
φobs = 0.00235 and φobs = 0.01178, while for higher φobs

there is generally a decrease in CL with increasing FD

for FD > 0.3. The maximum value of CL occurs for
φobs = 0.094274, which is just below the obstacle density
at which a finite depinning threshold first appears. These
results show that for varied FD, the active ballistic disks
have a much higher susceptibility to becoming pinned
than the passive disks.
In Fig. 13(a) we plot the evolution of the depinning

threshold Fc along with the value of CL at FD = 0.05
versus φobs for the active ballistic disks at φtot = 0.3534.
There is a sharp increase from Fc = 0 at φobs = 0
to Fc = 0.007 at φobs = 0.0008, the lowest nonzero
obstacle density we considered, for which the ratio of
obstacles to active particles is Na/Nobs = 440. For
0.0045 < φobs < 0.039, there is a more gradual linear in-
crease of Fc with increasing φobs over the range of phase
II depinning through half of the phase III depinning.
This is followed by a regime of roughly constant Fc for
0.039 < φobs < 0.065 in the second half of phase III de-
pinning, while in phase IV for φobs > 0.65, there is a rapid
increase in Fc which coincides with a drop in CL. Plastic
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FIG. 14: The active ballistic disk positions (red circles) and
obstacle locations (blue circles) for the system in Fig. 13(b,c)
with φobs = 0.09427 obtained at the values of φtot marked
by the letters a to d in Fig. 13(c). (a) The pinned liquid
at φtot = 0.1963. (b) A pinned weakly clustered state at
φobs = 0.275 (phase IV). (c) A pinned gel state at φtot = 0.51
(phase IIIpc). (d) A jammed solid state at φtot = 0.8246.

depinning appears in phase IV, and the rapid increase in
Fc in this regime is reminiscent of the “peak effect” phe-
nomenon observed for the depinning of superconducting
vortices [2, 3, 75]. At low disorder strength, the vor-
tices form a crystal that that can be collectively pinned
by a small number of pinning sites; however, when the
pinning strength is increased, the crystalline structure
breaks apart, the vortex structure becomes amorphous,
and there is a pronounced increase in the depinning force
that is much larger than what would be expected from the
increase in the pinning strength [2, 3]. In the active ballis-
tic disk system, the clusters have considerable crystalline
order, and when the amount of disorder is increased by
raising the number of obstacles, the large clusters break
up into smaller clusters that can be pinned more easily,
leading to the increase in Fc.
In Fig. 13(b,c) we plot Fc and the value of CL at

FD = 0.05 versus φtot for the active ballistic disks at
φobs = 0.09427. For low φtot < 0.35, a disordered but
strongly pinned phase appears, as indicated by the large
Fc and the low CL < 0.1. In Fig. 14(a) we illustrate the
disk configuration at φtot = 0.1963 where a pinned liquid
with small local disk clusters forms. As φtot increases, Fc

decreases and a pinned weakly clustered state emerges,
as shown in Fig. 14(b) at φtot = 0.275. Since the num-
ber of obstacles is fixed, as φtot increases, each obstacle
must restrain a larger number of mobile disks, causing
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FIG. 15: (a) Fc and (b) the value of CL at FD = 0.05 vs
φobs at φtot = 0.3534 for the active ballistic disks (circles)
and passive disks (squares). (c) Fc and (d) the value of CL at
FD = 0.05 vs φtot at φobs = 0.094 for the active ballistic disks
(circles) and passive disks (squares). At high φtot, both the
active and passive disks undergo a transition into a jammed
state.
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FIG. 16: The passive disk positions (green circles), obstacle
locations (blue circles), and disk trajectories for the system in
Fig. 15(c,d) (a) At φtot = 0.196, 1D flow channels coexist with
pinned disks. (b) At φtot = 0.4712, collective interactions
between disks cause a larger fraction of the disks to flow.

Fc to decrease with increasing φtot. In Fig. 14(c) we plot
the disk configuration at φtot = 0.51, where the system
forms a pinned gel phase with low Fc. Figure 13(c,d)
shows a local minimum in Fc near φtot = 0.628, where
CL = 0.92. For φtot > 0.628, Fc begins increasing with
increasing φtot and CL approaches CL = 1 as the disks
assemble into a single jammed solid packing, as shown in
Fig. 14(d) at φtot = 0.8246.
In Fig. 15(a,b) we plot Fc and the value of CL at

FD = 0.05 versus φobs at φtot = 0.3534 for active ballistic
disks and passive disks. The depinning threshold remains
finite in the active system for φobs ≥ 0.0008, whereas in
the passive system the depinning threshold drops to zero
when φobs ≤ 0.094. This indicates that 100 times fewer
obstacles are needed to pin the active system compared
to the passive system. In addition, the depinning thresh-
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FIG. 17: (a) The disk mobility M and (b) CL vs run length lr
for finite run time active disks at FD = 0.05, φtot = 0.51 and
φobs = 0.14137. The low lr behavior is similar to that found
in the passive disk limit while the high lr behavior is similar
to that found in the active ballistic limit. Between these two
limits the disks form a uniform density, highly mobile liquid
state. The labels a to d in (b) indicate the values of lr at
which the images in Fig. 18 were obtained. (c) M and (d)
CL vs lr for finite run time active disks at φtot = 0.667 and
φobs = 0.14137.

old for the active system is always higher than that of
the passive system. In Fig. 15(c,d) we show Fc and the
value of CL at FD = 0.05 versus φtot at φobs = 0.094 for
the active ballistic and passive disks. Here the depinning
threshold for the passive disks does not become finite un-
til φtot > 0.7, the density above which CL increases to
CL = 1.0. The high density active ballistic and passive
disk states are similar in nature and are dominated by
the formation of a jammed solid state. Even when the
depinning threshold in the passive disk system is zero,
the v − f curves can show strongly nonlinear behavior,
and a large fraction of the passive disks remain pinned or
immobile for φtot < 0.35, the same total disk density at
which the active ballistic disks exhibit a large increase in
Fc. In Fig. 16(a) we show the passive disk locations and
trajectories at φtot = 0.196 and FD = 0.05. A portion
of the disks move in 1D filamentary channels while the
remaining disks are pinned. These filamentary channels
persist down to FD = 0.0 in the passive disks, but are
generally absent for active ballistic disks. In the passive
disk system, as φtot increases, cooperative interactions
between the mobile disks reduce the overall trapping and
lead to a higher fraction of flowing disks, as illustrated
in Fig. 16(b) at FD = 0.05 and φtot = 0.4712. As φtot

further increases, the system approaches a jammed solid
with a finite depinning threshold.
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FIG. 18: The finite run time active disk locations (orange
circles) and obstacle locations (blue circles) for a system with
φtot = 0.51 and φobs = 0.14137 obtained at the values of
lr marked by the letters a to d in Fig. 17(b). (a) The low
mobility clogged state at lr = 0.001. (b) The high mobility
uniform liquid at lr = 2.0. (c) The actively clogged state at
lr = 10. (d) The actively clogged state at lr = 200.

V. FINITE RUN TIME ACTIVE DISKS

We next show how the passive disk pinning and ac-
tive ballistic disk pinning limits can be connected to each
other by considering run-and-tumble particles where we
gradually increase the running time from close to zero,
which is the passive limit, to large values which approach
the ballistic limit. In Fig. 17(a,b) we plot the mobility
M = 〈V 〉/〈V0〉 per disk and CL versus run length lr
for a finite run time active disk system at φtot = 0.51,
φobs = 0.14137, and FD = 0.05. Here 〈V0〉 is the aver-
age drift velocity of an individual disk in the absence of
obstacles or other disks, so for FD = 0.05, 〈V0〉 = 0.05,
and in the obstacle-free limit, M = 1.0. The disk dynam-
ics are the same as those described in Eq. 1 except the
running time τr is now finite. For convenience, we char-
acterize the activity level in the system at a fixed |Fm| in
terms of the run length lr = |Fm|τr, so that large lr cor-
responds to large τr. In the passive limit, lr = 0, while
in the ballistic limit, lr is infinite. For the parameters
we consider in this section, the system reaches a com-
pletely pinned state in both the passive and ballistic lim-
its. In Fig. 17(a) at low lr, 〈M〉 is small, indicating that
a clogged state has formed that is similar to the passive
disk clogged state which appears at lr = 0. At the same
time, CL > 0.8 in Fig. 17(b), indicating the formation of
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FIG. 19: (a) The disk mobility M and (b) CL vs run length lr
at FD = 0.05, φtot = 0.3543 and φobs = 0.14137 for finite run
time active disks. (c) M and (d) CL vs lr at φtot = 0.2356
and φobs = 0.14137 for finite run time active disks, where the
system is always in the disordered regime.

a large cluster. In Fig. 18(a) we plot the disk configura-
tions for lr = 0.001, where the clogged state has highly
heterogeneous local disk density. For 0.01 < lr < 5, an
easily flowing liquid appears, as indicated by the increase
in M and the drop in CL to CL < 0.01. We illustrate
the flowing liquid at lr = 2.0 in Fig. 18(b), where the
disk density is uniform and clustering behavior is lost.
As lr increases, M decreases once self-clustering of the
disks begins to occur, as shown in Fig. 18(c) for lr = 10.
At large lr, CL approaches CL = 0.9 and M drops to a
low value. In this regime, the image of the lr = 200 sys-
tem in Fig. 18(d) indicates that clustering similar to that
found in the active ballistic pinned state is present. We
note that M > 0 for any finite lr since there is always a
chance that the activity can unpin a fraction of the disks
even when lr becomes large. The motion in the finite
but large lr regime becomes highly intermittent and ex-
hibits avalanche-like fluctuations, as has been described
in detail elsewhere [65]. In Fig. 17(c,d) we plot M and
CL versus lr for the run-and-tumble disks at a higher
φtot = 0.667. We find the same trend in which clustering
occurs at both small and large lr, with a correspondingly
low value of M , while for intermediate lr, the clustering
disappears, CL is low, and M is high. The maximum
value of M is lower at φtot = 0.667 than at φtot = 0.51
due to the crowding effect that appears at higher disk
densities.

In Fig. 19(a,b) we plot M and CL for finite run time
active disks at φtot = 0.3534 and φobs = 0.1413. We
find the same trend as in Fig. 17 where high values of
CL are associated with low values of M ; however, at this
lower total disk density φtot, the maximum value of CL

is reduced. A peak in CL near lr = 0.005 indicates the
appearance of additional clustering just before the activ-
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ity becomes large enough to liquefy the system and in-
creaseM . This suggests that the activity becomes strong
enough to cause untrapping of individual disks at lower
lr but that the untrapped disks then pool into clusters
that are too large to be broken apart by individual disks
until lr increases, at which point the clumps break apart
and the system flows in a liquid state. In Fig. 19(c,d)
we plot M and CL versus lr for finite run length disks at
φtot = 0.2356 and φobs = 0.1413. At this low total disk
density, little clustering occurs and CL is always small.
We still observe a peak in M at intermediate lr values;
however,M is relatively low overall, reaching a maximum
value of only M = 0.1. This result emphasizes the role of
collective disk-disk interactions in liquefying the system
and increasing the mobility for intermediate lr.

Although we consider only monodisperse disks in this
work, the introduction of obstacles causes the clogged
states to exhibit a considerable amount of structural dis-
order, similar to that found in jammed states for bidis-
perse or completely amorphous systems [68, 70, 71]. For
passive disks at low obstacle densities, previous studies
have shown that jamming occurs near the obstacle-free
jamming density of φj or point J , but that the jamming
transition shifts to lower disk densities as the obstacle
density increases [70, 72]. When the obstacle density is
high enough, the behavior of the system changes and in-
stead of a uniform jammed state, the passive disks assem-
ble into a clogged state with strongly heterogeneous local
disk density [14]. For active disks we find three limiting
regimes of behavior. At high disk densities, the effect of
the activity becomes negligible and the behavior is sim-
ilar to that found in the passive high disk density limit,
which is controlled by jamming near point J in amor-
phous systems or crystallization at a density φtot = 0.9
for monodisperse disks. The second limiting regime ap-
pears for low activity and intermediate disk densities,
where the active disks form a clogged configuration sim-
ilar to that found for the clogging of passive disks. The
third limiting regime, consisting of the actively pinned
or clogged states that appear for active ballistic disks or
for disks with finite but large lr, is unique to the ac-
tive disks and does not appear in passive disk systems.
This regime extends over a wide range of obstacle densi-
ties and can assume the form of phase II, III, or IV, as
described in this work. Our results suggest that in ad-
dition to the density, temperature, and load axes on the
jamming phase diagram [68, 69], there could be two ad-
ditional axes, the activity level and the obstacle density
or disorder level, that produce jammed states.

In future work for both the passive and active disk sys-
tems, it would be interesting to investigate how different
the pinned phases are. For example, at high disk den-
sities near the jamming transition, it is likely that the
system is highly stable to perturbations since there are
fewer available degrees of freedom. Similarly, in a clogged
state with high obstacle densities, a perturbed system is
likely to fall back into the same or a similar clogged state.
On the other hand, in phases II or III, a small perturba-

tion could readily break up one or more of the clusters,
permitting the system to flow again, so that although
the active systems are more susceptible to clogging, the
clogged state they reach may be more fragile than that
formed by passive disks.

VI. SUMMARY

We have examined the pinning and clogging behav-
iors of active run-and-tumble disks in the ballistic limit
driven through an array of obstacles. As a function of in-
creasing obstacle density, we find four generic phases: an
unpinned fluctuating cluster phase, a pinned single clus-
ter phase in which a small number of obstacles can pin a
large number of active disks, a pinned multiclump phase,
and a pinned disordered phase. We find that in contrast
to passive disks, the active ballistic disks can reach a
pinned state at relatively low obstacle densities. Within
the pinned disordered phase, as the density of active bal-
listic disks increases, a pinned gel state or labyrinth pat-
tern appears. By constructing velocity-force curves we
find that the active ballistic disks exhibit a finite depin-
ning threshold. As the obstacle density increases, there is
a transition from collective depinning of the pinned clus-
ters to plastic depinning of the disordered pinned states
that is associated with a large increase in the depinning
threshold. As a function of total disk density, the de-
pinning threshold for the active ballistic disks is non-
monotonic, dropping at intermediate disk densities when
collective disk-disk interactions reduce the threshold, but
rising at high disk densities as the system approaches a
jammed or crystalline state. In contrast, for passive disks
the depinning threshold is only finite at high disk den-
sities, while at lower disk densities filamentary channels
of disk flow form that are absent in the active disk sys-
tem. For both the active and passive disks, the pinned
or clogged states are phase separated; however, the phase
separation appears at a much lower obstacle density for
the active disks. Finite run time active disks provide a
connection between the active ballistic and passive disk
systems, and exhibit a low mobility phase separated state
for short run times in the passive limit as well as for long
run times in the active ballistic limit. At intermediate
run times, the active disks form an easily flowing uni-
form liquid with reduced clustering, and there is an opti-
mal level of activity that maximizes the flux through the
system. We describe how our results can be related to
systems that exhibit jamming. Since a self-jamming state
appears in the limit of high activity or sufficiently large
obstacle density, both activity and disorder strength act
as two additional parameters that can produce jamming
in particle assemblies.
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G. Volpe, and G. Volpe, Active Brownian particles in
complex and crowded environments, Rev. Mod. Phys. 88,
045006 (2016).

[28] Y. Fily and M. C. Marchetti, Athermal phase separation
of self-propelled particles with no alignment, Phys. Rev.
Lett. 108, 235702 (2012).

[29] G. S. Redner, M. F. Hagan, and A. Baskaran, Structure
and dynamics of a phase-separating active colloidal fluid,
Phys. Rev. Lett. 110, 055701 (2013).

[30] M.E. Cates and J. Tailleur, Motility-induced phase sep-
aration, Annu. Rev. Condens. Mat. Phys. 6, 219 (2015).

[31] J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, and
P.M. Chaikin, Living crystals of light-activated colloidal
surfers, Science 339, 936 (2013).

[32] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C.
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