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We experimentally characterize the impact response of concentrated suspensions consisting of
cornstarch and water. We observe that the suspensions support a large normal stress – on the order
of MPa – with a delay after the impactor hits the suspension surface. We show that neither the
delay nor the magnitude of the stress can yet be explained by either standard rheological models of
shear thickening in terms of steady-state viscosities, or impact models based on added mass or other
inertial effects. The stress increase occurs when a dynamically jammed region of the suspension
in front of the impactor propagates to the opposite boundary of the container, which can support
large stresses when it spans between solid boundaries. We present a constitutive relation for impact
rheology to relate the force on the impactor to its displacement. This can be described in terms of
an effective modulus, but only after the delay required for the dynamically jammed region to span
between solid boundaries. Both the modulus and the delay are reported as a function of impact
velocity, fluid height, and weight fraction. We report in a companion paper to this one on the
structure of the dynamically jammed region when it spans between the impactor and the opposite
boundary (Allen, Sokol, Mukhopadhyay, Maharjan, & Brown, Phys. Rev. E xxxxxx, 2018). In
a direct follow-up, we show that this constitutive model can be used to quantitatively predict,
for example, the trajectory and penetration depth of the foot of a person walking or running on
cornstarch and water (Mukhopadhyay, Allen, & Brown, Phys. Rev. E xxxxxx, 2018).

Discontinuous Shear Thickening (DST) suspensions
exhibit a remarkable effect in which they behave like typ-
ical liquids at low shear rates, but when sheared faster,
resistance to flow can increase discontinuously with shear
rate [1, 2]. DST suspensions can also exhibit solid-like
properties such as cracking [3]. DST has been observed
in a large variety of concentrated suspensions of hard,
non-attractive particles, and is inferred to be a general
feature of such suspensions [1, 2, 4, 5]. DST suspensions
also support large stresses under impact, one example of
which is the ability of a person to walk or run on the
surface of a pool filled with a suspension of cornstarch
and water [2, 6]. The impact response of such fluids is of
practical interest for impact protection gear because of
their strong response during impact while remaining fluid
and flexible otherwise [7, 8]. The purpose of this paper is
to obtain a constitutive relation that relates the force on
an impactor to its displacement into a DST suspension.
A companion paper focuses on the internal structure of
the suspension that leads to the strong impact response
[9]. The development of a constitutive relation may aid
in the development of materials for impact protection
applications.

In steady-state rheology, a viscosity function is defined
by η(γ̇) ≡ τ(γ̇)/γ̇, where τ is the shear stress and γ̇ is
the shear rate in a steady-state shear flow. The intent of
such a constitutive relation is to predict flows with differ-
ent forcing conditions, boundary conditions, and geome-
tries. The constitutive relation obtained from steady-
state measurements indicates that suspensions of corn-
starch and water can support shear and normal stresses
up to ∼ 103 Pa in a shear rate range where they are
shear thickening (a positive slope in η(γ̇)), i.e. before

they become shear thinning (a negative slope of η(γ̇))
at higher shear rates [4]. If we try to apply this result
from steady-state rheology to a person running on corn-
starch and water, the predicted stress of ∼ 103 Pa is
much less than needed for a person to be supported on
the surface of the fluid, based on a simple estimate of a
person’s weight distributed over the surface area of a foot
(≈ 4× 104 Pa). Thus, the constitutive relation obtained
from steady-state rheometer experiments fails to explain
the strong response to impact. It remains to be seen if
our understanding of steady state DST can be extended
to explain the strong impact response.

Recently an ‘added mass’ model has been developed
for impact response of dense suspensions, in which a ‘dy-
namically jammed’ region forms ahead of the impactor in
the fluid. In this localized region, the suspension moves
along with the impactor like a plug [10]. The dynam-
ically jammed region grows during the impact with a
front which propagates away from the impactor [10–12].
There is a sharp velocity gradient at the front, which
separates the dynamically jammed region from the sur-
rounding fluid [11]. In a two-dimensional dry granular
experiment the front velocity and width of the region
with a velocity gradient both diverge at the same critical
packing fraction as the viscosity curve of DST suspen-
sions [13].

In the model for the added mass effect, the impact
response of the suspension comes from an increasing sus-
pension mass (i.e. the ‘added mass’) in the dynamically
jammed region which moves with the impactor [10]. This
increasing mass slows down a free-falling impactor due
to conservation of momentum. This model has been con-
firmed to quantitatively describe the impact response of
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some high-speed projectiles into suspensions [10]. How-
ever, to significantly slow the impacting object by mo-
mentum conservation alone requires large masses of fluid
compared to the impacting object (or similarly, large
depths of the fluid compared to the object’s height).
The added mass model was not quantitatively applied
to other impact response problems. The regime of thin
fluid layers where the added mass effect is weak is also
particularly important for the related problem of impact
protection applications where thin layers of protective
material are desired [7, 14].

When the dynamically jammed region reaches the
boundary, the stress on the impactor increases beyond
the added mass effect [11]. However, it is not yet known
how much more stress this boundary interaction can pro-
vide beyond the mass effect. In particular, it is not known
if this can provide more stress than steady state DST, or
if it can explain the strong impact response cornstarch
and water is known for. We report in a companion paper
to this one on the structure of the dynamically jammed
region when it spans between the impactor and the op-
posite boundary [9]. We found that the stress increase
follows immediately after particle motion is observed at
the boundary opposite impact. We also observe dilation
at this boundary in the same region where we find par-
ticle motion. This observation is reminiscent of soils or
dense granular materials. It suggests a force transmis-
sion between particles along frictional contacts, as shear
of a dense packing induces dilation as a result of parti-
cles pushing into and around each other. This suggests
the dynamically jammed structure could support a nor-
mal load that is transmitted via frictional interactions
across the system when the dynamically jammed region
spans from the impactor to a solid stationary bound-
ary. This assumes that the solid boundaries are much
harder and have much more inertial mass than the fluid,
so the solid boundary will not move or add to the mass
of the dynamically jammed region. Instead, the rela-
tively soft dynamically jammed region deforms as it is
crushed between solid boundaries. We hypothesize that
the system-spanning dynamically jammed region could
then temporarily support a load based on its effective
stiffness, perhaps strong enough to support a person run-
ning on the surface.

To obtain a constitutive relation between force and
displacement, we perform impact experiments where we
measure the average stress response on the impactor as
a function of its displacement into the fluid. The im-
pactor is driven far enough into a suspension to see the
dynamically jammed region interacting with the bound-
ary, in contrast to previous experiments which probed
mainly the response of the bulk [10–13], but not so close
to the boundary to be affected by short-range bound-
ary effects (i.e. within ≈ 3 mm) [15]. Our experiments
are at impact velocities faster than quasistatic compres-
sion, so that dynamically jammed fronts can exist, but
at speeds slow enough that inertial effects are negligible
[16, 17] (including added mass [10] and high Mach num-

ber effects [18–20]). This intermediate velocity regime is
where the steady-state DST transition occurs (typically
at flow velocities <

∼ 10−2 m/s in rheometers [21]), but
surprisingly, systematic force measurements have not yet
been reported in this regime as far as we know.
The remainder of the paper is organized as follows.

The materials and methods of suspension impact experi-
ments are explained in Sections I and II, respectively. Re-
sults of measurements of stress versus displacement of the
impactor are reported in Sec. III. In Sec. IVF, we show
that the stress response to impact greatly exceeds that
of previously known steady-state rheology, added mass,
or inertial scalings. In Sec. IVF we show that the strong
response occurs as soon as the dynamically jammed re-
gion spans to the opposite boundary and the added mass
stops propagating with the impactor. In Sec. V we fit
the stress response to obtain an averaged constitutive
model for impact rheology. This includes an effective
compressive modulus of the dynamically jammed region,
and a delay before the modulus comes into effect due to
the time it takes for the dynamically jammed region to
propagate and span between solid boundaries. In a direct
follow-up paper, we test this constitutive model by show-
ing it can quantitatively explain the ability of people to
walk and run on the surface of cornstarch and water [22].

I. MATERIALS

The suspensions were made of cornstarch purchased
from Carolina Biological Supply, and tap water near
room temperature. Measurements were made at a tem-
perature of 22.0±0.6◦C, where the uncertainty represents
the standard deviation from day to day. Weight fractions
φ for cornstarch and water were measured as the weight
of the cornstarch divided by the total weight of corn-
starch plus water. Weight fractions of cornstarch and
water are very sensitive to histories of temperature and
humidity, so different data sets taken with relative hu-
midity ranging from 8% to 54% in Sec. III are not directly
comparable. To avoid misinterpretation from false com-
parisons, we do not report weight fractions for different
experiments in this section. All samples nominally had
weight fractions from 0.53 to 0.61, in a range where they
all exhibited noticeable shear thickening when stirred by
hand. For data sets represented in a single plot, the ex-
periments were taken over a short enough time period to
have a humidity standard deviation of 6%. We report
measured weight fractions in Sec. V where systematic
weight-fraction-dependent measurements were done un-
der constant relative humidity of 48 ± 6%. Under these
conditions, we found specific weight fractions such as the
liquid-solid transition φc = 0.609 based on the onset of a
yield stress to be reproducible within ±0.007 [21].
We directly measured a density of ρ = 1200±20 kg/m3

for a suspension at φ = 0.57 based on the volume and
weight of the suspension in a graduated cylinder. If we
extrapolate based on the fraction of cornstarch and water
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FIG. 1. Schematic of the experimental setup (side view).
Measurement are made of the mean normal stress τ on the
impactor as a function of impactor depth z and impactor ve-
locity VI . This can be done simultaneously with imaging of
the top, bottom and side boundaries of the suspension.

using the known density of water, the density of suspen-
sions is not expected to deviate outside the uncertainty
range for weight fractions from 0.51 to 0.63, covering our
entire measurement range.
Samples were initially mixed on a vortex mixer un-

til no dry powder chunks were observed. Before each
impact measurement, samples were additionally stirred
by slicing through them at least 5 times with a spatula
at velocities low enough to avoid significant cracking of
the suspension, and prevent large air bubbles from be-
ing trapped inside the suspension. This additional stir-
ring helps counter any systematic effects of settling or
compaction from previous experiments. This procedure
produced a level of reproducibility of±30% in stress mea-
surements, equivalent to what we could achieve by mak-
ing new samples before each measurement. If instead we
did not stir between measurements or we forced air bub-
bles to get trapped in the suspension, the stress varied
by around a factor of 2 from run to run.

II. METHODS

We performed experiments to visualize the top, bot-
tom, and side boundaries of the suspension to observe the
dynamically jammed region, while simultaneously mea-
suring forces in response to impact, as shown in Fig. 1.
The surface visualization results are reported in a com-
panion paper [9]. A cylindrical aluminum impactor of
diameter D = 12.7 mm (unless otherwise noted) was
pushed into a container with a square base of length 106
mm, with the suspension filled to a height H = 42 mm
(unless otherwise noted). These dimensions are such that
the region of interest below the impactor is far from the
sidewalls of the container. The impactor surface used
for experiments reported in Sec. III unintentionally had

a slight wedge shape, which was angled at 4◦ relative
to the surface. The more quantitative experiments with
controlled weight fraction reported in Sec. V were done
with a leveled impactor surface. We are unaware of any
effect of the misalignment on stress measurements, but
to be safe we do not make direct comparison between
those sections due to this misalignment and the differ-
ences in weight fractions. We used an Instron E-1000
dynamic materials tester to push the impactor into the
fluid at constant velocity VI , while measuring the normal
force on the impactor as a function of depth z from the
free surface of the suspension (downward positive). The
nominal relative position resolution within each run is 1
µm. We define z = 0 and time t = 0 at the top surface of
the suspension, with an uncertainty of 0.5 mm. The im-
pactor started at a height typically 5.0 ± 0.5 mm above
the suspension surface and was pushed to a final posi-
tion typically within 10% of the bottom of the container.
While the impactor had a set point constant impact ve-
locity VI , it had to accelerate at the beginning and end
of the test. This resulted in a standard deviation of the
velocity of the impactor for z > 0 of 11% for the data in
Sec. III, and 5% for the data in Sec. V.

Since the force sensor was pushed against the impactor,
the force measured by the sensor also included the force
required to accelerate the mass of the impactor. To cor-
rect for this, we performed a control experiment where
the impactor moved through air (i.e. with no sample).
The instantaneous acceleration is obtained from twice-
differentiating the position signal. We fit a linear relation
between the normal force measured by the load cell and
the instantaneous acceleration, where the proportional-
ity corresponds to an effective mass of the impactor. We
subtracted out the corresponding force required to ac-
celerate the impactor equal to the effective mass times
the instantaneous acceleration from later force measure-
ments. As a result of this inertial correction, the reported
force results only from the force applied by the suspen-
sion due to impact, and the overall measurement noise
is reduced significantly. The force measurements are fur-
ther calibrated by adding a small constant so that the
load cell reads zero force when nothing is pushing against
the impactor. This calibration is done separately for each
measurement before the impactor hits the surface (i.e. for
t < 0). This correction amounts to less than 1% of the
peak force measured.

To reduce the remaining noise in stress measurements,
inertia-corrected force data is smoothed over a range of
±0.5 mm in z to obtain a smoothed force F . The av-
erage normal stress on the impactor is then given by
τ = 4F/πD2. We calculate the noise level σ as the stan-
dard deviation of the smoothed stress τ for t < 0, and
only after the velocity stayed within 10% of the set point
velocity. In the event that the velocity threshold was not
reached, we calculate the standard deviation over a min-
imum depth range of 1 mm instead. We find σ is roughly
proportional to VI such that σ = 250 Pa for VI = 46
mm/s, and reaches up to σ = 3000 Pa for our largest
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FIG. 2. (color online) The average normal stress τ on the im-
pactor vs. depth z of the impactor for several different impact
velocities VI given in the legend (Upper curves correspond to
larger VI). Solid lines are fits to obtain a compressive modu-
lus E as described in Sec. V. In each case, a sharp increase in
stress is observed, but with a delay after the point of impact
(z = 0). The scale of the stress reached is 3 orders of magni-
tude larger than can be explained by steady-state models for
shear thickening, added mass or other inertial effects.
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FIG. 3. (color online) Data from Fig. 2, zoomed in to a smaller
range of τ and connected by solid lines. Dashed line: pre-
diction of buoyant stress τb = ρgz. Buoyancy can explain
the weak background stress response at the lower velocities
VI ≤ 46 mm/s (open symbols). There is a sharp stress in-
crease above this background in each case, and this increase
occurs at a smaller z for larger VI .

VI = 584 mm/s. This increase is probably due to tran-
sient accelerations, which become more significant as the
momentum of the impactor increases. These uncertain-
ties amount to less than 0.14% of our maximum stress
signal.

III. STRESS RESPONSE

To characterize the stress response to impact, we per-
formed measurements with the impactor moving into the
fluid at constant velocity VI . These data are plotted as

normal stress τ vs. depth z in Fig. 2 for several different
values of VI . A striking feature is that for each curve,
there appears to be a delay between the point where
the impactor hits the surface of the fluid (which defines
depth z = 0 and time t = 0) and the depth at which
there is a noticeable non-zero stress. This increase can
be seen more clearly to be a sharp increase above a weak
background when the same data is shown zoomed into a
smaller vertical scale in Fig. 3, indicating that the scale
of the stress increases by several orders of magnitude at
this sharp transition. The delay will be discussed further
in Sec. IVF.
For repetitions at any given set of experimental pa-

rameters, we observed a standard deviation of 30% in τ
as a typical run-to-run variation. For VI < 10 mm/s, we
occasionally measured τ(z) curves where the sharp stress
increase was not observed, i.e. the stress did not increase
beyond a scale of ∼ 103 Pa. This non-reproducibility
may be attributable to a large natural variation inherent
in the mechanical response. Such large variations have
been observed for DST suspensions before, for example,
even in steady-shear measurements the stress fluctuates
by more than an order of magnitude over a timescale of
a second [23], which is longer than our experiments for
VI ≥ 46 mm/s.
To determine whether the deformation is elastic or

plastic, we performed extended experiments where after
reaching the maximum penetration depth, we set the ap-
plied force to zero. If the deformation was mostly elastic,
the impactor would have returned to near the suspension
surface. Instead, the impactor remained near its maxi-
mum penetration depth, and any upward motion was lim-
ited to a few percent of the penetration depth, indicative
of mostly plastic deformation. In an alternative extended
experiments we set the impactor to move at velocity VI

back to its initial position after reaching its maximum
penetration depth. In this case, the system did not re-
trace its original stress-deformation curve as an elastic
system would, rather the stress dropped quickly to zero
on its return trip, again indicating the deformation is
mostly plastic.

IV. COMPARISON TO EXISTING MODELS

Before we present a full constitutive relation, we first
compare our stress measurements to existing models for
steady state rheology or impact response, which allows us
to establish where the smaller background signal comes
from, and identify what leads to the strong stress re-
sponse.

A. Buoyancy

The dashed line in Fig. 3 represents the stress due to
buoyancy on the impactor τb = ρgz where ρ = 1200± 20
kg/m3 and g is the acceleration of gravity. This agrees
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with a good portion of the data, in particular for VI ≤ 46
mm/s and for small z before the onset of the sharp stress
increase. This is consistent with impact experiments into
pure liquids in that velocity range, as well as for granular
materials with possible small corrections for friction [17].
However, This cannot explain data at larger VI or larger
z.

B. Steady state rheology models

We next compare existing steady state rheology of DST
to the stress in response to impact observed in Fig. 2. The
maximum shear and normal stress supported by corn-
starch and water in the shear thickening range under
steady shear is only ∼ 103 Pa [4]. This is still 3 or-
ders of magnitude below the measured stress under im-
pact. Thus, we cannot explain the large magnitude of
the stress in Fig. 2 using the same viscosity function as
steady state shear thickening in rheometer experiments.
The local constitutive relation inferred from steady-

state shear experiments is dominated by a term where
the shear stress and normal stress are related by an ef-
fective friction coefficient of order 1, mostly independent
of the local shear rate [4, 23–29]. That means the local
constitutive relation does not determine the magnitude
of the shear and normal stresses in experiments. Rather,
the maximum stress reached in DST is a function of the
boundary conditions, such that the stress is limited by
the stiffness of the weakest of the boundary or the parti-
cles in response to dilation [4]. In rheometer experiments,
typically the weakest boundary is the surface tension of
the suspension-air interface, which is what limits corn-
starch and water to ∼ 103 Pa. In cases where the stress
is not limited by the suspension-air interface, the weak-
est stiffness could be soft walls [4] or the particle stiffness
[4, 30] – the latter case has been observed in steady state
flows in simulations with periodic boundary conditions
[24, 28, 31], but not in hard-particle experiments. In our
transient impact experiments, the strong stress response
does require that the dynamically jammed region reach
the boundary, so it is not a bulk response [9]. Neither do
the stresses propagate throughout the entire system ho-
mogeneously to reach the suspension-air interface [9], so
the suspension-air interface is not what limits the maxi-
mum stress in the impact response. There could be a dif-
ferent stress-limiting mechanism in response to transient
impact that applies to the same local constitutive relation
as steady-state flow, but this stress-limiting mechanism
has not yet been identified.
This discrepancy in stress magnitudes between impact

and rheometer experiments holds even if we consider
other known transient effects. In rheometer experiments,
the corresponding stress-strain curve during the transient
(i.e. before reaching steady-state) can evolve due to tran-
sient structure formation [4, 32, 33]. The corresponding
stress-strain curve exhibits a gradual increase in stress
without a delay, and the stress remains mostly lower than

in the steady-state, with an occasional overshoot of the
steady-state by about a factor of 2. Strong fluctuations
in stress have been observed around the steady state be-
havior [34, 35], although these have not been observed to
exceed the order of magnitude of the steady-state average
at the higher stress end of the shear thickening regime.

C. Lubrication

Viscous drag in the small lubricated gaps between par-
ticles is another possible source of stress that is often rel-
evant in suspensions [36]. There is an upper bound on
the effective viscosity that can be obtained from such lu-
brication forces before continuum hydrodynamics breaks
down. This occurs when the gap between solid surfaces is
less than 2 liquid molecules thick [37]. The upper bound
on the effective viscosity is η = 9ηla/8h ≈ 40 Pa s for
cornstarch in water, where ηl is the viscosity of the liq-
uid phase, a is the particle diameter, and h is the liquid
molecule diameter [2]. The corresponding upper bound
on the stress is τ = ηVI/D, which could reach only up to
2 kPa for our largest measured VI . This is still 3 orders of
magnitude too low to explain the strong impact response
of the suspension, confirming that lubrication-based hy-
drodynamic mechanisms cannot explain the stress in-
crease above the background. The higher stress and effec-
tive viscosity of the measured data suggests that the par-
ticles effectively collide and more likely interact through
effective solid-solid frictional interactions rather than lu-
brication.

D. Inertial effects

At high impact velocities into fluids and granular mate-
rials, it is expected that inertial forces dominate, roughly
corresponding to the force required to displace the iner-
tial mass of fluid out of the way. The corresponding stress
on the impacting object generally scales as τI ∝ ρV 2

I , re-
gardless of the internal dissipation mechanics of the ma-
terial. The proportionality coefficient varies from mate-
rial to material from 0.1-4 [17, 38–41], and can fluctuate
around a mean value [42]. The largest coefficient of 4
yields an estimate τI = 1700 Pa in our measured range
of VI ≤ 600 mm/s, still 3 orders of magnitude below the
measured stress response, and not even enough to hold
a person’s weight. An extrapolation suggests that this
would not overcome our maximum measured τ ≈ 2× 106

Pa until VI
>
∼ 2 × 104 mm/s. High-speed impact studies

of shear thickening fluids with VI
>
∼ 105 mm/s have con-

firmed that inertial displacement determines the impact
response [19], consistent with this extrapolation.
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E. Added mass

The model for the added mass effect is based on data
for an object free-falling into a cornstarch and water sus-
pension [10]. Waituakaitus & Jaeger calculated the effec-
tive stress on the impactor τa as the change in momen-
tum over time per unit area A, where A = πD2/4. We
can modify their model to apply to our measurements for
constant velocity impacts by calculating the momentum
change as the product of a constant impact velocity VI

and a mass increasing at at rate dma/dt. The growth
of the added mass ma over time was empirically fit by
a frustrum shape based on the force response on free-
falling objects [10]. The added mass can be written as a
function of penetration depth z as

ma =
0.37πρ

3

(

D

2
+ kz

)2

kz , (1)

where ρ is the fluid density, D is the impactor diameter,
and k is a free parameter which represents the ratio of
front velocity VF to impact velocity VI and depends on
weight fraction φ. dma/dt is obtained from the analytic
derivative of Eq. 1

dma

dt
= 0.37πρkVI

(

k2z2 +
2kzD

3
+

D2

12

)

. (2)

Here we have used the identity dz/dt = VI for an added
mass that moves along with the impactor. This assump-
tion is supported by the observation that the velocity of
the dynamically jammed region is the same as the im-
pactor velocity while they are in contact, corresponding
to an uncompressed dynamically jammed region before
it spans between solid boundaries [11]. The stress on a
constant-velocity impactor from the added mass effect is
then

τa =
VI

A

dma

dt
=

0.37ρkV 2
I

3

(

1 +
8kz

D
+

12k2z2

D2

)

. (3)

While this expression can be compared directly to stress
measurements, because k is a free parameter, it does not
indicate any upper bound on the strength of the added
mass effect.
The added mass effect is in practice limited by the

amount of fluid available in the suspension that can be
converted to added mass. Once the dynamically jammed
region reaches the boundary of the suspension opposite
the impactor, the added mass can no longer propagate
in the direction of the impactor, so no stress is expected
from the added mass effect after this time. For a con-
stant velocity impact, the ratio of front depth to impactor
depth z is the same as the ratio k between front velocity
to impactor velocity, so the maximum impactor depth for
the added mass effect is z = H/k, which can be plugged

in to produce an upper bound in Eq. 3. This does not
eliminate k from Eq. 3, but it does indicate that when
the peak stress is larger at larger k, it also drops off more
quickly as the dynamically jammed region reaches the
opposite boundary faster. We can come up with a k-
independent bound on the added mass effect by realizing
that the net momentum change on the impacting object
comes from conservation of momentum, which is limited
by the mass available in the fluid as a function of H . The
net work done on the impactor per unit area can be ob-
tained from an integral of the stress-displacement curve
of Eq. 3 up to depth z = H/k

Wa

A
=

∫ H/k

0

τadz =
0.37ρV 2

I H

3

(

1 +
4H

D
+

4H2

D2

)

.

(4)
The value Wa/A calculated for our experiment parame-
ter values contributes to less than 0.6% of the integral
of the measured τ(z) up to the peak stress for VI = 584
mm/s shown in Fig. 2a, and Wa/A is even smaller for
lower VI . Since this result of Eq. 4 is independent of the
only free parameter k, there is no longer any flexibility
in the added mass model when comparing this work per
unit area. Furthermore, this k-independence of the area
under the τ(z) curve for the added mass mechanism is
independent of the specific form of the geometric factors
of Eq. 3 that account for the geometry of the dynamically
jammed region as prescribed by [10]. Thus, there is no
way to achieve the large stress response observed in pa-
rameter range of Fig. 2 from the added mass mechanism,
even by adjusting the parameter k or the shape of the
dynamically jammed region in the model. According to
Eq. 3, the added mass effect is more relevant in impact
response at larger VI and larger H .

F. Onset of stress increase above the background

So far, we have shown that the sharp increase in stress
up to ∼ 106 Pa in Fig. 2 cannot be explained by any pre-
viously known scalings, including lubrication hydrody-
namics, a confining stress from surface tension, and iner-
tial mechanisms including the added mass effect. Neither
can the large scale of the stress be connected to steady-
state rheology measurements which are traditionally as-
sumed to describe flows in different geometries. Previous
results indicated that a stress increase beyond the added
mass effect could be a result of the dynamically jammed
region reaching the opposite boundary from the impactor
[11]. Here we hypothesize that the stress increase we
observe up to the MPa range is the result of the this
dynamically jammed region spanning between opposite
boundaries, which could then support a load according
to its effective stiffness. In this case, the delay depth zF
beyond which the stress increases above the background
should follow the relation zF = H/k. We test this hy-
pothesis by attempting to self-consistently fit the delay
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FIG. 4. Examples showing how we obtain the delay depth zF ,
and correspondingly k = H/zF . (a) At VI = 46 mm/s, where
the threshold stress τt (short-dashed line) from Eq. 5 is domi-
nated by the noise threshold 5σ. An extrapolation of a linear
fit (solid line) from above the threshold stress τt and displace-
ment zt (partially filled circle) down to the background signal
from buoyancy (long-dashed line) yields the onset depth zF .
(b) At VI = 396 mm/s, where the threshold stress τt is dom-
inated by the added mass τa(z) (dotted line). In this case,
extrapolating the linear fit back to the background signal from
both buoyancy and added mass (dashed-dotted line) yields an
upper estimate of the delay depth zF + ∆za (partially filled
triangle), and extrapolating the fit further to the background
from only buoyancy yields a lower estimate of the delay depth
zF −∆za (asterisk-filled circle).

depth zF and the contribution to the background stress
from the added mass effect, which provides values of k.

A first estimate of the delay depth zF can be obtained
as the depth where τ first exceeds a threshold from a
sum of contributions from buoyancy τb, the added mass
τa, and a noise threshold 5σ, where σ is the standard
deviation of τ for t < 0. This noise threshold is added so
that rare fluctuations of the noise do not gives false re-
sults by exceeding the threshold prematurely. The need
to minimize fluctuations here motivated the smoothing of
force data explained in Sec. II. Since we hypothesize that
the stress increase occurs when the dynamically jammed
region first spans between solid boundaries, then we eval-

uate the added mass contribution from Eq. 3 when it has
propagated across the system at depth z = H/k. The
combined stress threshold is given by

τt(z, k) = ρgz+
0.37ρkV 2

I

3

(

1 +
8H

D
+

12H2

D2

)

+5σ . (5)

Since τa depends on k, and the range where this ex-
pression is valid is up to depth zF = H/k, we obtain k
and zF via an iterative fit process. We start with an ini-
tial guess of k = 12 [10] to calculate the threshold stress
τt(z, k) from Eq. 5. We then compare the measured stress
τ(z) to this threshold τt(z) to obtain a depth zt as the
first estimate of the delay depth where the threshold τt
is first exceeded. Since this thresholding produces an
overestimate, we attempt to extrapolate back to the in-
tercept of the high-stress regime with the background
signal. We do this by fitting a local slope dτ/dz over the
range zt < z < zt + 1 mm, or occasionally a larger range
on the upper side if it resulted in a lower reduced χ2

(these larger fit ranges should give an equivalent fit with
a smaller error). At low VI < 46 mm/s, where the back-
ground stress is dominated by bouyancy (Sec. IVA), the
added mass contribution to the stress is small compared
to τb. In these cases we linearly extrapolate the slope
dτ/dz down to the background from buoyancy τb = ρgz
to obtain zF as shown, for example, in Fig. 4a. This ex-
trapolation helps minimize any errors introduced by the
noise contribution to the threshold. Once a value of zF
was obtained, we then adjusted k = H/zF to input into
Eq. 5 and iterated the process until the values of k and
zF were self consistent.
For VI > 46 mm/s, the background stress can be de-

scribed by the added mass effect. However, since the
detailed contribution of the added mass effect to the
stress for z > zF is not yet well-characterized, we had
to consider reasonable upper and lower bounds. The
fit of dτ/dz was extrapolated back to two different val-
ues to act as bounds on zF as shown in Fig. 4b. As
an upper bound, the fit was extrapolated to a back-
ground given by added mass and buoyancy effects to ob-
tain zF + ∆za = zt − 5σ/(dτ/dz), corresponding to the
added mass contribution to stress remaining constant for
z > zF at the peak value reached. As a lower bound, the
fit was extrapolated to a background only from buoyancy
τb to obtain zF −∆za = zt− [5σ+τa(z = H/k)]/(dτ/dz),
corresponding to the added mass contribution going to
zero for z > zF . Previous measurements indicate the ac-
tual response is somewhere in the range zF ± ∆za [11]
where it appears that a small remaining added mass ef-
fect for z > zF is enough to keep the total stress τ from
decaying before the boundary contribution exceeds the
added mass effect. This contribution would correspond
to the area in the shaded triangle in Fig. 4b. Our best es-
timate of the delay depth zF is then taken as the average
of these two extrapolated bounds, with an error due to
the added mass effect of ∆za = 0.5τa(z = H/k)/(dτ/dz).
Once a value of zF was obtained, we adjusted k = H/zF
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FIG. 5. (color online) The data from Fig. 2 zoomed into a
smaller range of z and on a log-log scale to focus on the added
mass effect near onset for our largest VI . Solid lines: added
mass prediction from Eq. 3, where k is obtained as shown in
Fig. 4. The fits use the same color code as the data. The
added mass effect is consistent with the weak stress response
we observed before onset at the highest velocities VI ≥ 46
mm/s. This consistency confirms that the sharp stress in-
crease occurs when the front of the dynamically jammed re-
gion propagates to the opposite boundary.

and iterated the process until the values of k and zF were
self consistent.
These corrections and errors are small factors for most

of the data presented in this paper. The extrapolation
from the first estimate zt to the final value for zF on
average results in a small correction of 18%. The error
∆za from the added mass effect is on average 2%, and
always less than 10% of zF , except for our largest combi-
nation of VI = 584 mm/s and H = 200 mm (not shown
in Fig. 2), where ∆za = 0.81zF , corresponding roughly
to the transition where the added mass effect becomes
the dominant contribution to the total measured stress
τ . There is also an uncertainty on zF of 0.5 mm due
to the uncertainty on the initial position of the impactor
relative to the surface of the suspension, which is usually
dominant, and more so at small H where this error is a
significant percentage of the penetration depth. Finally,
there is an uncertainty on the fit of dτ/dz, which is ob-
tained by adjusting the input errors to obtain a reduced
χ2 ≈ 1 for the fit, which contributes to an error on zF
and k when extrapolated to the background. This error
is only significant for a few runs at the smallest VI where
zF is close to H and the stress signal is weak.
We next test whether this iterative method to obtain

the velocity ratio k = H/zF illustrated in Fig. 4 self-
consistently models the added mass effect. Figure 5 show
data replotted from Fig. 2, zoomed into a smaller range
of z and on a log-log scale for our largest VI to see the
added mass contribution to the stress. We plot the pre-
dicted contribution from the added mass effect (Eq. 3) in
Fig. 5 for each of our VI ≥ 46 mm/s, using the value of
k = H/zF obtained from the iterative method illustrated
in Fig. 4, and plotting only up to zF in each case. It is

seen that in most cases the prediction captures the scal-
ing and magnitude the background stress, although there
is a lot of variation in the data and the measurements at
VI = 185 mm/s and VI = 193 mm/s fall well below the
predicted added mass effect. Since the added mass con-
tribution is less than 0.5% of the total stress measured,
and the difference between the data and the model is on
the same order as the measurement resolution of 1000 Pa
for these data sets, these differences may be a limitation
of the measurement resolution combined with the natu-
ral variability of the stress from run to run. Note that
these predictions were made by fitting the onset of stress
increase, not by fitting the added mass contribution to
the stress directly. Overall, this agreement confirms that,
within our limited resolution, the model of Waitukaitus &
Jaeger [10] describes the contribution of the added mass
effect to the background observed here for VI ≥ 46 mm/s.
This consistency check also confirms the hypothesis that
the sharp stress increase occurs when the front of the
added mass region reaches the solid bottom boundary.

V. CONSTITUTIVE MODEL

In this section we obtain a constitutive relation that
quantitatively relates the average stress on the impactor
to its displacement. We base it on the observation in
Fig. 2 that the relationship between stress and strain or
displacement is roughly linear, suggesting we can char-
acterize the stress response after a delay with an ef-
fective compressive modulus of the system-spanning dy-
namically jammed region. Mechanically, the dynamically
jammed region could be much like a transient version of
a soil or jammed granular material, where force would
be transmitted across the system along effectively fric-
tional contacts between particles, which is suggested by
the observations of dilation from visualization of the same
experiments [9]. The high stress level requires that these
particle interactions are frictional rather than lubricated
(as explained in Sec. IVC). The deformation was also
found to be mostly plastic (Sec. III), like a soil or gran-
ular material.

To obtain a relatively simple constitutive relation that
describes the material response to impact, we report mea-
surements of the velocity ratio k between the front veloc-
ity and impact velocity which determines when the dy-
namically jammed region spans between solid boundaries
at depth zF = H/k, as well as an effective compressive
modulus E to approximately describe the nearly linear
stress increase observed afterward. Both measurements
are reported over a range of impact velocities, suspension
heights, and weight fractions.
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FIG. 6. (color online) The ratio k between the front and im-
pact velocities as a function of impact velocity VI for different
fluid heights H shown in the legend. Solid line: constant fit
to the data for VI ≥ 100 mm/s. The collapse for different H
confirms that the stress signal propagates through the system
with a front velocity VF independent of H for VI ≥ 100 mm/s.
Dashed line: constant fit for VI ≤ 10 mm/s and H = 42 mm.
Dotted line: power law fit for VI ≥ 10 mm/s and H = 42
mm. The crossover of the dashed and dotted lines gives a
minimum velocity Vmin for front propagation faster than the
impactor velocity VI . For VI ≤ Vmin mm/s, the values of k
do not collapse for different H , but are consistent with a plug
of aspect ratio near 1 moving along with the impactor.

A. Height and impact velocity dependence of the

velocity ratio k

The velocity ratio k is calculated based on the ratio of
travel distances of the front to the impactor as k = H/zF ,
where zF was obtained from the fit method shown in
Fig. 4. These values of k are shown in Fig. 6 as a function
of impact velocity VI for different fluid heights H , at the
same φ as the data in Fig. 2. The errors plotted for k are
propagated from the errors on zF . For VI ≥ 100 mm/s,
the data scatter around a plateau value for different H ,
suggesting a collapse of the data for different H in this
range. Fitting a constant to k in the range VI ≥ 100
mm/s for allH , with an input error of 30% corresponding
to the scatter, yields a plateau value of k = 9.2±0.8 with
a reduced χ2 ≈ 1, confirming consistency with a plateau.
This VI -independent k is similar to what was found by
Waitukaitus & Jaeger in this velocity range [10]. The
fact that k-values for different H collapse, at least for
VI ≥ 100 mm/s, confirms that in this range the delay is
due to a signal propagation to the opposite boundary at
constant velocity VF independent of H in the bulk of the
material,
For VI < 100 mm/s in Fig. 6, the values of k do not

collapse at different H , indicating that in this range the
delay depends on something other than the bulk front
propagation velocity. Specifically for H = 42 mm, k
drops off to lower values at lower impact velocities, ap-
proaching close to k = 1 for VI ≤ 10 mm/s. Physically,
k = 1 means that the dynamically jammed region is not

growing or propagating faster than the impactor. An ap-
parent k slightly larger than 1 could be the result of a
plug of jammed material in front of and moving at the
same speed as the impactor, as suggested from the dead
zone observed in particle tracking measurements [9]. Our
best fit of the plateau in Fig. 6 for VI ≤ 10 mm/s and
H = 42 mm yields k = 1.6, which suggests a plug height
of H − H/k = 15 mm. This plug height is in between
the impactor diameter (12.7 mm) and the width of the
dead zone with no particle flow (20 mm) observed at the
bottom boundary in these experiments [9], correspond-
ing to a plug aspect ratio around 1, which is typical for
granular flows.
Assuming the values of k at low VI are due to a plug

moving with the impactor, we obtain a minimum velocity
Vmin where the front of the dynamically jammed region
propagates faster than the impactor. We fit a constant
to k for VI ≤ 10 mm/s, and a power law to k for VI ≥

10 mm/s at H = 42 mm in Fig. 6. The crossover of
these two fits shown in Fig. 6 defines a minimum velocity
Vmin = 8 ± 1 mm/s, where the errors on the fits are
adjusted to obtain a reduced χ2 ≈ 1.
It is tempting to convert this critical velocity to a

timescaleD/Vmin = 1.8 s and relate it to other timescales
observed in DST suspensions. This is consistent with a
stress relaxation time ranging from 0.01 to 2 s measured
in rheometer experiments [21]. Such a connection could
mean that the front propagation can occur because the
local shear rate around the edge of the plug exceeds the
relaxation rate, allowing the dynamically jammed region
to grow. It is also possible that Vmin/D is related to
the critical shear rate γ̇c from DST in rheometer mea-
surements which varies over several orders of magnitude
over the weight fraction range of DST. To test either
case would require measurements of relaxation time and
critical shear rate at the same weight fraction as impact
experiments, measured over a range of weight fractions
since the scaling of γ̇c and the relaxation time are differ-
ent in weight fraction. Such a study is beyond the scope
of this work.

B. Weight fraction dependence of the velocity ratio

k

The values of the velocity ratio k = H/zF (where zF
is obtained from the fit method shown in Fig. 4) are
shown in Fig. 7 for different weight fractions φ with the
impact velocity relatively fixed in the range 100 mm/s
≤ VI ≤ 400 mm/s and H = 42 mm. The value of k
increases with φ, and it appears that the values from
φ ≥ 0.57 up to the liquid-solid transition could be con-
sistent with a plateau. The location of the liquid-solid
transition at φc = 0.61 was identified as the lowest weight
fraction at which a non-zero yield stress is measured in
rheometer experiments, using a portion of the same sam-
ples measured simultaneously to ensure the samples were
at the same weight fraction [21]. We fit a constant k to
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FIG. 7. The ratio k between the front and impact velocities
as a function of weight fraction φ. The two symbol sets cor-
respond to 2 different experimenters, revealing a systematic
difference for nominally similar procedures. In each case, the
value of k reaches a plateau (indicated by the solid and long
dashed line fits) for 0.57 ≤ φ ≤ 0.61, up to the liquid-solid
transition. Short dashed line: a linear fit for φ ≤ 0.54. Ex-
trapolating this fit to k = 1 (dotted line) yields a minimum
weight fraction φmin = 0.497 for the existence of a stress in-
crease due to a dynamically jammed region spanning between
solid boundaries.

data in the range 0.57 ≤ φ < 0.61, which yields a mean
value k = 8.4± 0.6 with a reduced χ2 = 0.9. Instead fit-
ting to a power law in this range yields an exponent con-
sistent with zero, confirming the data are consistent with
a constant value over this fit range 0.57 ≤ φ ≤ 0.61. The
lack of divergence in k(φ) approaching the liquid-solid
transition sharply contrasts with a quasi-2-dimensional
dry disk model which has a divergence in k as φ → φc

[13]. We do not know if the reason for this discrepancy
is due to some consequence of adding the liquid, or a dif-
ference between 2 and 3 dimensional systems, or some
other physics not included in the model.

For small φ, k approaches close to 1. We could not re-
solve any stress increase above the threshold τt in some
cases for φ ≤ 0.54, and in all cases for for φ ≤ 0.49. To
determine if this absence of signal is an indication of a
minimum φ for the existence of a dynamically jammed
region, or a case of the signal dropping below the reso-
lution, we fit a linear function plus a constant to k(φ)
for φ ≤ 0.54, shown as the thin dashed line in Fig. 7.
Error bars input to the fit were adjusted to a constant
27%, corresponding to a run-to-run variation to obtain a
reduced χ2 = 1. Extrapolating this fit to k = 1 yields
a minimum weight fraction φmin = 0.497 ± 0.009. The
agreement of the extrapolated φmin with the consistent
absence of signal at lower weight fractions confirms that
this is a minimum weight fraction for the existence of a
stress increase due to a dynamically jammed region span-
ning between solid boundaries.

We found that if the measurements of k(φ) shown in

Fig. 7 were repeated by another person with a nominally
similar procedure with the same equipment, then the val-
ues of k shifted systematically. In particular, the plateau
value of k changed from 8.4 to 15.7 for the two data
sets. This variation in k for different experimenters sug-
gests that the front propagation behavior is sensitive to
details of the sample preparation and experiment which
are not yet understood or well-controlled from experi-
ment to experiment, such as the loading and stirring of
the sample. Such sensitivity may not be surprising in a
system where even the run-to-run variation on repeated
measurements is typically 20%-30% in most measured
parameters. Considering this wider range of values of k
we found, the value of k = 12 previously obtained from
experiments with an impactor in free-fall [10] is within
the variation we observed in Fig. 7. The similarity of
the results suggests the model for the propagation of the
dynamically jammed region proposed by Waitukaitus et
al. [10] for free-falling objects also describes constant ve-
locity impacts here.

C. Method to obtain the modulus E

To define a compressive modulus E for a disordered
solid with plastic deformation and no energetically pre-
ferred height for the dynamically jammed region, and
with strains up to 0.9, a linear relation between stress and
strain is not appropriate. Instead we use a stress-strain
relation for linear response that is continuously renormal-
ized at each z-value: τ = −E ln[1− (z − zF )/(H − zF )].
This is mathematically equivalent to calculating a mod-
ulus for a so-called ‘true strain’ [43], although our stress-
strain relation is still for the averaged impact response
rather than a local stress-strain relation. This approxi-
mates to a linear function τ ≈ (z − zF )E/(H − zF ) for
small strain (z − zF )/(H − zF ) after the dynamically
jammed region spans between solid boundaries when
z = zF . The logarithmic scaling accounts for the de-
creasing height of the dynamically jammed region over
time. In the range z > zF , we expect the added mass
effect no longer contributes to the measured stress as the
dynamically jammed region has stopped growing, so we
characterize the total stress by the buoyancy term τb plus
this modulus E

τ = ρgz − E ln

(

1−
z − zF
H − zF

)

. (6)

We fit Eq. 6 to stress measurements with only E as a free
parameter and zF already determined by the fit methods
shown in Fig. 4. The fit range to find E starts when
the measured stress first exceeds the threshold stress τt,
and the fit ends at the maximum measured stress be-
fore we stopped the impactor. Examples of fits to obtain
E for different VI are shown in Fig. 2. While the de-
tailed stress-displacement relation is more complex than
Eq. 6, this gives a simple two-parameter function for use
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FIG. 8. (color online) The compressive modulus E of the
dynamically jammed region obtained from fits of τ (z). Data
are shown as a function of impact velocity VI for different fluid
heights H as indicated in the legend. A plateau is observed
for VI ≥ 100 mm/s at each H < 200 mm. Solid line: constant
fit to the data for VI ≥ 100 mm/s at H = 42 mm. Dashed
line: linear fit to the data for VI ≤ 120 mm/s.

in model predictions of the stress. The error on this
model given by the root-mean-square variation of data
around these fits is 10% of the maximum stress for each
curve in Fig. 2. This level of error should be acceptable
for many purposes since the run-to-run variation on the
overall magnitude of the stress is 30%.

D. Impact velocity dependence of the modulus E

Wemeasured stress-displacement curves for several im-
pact velocities VI , each at several different fluid heights
H , at the same weight fraction φ of the data in Fig. 2.
The fit values of E are shown in Fig. 8. Errors shown for
E include the error on the fit, and an error propagated
from the error on zF that determines the range of the fit.
The latter error can be large if either k is very small so the
stress signal is small, or the added mass effect is so strong
that the uncertainty propagated from zF leads to a large
uncertainty in the fit range for E. For larger H , some of
the experiments at lower VI never exhibited a stress sig-
nal above the background. This is understood; assuming
k remains independent of H , then the delay depth zF is
expected to be larger than the machine-limited maximum
penetration depth of the impactor of 55 mm.
A plateau in E is observed for VI ≥ 100 mm/s at each

value of H except for H = 200 mm, consistent with the
14% run-to-run standard deviation in E. For example,
the solid line in Fig. 8 shows constant fit to the data for
VI ≥ 100 mm/s at H = 42 mm. We note that the data
at H = 200 mm have the strongest added mass effect,
in particular at VI = 400 mm/s the prediction for the
added mass effect is 50% of the total measured stress
(i.e. this is about the transition where the added mass
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FIG. 9. (color online) The modulus E as a function of fluid
height H for different VI as indicated in the legend. Solid line:
power law fit to the data, yielding a best fit of E ∝ H0.93±0.12.
E is not independent ofH as would be the case for an intrinsic
material modulus – instead the trend is consistent with E ∝

H , corresponding to a stiffness per unit area dτ/dz that is
independent of H .

effect overcomes the boundary effect in its contribution
to the stress on the impactor). The strong added mass
effect likely influences the trends observed here at large
H and VI . However, since we do not have a detailed
model for the added mass effect after the collision of the
dynamically jammed region with the boundary, it is dif-
ficult to account for it in detail here. The plateau in
E(VI) at large impact velocities VI is in contrast to what
is expected from bulk rheology models where the shear
stress remains linear in shear rate at stresses above the
shear thickening regime [44], which would predict a linear
relation between E and VI in the limit of high velocity.

For smaller VI , the modulus E scales approximately
linearly with the impact velocity, as shown by the dashed
line fit in Fig. 8. The non-systematic scatter in the data
appears larger for VI

<
∼ 10 mm/s, which is the same range

where we found the occurrence of the sharp stress in-
crease to be an unreliable feature from run to run. If we
extrapolate the dashed line fit to lower velocities, the ex-
pected modulus becomes comparable to the background
level due to buoyancy at VI = 0.1 mm/s

E. Geometry dependence of the modulus E

To characterize whether the stress response of the dy-
namically jammed region scales like a bulk solid, here we
show how E scales with the dimensions of the system.
In Fig. 8, there appears to be a systematic increase of E
with H . To quantify this, the values of the modulus E
in Fig. 8 are replotted as a function of fluid height H in
Fig. 9 for a relatively narrow impact velocity range 100
mm/s ≤ VI ≤ 600 mm/s. The dashed line shows a power
law fit to these data where the input error was adjusted
to 30% (about twice the typical run-to-run variation) to
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obtain a reduced χ2 ≈ 1. This yielded a power law ex-
ponent 0.93 ± 0.12. Since E is found to vary with H ,
this indicates that E is not an intrinsic material prop-
erty that is independent of system size. Rather, the data
are consistent with a linear scaling E ∝ H . Note that
since H − zF = (1 − 1/k)H , and k is a constant in this
parameter range, E ∝ H is equivalent to E ∝ H − zF .
This means the fit in Fig. 9 is consistent with a height-
independent stiffness per unit area dτ/dz = E/(H − zF )
of the dynamically jammed region in the limit of small
strain after it spans between solid boundaries (i.e. for
z > zF ). If we allow for an the uncertainty in the scaling
exponent of dτ/dz in H of 0.1, propagating this error
only leads to a 30% error in stress per decade of extrap-
olation in H . This scaling implies that the mechanism
that is setting the scale of the stress is coming from a
bulk effect inside the suspension that is independent of
the distance from the impactor to the boundary, but only
after the dynamically jammed region spans between solid
boundaries.
We also varied the diameter D of the impactor (data

not shown), and confirmed that over a range from 12.7 ≤

D ≤ 64 mm, the measured modulus E was consistent
with no trend in D over that range, within a standard
deviation of 20%, within the run-to-run variation. This
is consistent with the hypothesis that the modulus E is
independent of size. This also confirms that the shear
force on the side of the impactor can be neglected in this
range, as that would make a contribution to the modu-
lus E that scales as 1/D. However, for an impactor with
D = 2.9 mm, we found a modulus smaller by about a fac-
tor of 5, and a larger delay depth zF by about a factor of
3. This indicates the smaller impactor is in a parameter
regime with very different scaling behavior than the rest
of our data where E is independent of D. This regime at
smallD was not studied in detail, and describing it would
require a constitutive relation dependent on two spatial
dimensions to include a dependence on the impactor di-
ameter D. This is beyond the scope of this paper, as the
current model describes a constitutive relation averaged
over the horizontal plane and is only a function of one
spatial dimension (z).

F. Weight fraction dependence of the modulus E

We measured the modulus E for various weight frac-
tions φ with the impact velocity relatively fixed in the
range 100 mm/s ≤ VI ≤ 400 mm/s at H = 42 mm, and
show the results in Fig. 10. We measured weight frac-
tions up to the liquid-solid transition at φc = 0.61. E
increases smoothly up to φ = 0.57, followed by a plateau
in E. In the range 0.57 ≤ φ < 0.61, a fit to a con-
stant yields E = 2.4 MPa with a standard deviation of
0.3 MPa, corresponding to dτ/dz = 64 ± 9 kPa/mm.
This happens to be the same range where k(φ) reaches a
plateau (Fig. 7). At lower φ, the modulus E decreases.
A fit of E(φ) by a linear function plus a constant for
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FIG. 10. The modulus E as a function of weight fraction φ.
The two symbol sets correspond to 2 different experimenters.
Solid line: constant fit to the data for φ ≥ 0.57. Dashed line:
linear fit to the data for φ ≤ 0.57.

φ ≤ 0.57 shown in Fig. 10 yields an intercept where
E = 0 at φ = 0.484 ± 0.006. This is consistent with
φmin where k approaches the limiting value of 1 (seen in
Fig. 7) where the dynamically jammed region does not
propagate. Thus it seems that the impact response gets
weaker in terms of both E and k as the weight fraction
is reduced to φmin, although at this point the reason for
this correspondence is not clear.
We found that if the measurements of E as a function

of φ shown in Fig. 10 were repeated by another person
with a nominally similar procedure, the mean values of E
were relatively reproducible, well within each set’s stan-
dard deviation of 14%, as shown in Fig. 10. Thus, the
values of E seem less sensitive to the procedure than the
values of k.

VI. CONCLUSIONS AND DISCUSSION

We observed that a suspension of cornstarch and wa-
ter can support a large stress in response to impact with
a delay after the impactor hits the suspension surface
(Fig. 2). The strong impact response occurs when the dy-
namically jammed region responsible for the added mass
effect spans between the impactor and the opposite solid
boundary [9]. The magnitude of this stress – on the order
of 106 Pa – cannot be explained by steady state rheology
of DST, or impact models based on added mass or other
inertial effects (Sec. III). The background stress before
this delay (∼ 103 Pa) can be explained by a combination
of buoyancy and added mass effects (Figs. 3-5).
We used our measurements to obtain a relatively sim-

ple averaged constitutive rheology for impact response
that relates the force on the impactor to its displacement.
We characterized the impact response by a velocity ra-
tio k = VF /VI that determines when the dynamically
jammed region first spans to the boundary at impactor
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depth zF = H/k (Figs. 6 and 7). The system-spanning
dynamically jammed region has an effective compressive
modulus E for z > zF (Figs. 8, 9, and 10). The modu-
lus E = (H − zF )dτ/dz depends on the fluid height H ,
meaning that the dynamically jammed region does not
have an intrinsic material modulus like typical bulk ma-
terials. Instead, we found an intrinsic stiffness per unit
area dτ/dz to be independent ofH , which is independent
of the distance from the boundary, although this intrinsic
response only exists after the dynamically jammed region
reaches the boundary. We found the values of dτ/dz and
k to be constants over a wide range of parameters: im-
pact velocities 100 ≤ VI ≤ 600 mm/s, weight fractions
0.57 ≤ φ ≤ 0.61 (up to the liquid-solid transition), sus-
pension heights 15 mm ≤ H ≤ 200 mm, and impactor
diameters 12.7 mm ≤ D ≤ 64 mm. In this range, we
find k = 12 ± 4 (Fig. 7), and dτ/dz = 64 ± 9 kPa/mm
(Fig. 10), where the error bars represent the large run-
to-run standard deviation, including a variation for dif-
ferent experimenters in the case of k. For smaller VI and
φ, both dτ/dz and the velocity ratio k drop off signif-
icantly. We find a minimum velocity Vmin at a given
weight fraction φ below which the dynamically jammed
region appears to act like a plug with aspect ratio near
1 that does not propagate faster than the impactor, al-
though there is still a significant stress increase above the
background. We also found a minimum weight fraction
φmin = 0.497±0.007 below which we did not observe any
stress increase above the background at any velocity.

Despite a long-standing expectation that the impact
response of cornstarch and water is related to shear thick-
ening [30], there is still no quantitative observation that
directly links the impact response of DST suspensions
to their steady-state rheology. We observed dilation in
the dynamically jammed region, which is a required part
of the frustrated dilatancy mechanism of steady-state
DST [4]. We also observed a weight fraction range of
(φc − 0.04) < φ < φc where the impact response reaches
its maximum strength, in terms of modulus E and the
velocity ratio k. The weight fraction range where E(φ) in
Fig. 10 and k(φ) in Fig. 7 reach their maximum plateau
values is the same weight fraction range where the stress-
shear rate curve is discontinuous in steady-state, rotation
rate-controlled measurements [21], indicating that the
impact response and steady-state DST are strongest in
the same weight-fraction range. At this point, these qual-
itative observations are the best evidence we have that
the impact response and steady-state rheology might be
connected, but this connection is tenuous at best. Some
other comparisons that could be made to steady-state
DST include the existence of a minimum weight frac-
tion φmin = 0.497± 0.007 for the strong impact response
above the background level (Fig. 7), and a minimum ve-
locity Vmin for the dynamically jammed region to prop-
agate faster than the impactor (Fig. 6). It remains to be
seen if the latter is related to the critical shear rate for
the onset of shear thickening in steady-state DST, or a
transient relaxation time [21].

One major open question regards the physical origin of
the large stress scale on the order of 106 Pa. The obser-
vation that the modulus reaches a plateau as a function
of both VI (Fig. 8) and φ (Fig. 10) is suggestive of a max-
imum or cutoff stress scale, analogous to the maximum
stress in the shear thickening range of DST. However,
this scale has not yet been explained by any models. In
particular, this is 3 orders of magnitude larger than the
limit from surface tension at the suspension-air interface
(∼ 103 Pa) that limits steady-state DST in rheometer
measurements [4]. In steady-state, the stresses have time
to distribute more uniformly throughout the suspension
and are limited by the least stiff boundary. In contrast,
the observation that the dynamically jammed structure
is localized to a region below the impactor and does not
need to reach the sidewalls of the system [9] suggests the
normal stress transmitted along frictional interactions is
limited by something inside the bulk of the suspension
that exists during the transient.

Recent work proposed that the stress scale on the order
of MPa could come from the pore pressure: a pressure
due to the liquid flowing between the pores of the granu-
lar packing as the granular packing rearranges [45]. This
model predicts a stress from pore pressure on the scale
of τp ≈ ηlα∆φVIL/κ, where the viscosity of the inter-
stitial liquid is ηl = 9 × 10−4 Pa s, the permeability is
κ = (1 − φ3)a2/180φ2, α is a dimensionless coefficient
of order 1, L is the width of the sheared region, and we
interpret ∆φ as the change in weight fraction due to di-
lation from the initial value. If we assume α = 4 [45],
an estimate for a typical value of ∆φ ≈ 0.01 in a di-
lating suspension, and L ≈ 1.5 cm based on the size of
the portion of the dynamically jammed region that is
sheared at VI = 396 mm/s [9], then we obtain τp ≈ 8
MPa. This is promising that at least pore pressure from
dilation can produce a stress on the same order of mag-
nitude as observed in Fig. 2, so the mechanism should
be considered further. However, the simple model was
for a uniform fluid, so could not even qualitatively pre-
dict propagation of the dynamically jammed region, and
consequences of that such as the delay time or depth-
dependence of the stress [45]. A complete model for the
impact response should also be able to explain why the
dynamically jammed region exists and propagates at all,
its velocity, and the existence and values of the minimum
velocity Vmin and φmin for front propagation.

Finally, the purpose of the constitutive relation is
to describe stresses, deformations, and flows of various
impact-like phenomena; for examples with different forc-
ing conditions, boundary conditions, flow geometries,
and varying velocities. In a follow up paper, we show
that the constitutive relation can describe the ability
of people to walk and run on the surface of cornstarch
and water [22]. To confirm that it is a generally useful
constitutive relation requires it be tested on other tran-
sient impact-like phenomena as well. There are several
phenomena of shear thickening fluids which are not ex-
plained by steady-state viscosity functions, as least in the
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absence of time-dependent hysteresis terms. One such
phenomenon is the oscillation of the velocity of a sphere
sinking in a suspension, rather than monotonically ap-
proaching a terminal velocity as it would in a generalized
Newtonian fluid [46–48]. It was argued that a repeated
process of jamming and unjamming of something like the
dynamically jammed region could account for such oscil-
lations [46–48]. Now we have an averaged constitutive
model that includes such a process, along with a relax-
ation process to describe the unjamming [21]. Similarly,
it was shown that the formation of stable holes in the
surface of a vertically vibrated layer of a DST suspen-
sion could not be explained by a steady-state rheology
in the absence of hysteresis in the constitutive relation
τ(γ̇) [49]. This apparent hysteresis appears to be time-
dependent when the constitutive relation is put in terms
of τ(γ̇). Alternatively, such hysteresis could come about
for a history of increasing shear rate from the delay time
we observed before the large stress increase. For the his-
tory of decreasing shear rate, the the time dependence

may come from the relaxation time of the dynamically
jammed state [21]. Finally, the observation of objects
bouncing off the surface of a DST suspension remains
unexplained based on steady-state or added mass models
which are dissipative constitutive relations [2, 10]. The
system-spanning dynamically jammed region can in prin-
ciple provide some energy storage in the modulus E that
could possibly explain the ability of impacting objects to
bounce off the surface. A detailed test of the application
of the constitutive relation to these and other problems
is left open for future work.
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