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The Granger causality (GC) analysis has been extensively applied to infer causal interactions in
dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social
science, and many other fields. In the presence of potential nonlinearity in these systems, the validity
of the GC analysis in general is questionable. To illustrate this, here we first construct minimal
nonlinear systems and show that the GC analysis fails to infer causal relations in these systems —
it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed
mutual information (TDMI) analysis is able to successfully identify the direction of interactions
underlying these nonlinear systems. We then apply both methods to neuroscience data collected
from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify
the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the
GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool
in such a case.

I. INTRODUCTION

Detecting causal interactions among units in a system
is of great importance to understand the cooperative na-
ture of the system. In general, it is methodologically
challenging to identify causality only from the measure-
ments of a system without any interventions [1]. A solu-
tion was proposed by Wiener based on the idea that the
driver is always earlier than the recipient, and the time
series of the driver should contain information of the re-
cipient [2]. Therefore, one should expect to improve the
prediction of the recipient’s state by incorporating the
historical information of the driver.
Wiener’s principle has been later formalized by

Granger in terms of linear regression known as Granger
causality (GC) [3]. In particular, if the variance of the
prediction error of signal X is reduced by including ad-
ditionally the history of signal Y in the regressive model,
then the causal relation from Y to X is inferred. The
GC analysis has become increasingly popular recently
with extensive applications in dynamical systems from
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economy and finance [4–7], physics [8, 9], bioinformat-
ics [10, 11], neuroscience [12–15], social science [16, 17],
and many other fields. In general, these systems could
be highly nonlinear while the mathematical framework of
the GC analysis is established for linear systems. There-
fore, the validity of its application in these nonlinear sys-
tems is generally questionable.

To overcome the challenge of nonlinearity, another for-
malization of Wiener’s principle has been proposed by
Schreiber known as transfer entropy (TE) [18]. In con-
trast to GC that measures the improvement of signal pre-
diction through variance, TE measures the reduction of
signal uncertainty through probability distribution. The
TE value from Y to X quantifies the amount of reduced
uncertainty of X ’s state by incorporating the history of
both X and Y compared with that only incorporating
X ’s own history. A nonzero TE value infers the exis-
tence of causality. TE is an information-theoretic quan-
tity, which makes it applicable in nonlinear systems. In
particular, for linear Gaussian models, it has been proved
that TE is equivalent to GC [19]. Therefore, TE is a
generalization of GC for detecting causality in nonlinear
systems. TE has been applied in many nonlinear systems
such as neuroscience [20–22] and other fields [23–25]. De-
spite its applicability in nonlinear systems, in general, TE
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requires long data to construct high-dimension probabil-
ity distributions, and the dimension of probability distri-
butions in TE is determined by the memory time of the
signals. For a system with a long memory, the “curse
of dimensionality” will present a great challenge in the
application of TE. Variations of TE [20, 26] and related
techniques [21] have been developed to improve the ap-
plicability of TE to systems with long memory, yet the
issue of the reconstruction of high-dimensional probabil-
ity distribution for a long-memory system remains to be
fully resolved.

To alleviate the issue of dimensionality, an implemen-
tation of Wiener’s principle with variations was intro-
duced by Vastano and Swinney known as time-delayed
mutual information (TDMI) [27]. In particular, it com-
putes the mutual information between two signals with
multiple time lags. Based on the principle that the driver
who contains the information of the recipient is earlier
than the recipient, the causal relation is inferred by the
sign of the time lag when the value of the mutual informa-
tion between two signals reaches its peak. Accordingly,
this time lag can be interpreted as the time delay of in-
formation transport between the two signals. The TDMI
analysis was initially proposed to investigate spatiotem-
poral information transport in physical systems [27], and
later it has been applied to infer causal interactions in
neuroscience [28–30] and other fields [31–34]. Accounting
for the fact that mutual information is an information-
theoretic quantity as TE, the application of the TDMI
analysis thus is also valid for systems with substantial
nonlinearity. For instance, the result of the TDMI anal-
ysis is shown to be invariant under any nonlinear invert-
ible transformations of signals [35], i.e., independent of
the method of signal measurement.

In this work, we compare the performance of the GC
and TDMI analyses by constructing minimal examples
of nonlinear systems as well as applying both methods in
experimental neuroscience data. The result shows that
TDMI can successfully identify the direction of interac-
tions underlying these nonlinear systems while GC fails
to identify them. The article is organized as follows. In
Sec. Methods, we introduce the mathematical framework
of GC and TDMI. In Sec. Results, we first construct five
examples of nonlinear systems and demonstrate that the
GC analysis can give rise to all possible types of incor-
rect causal directions. In contrast, the TDMI analysis
is able to successfully identify the correct causal direc-
tions, suggesting the applicability of the TDMI analysis
in nonlinear systems. We then apply the two methods in
neuroscience data recorded in experiments and demon-
strate that the TDMI analysis identifies a special group
of neurons in rat hippocampus whose firing signal pre-
dominantly drives the theta-band (4-12 Hz) local field
potential (LFP) signal while the GC analsis fails to label
them. In Sec. Discussion, we discuss the pros and cons
of the GC and TDMI analyses in practical applications.

II. METHODS

A. Granger causality

The mathematical framework of GC is established on
linear regression. Given two stationary signals X and Y ,
one can measure their time traces denoted as {xt} and
{yt} at each sampling point, and identify their causal
relations using the regressive models described below.
On the one hand, the value of xt can be predicted from

the linear autoregression on its own history

xt =

∞
∑

i=1

âixt−i + ε̂t,

where {âi} are the autoregression coefficients, and {ε̂t}
are the corresponding prediction errors.
On the other hand, the value of xt can also be predicted

from the linear regression on both the history of X and
Y ,

xt =

∞
∑

i=1

aixt−i +

∞
∑

j=1

bjyt−j + εt,

where {ai}, {bj} are the joint regression coefficients,
and {εt} are the corresponding prediction errors. If Y
causally drives X , then the prediction of xt is expected
to be improved by incorporating the history of Y in ad-
dition to its own history. In other words, the variance of
the prediction error εt should be smaller than that of ε̂t.
Inspired by this, the GC value from Y to X is defined as

Fy→x = log
var(ε̂t)

var(εt)
.

If the GC value vanishes, then var(ε̂t) = var(εt) and
{bj} = 0, which indicates that the change of Y will not
affect the future of X . Hence Y does not drive X . Oth-
erwise, Y drives X .
In this work, we perform the GC analysis in our con-

structed examples by following the standard procedure
introduced in Ref. [36]. The regression orders of the two
signals are determined using Akaike information criterion
[39] by following Refs. [36–38]. The significance test is
achieved by taking into account the fact that the GC
value for a pair of independent signals is asymptotically
χ2 distributed as the data length approaches infinity, and
the significance threshold of a nonzero GC value is de-
termined by setting a significance level α = 0.001. In the
example of neuroscience data, we apply the GC analysis
in the frequency domain [36] with the order and signifi-
cance threshold determined in the identical way as that
in the time-domain GC analysis.

B. Time-delayed mutual information

TDMI is an information-theoretic approach for detect-
ing causal interactions. In general, the quantity of mu-
tual information characterizes the common information
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shared between two signals. Given two stationary signals
X and Y with their time traces {xt} and {yt}, respec-
tively, the mutual information between them is defined
as

I(X,Y ) =
∑

xt

∑

yt

p(xt, yt)log
p(xt, yt)

p(xt)p(yt)
,

where p(xt, yt) is the joint probability distribution of
X = xt and Y = yt, p(xt) and p(yt) are their marginal
probability distributions. In particular, I(X,Y ) = 0 is
equivalent to p(xt, yt) = p(xt)p(yt), which indicates that
signals X and Y are independent if they do not share
information.

Mutual information is symmetric, i.e., I(X,Y ) =
I(Y,X). Therefore, it cannot be applied directly to in-
fer the direction of interactions between two signals. To
overcome this limitation, one can introduce a time-lag
parameter to capture the delay of information transfer
between the two signals. TDMI as a function of time-lag
τ is defined as

I(X,Y, τ) =
∑

xt

∑

yt−τ

p(xt, yt−τ )log
p(xt, yt−τ )

p(xt)p(yt−τ )
,

where p(xt, yt−τ ) is the joint probability distribution of
X = xt and Y = yt−τ . A nonzero amplitude of the mu-
tual information as a function of τ indicates the existence
of interactions between two signals; the sign of the time-
lag τ where I(X,Y, τ) reaches its peak magnitude is used
to infer the information flow direction that can be fur-
ther interpreted as the causal direction of interaction. A
negative τ indicates that X shares a maximum amount
of information with the future of Y , thus X drives Y . A
positive τ indicates that X shares a maximum amount of
information with the past of Y , thus X is driven by Y .

In this work, we perform the TDMI analysis in our ex-
amples by following the standard procedure introduced
in Ref. [29]. In particular, the probability distribu-
tion p(xt, yt−τ ) in TDMI is reconstructed by viewing
the time traces {(xt, yt−τ )} as a realization of a two-
dimensional stationary process governed by the joint
probability p(xt, yt−τ ), and the mutual information at
a given time lag is calculated via adaptive partitioning of
the sample space [40]. To perform the significance test,
we randomly shuffle the time series of the two signals sep-
arately using Matlab inline function randperm.m and cal-
culate the mutual information between the shuffled pair
of signals. After shuffling data and calculating mutual in-
formation for 100 times, the significance threshold is set
as the largest value of the mutual information between
shuffled signals. The level of the significance threshold is
not shown in the figures in Sec. Results because it is too
small compared with the peaks of any TDMI curve.

The TDMI code is available at http://ins.sjtu.
edu.cn/people/zdz/code/GC_vs_TDMI.RAR.

TABLE I. Summary of constructed linear systems in each
example.

Example linear system

A

{

xt = εt

yt = −0.1xt−1 + ηt

B

{

xt = −0.3xt−1 + εt

yt = 0.3yt−1 − 0.9xt−1 + ηt

C























xt = −

8
∑

k=1

ckxt−k + εt

yt = −

8
∑

k=1

ckyt−k + 100

9
∑

k=1

ck−1xt−k + ηt

D

{

xt = −0.1yt−1 + εt

yt = −0.1xt−1 + ηt

E























xt = −

8
∑

k=1

ckxt−k + 0.5

9
∑

k=1

ck−1yt−k + εt

yt = −

8
∑

k=1

ckyt−k + 0.5

9
∑

k=1

ck−1xt−k + ηt

III. RESULTS

In this Section, we first construct five minimal exam-
ples to study whether GC and TDMI can capture the
causal interactions in these systems. In each example, we
start with a two-dimensional linear dynamical system de-
scribing the dynamics of signals X and Y , and then con-
struct the corresponding nonlinear system by performing
a static nonlinear transform to each data points of signal
X generated from the linear system. We show that GC
may easily fail to detect causal interactions in these ex-
amples, while TDMI can successfully detect them. For
the ease of reading, all the results have been summarized
in TABLE I and TABLE II.
We then investigate the performance of the two meth-

ods when applied to neuroscience data measured in rat
hippocampus, and show that TDMI is able to identify
nonlinear interactions among neuronal signals while GC
cannot. In particular, TDMI identifies a special group of
neurons in rat hippocampus whose firing signal predomi-
nantly drives the theta-band LFP signal. These neurons
have been discovered in mouse hippocampus in a previ-
ous study [29], and in this work their existence in rat
hippocampus has also been confirmed.

A. unidirection misinferred as no interaction

In this example, we start with the following linear dy-
namical system,

{

xt = εt

yt = −0.1xt−1 + ηt

http://ins.sjtu.edu.cn/people/zdz/code/GC_vs_TDMI.RAR
http://ins.sjtu.edu.cn/people/zdz/code/GC_vs_TDMI.RAR
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TABLE II. Summary of GC and TDMI results in each example.

Example Threshold Fx→y Fy→x GC direction Nonlinearity Fx̃→y Fy→x̃ GC direction TDMI direction

A 1.1 × 10−6 1.0 × 10−2 6.0× 10−8 X → Y x̃t = x2
t 1.0 × 10−8 2.8× 10−7 independent X(X̃)→ Y

B 1.9 × 10−6 6.2 × 10−1 7.5× 10−7 X → Y x̃t = [xt+|xt|
2

]5 5.7 × 10−2 3.0× 10−4 X̃ ↔ Y X(X̃)→ Y

C 5.1 × 10−5 4.2 × 10−1 1.8× 10−5 X → Y x̃t = x5
t 3.6 × 10−5 2.3× 10−2 X̃ ← Y X(X̃)→ Y

D 1.4 × 10−6 9.8 × 10−3 9.9× 10−3 X ↔ Y x̃t = x2
t 1.0 × 10−8 3.1× 10−7 independent X(X̃)↔ Y

E 4.5 × 10−5 2.2 × 10−1 2.2× 10−1 X ↔ Y x̃t = tanh(10xt) 2.1 × 10−5 1.1× 10−1 X̃ ← Y X(X̃)↔ Y

where {εt} and {ηt} are independent and identically dis-
tributed (i.i.d) standard Gaussian random variables. A
realization of this linear system generates the time se-
ries {xt} and {yt} with data length 107. By perform-
ing the GC analysis to {xt} and {yt}, the GC value
from X to Y is Fx→y ≈ 1.0 × 10−2 and that from Y
to X is Fy→x ≈ 6.0 × 10−8. Accounting for the fact
that the significance threshold for non-zero GC value is
Fthr ≈ 1.1× 10−6 (See Sec. Methods for details), the GC
analysis identifies the direction of causal interaction from
X to Y but not from Y to X , which is consistent with
the underlying dynamics of the linear system.
By performing the quadratic transform to signal X , we

can obtain a new signal X̃ with its realization as x̃t =
x2

t . The GC analysis between {x̃t} and {yt} gives that
Fx̃→y ≈ 1.0× 10−8 and Fy→x̃ ≈ 2.8× 10−7. Both of the
GC values are below the significance threshold Fthr ≈
1.1×10−6, indicating that there is no interaction between
the signals X̃ and Y . This result given by GC is obviously
incorrect because X̃ and Y are closely linked by X rather
than being independent of each other.
In contrast, by performing the TDMI analysis, the

causal direction of interactions in both the linear and
nonlinear systems can be correctly identified. From Fig.
1, both the TDMI curves reach a significant large peak
at the negative time lag τ = −1, corresponding to the
delay time of the information transfer from X(X̃) to Y .
This indicates that the direction of causal interaction is
always from X(X̃) to Y in both the linear and nonlinear
systems, not being disturbed by the nonlinear transform.

B. unidirection misinferred as bidirection

In this example, we start with the following linear dy-
namical system,

{

xt = −0.3xt−1 + εt

yt = 0.3yt−1 − 0.9xt−1 + ηt

where {εt} and {ηt} are i.i.d standard Gaussian random
variables. A realization of this linear system generates
the time series {xt} and {yt} with data length 107. By
performing the GC analysis to {xt} and {yt}, the GC
value from X to Y is Fx→y ≈ 6.2 × 10−1 and that from
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FIG. 1. (A) Causal direction identified by GC. (B) Causal
direction identified by TDMI. (C) TDMI curve as a function
of time lag. The upper and lower parts in each panel cor-
respond to the linear and nonlinear systems in Example A,
respectively.

Y to X is Fy→x ≈ 7.5 × 10−7. Accounting for the fact
that the significance threshold for non-zero GC value is
Fthr ≈ 1.9×10−6, the GC analysis identifies the direction
of causal interaction from X to Y but not from Y to X ,
which is consistent with the underlying dynamics of the
linear system.

By performing the nonlinear transform f(x) = [(x +

|x|)/2]5 to signal X , we can obtain a new signal X̃ with
its realization as x̃t = [(xt + |xt|)/2]

5. The GC analysis
between {x̃t} and {yt} gives that Fx̃→y ≈ 5.7×10−2 and
Fy→x̃ ≈ 3.0× 10−4. Both of the GC values are above the
significance threshold Fthr ≈ 1.9× 10−6, indicating that
there are bidirectional interactions between the signals
X̃ and Y . This result given by GC is obviously incorrect
because by no means will Y affect X̃.

In contrast, by performing the TDMI analysis, the
causal direction of interactions in both the linear and
nonlinear systems can be correctly identified. From Fig.
2, both the TDMI curves reach a significant large peak
at the negative time lag τ = −1. This indicates that the
direction of causal interaction is always from X(X̃) to
Y in both the linear and nonlinear systems, not being
disturbed by the nonlinear transform.
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FIG. 2. (A) Causal direction identified by GC. (B) Causal
direction identified by TDMI. (C) TDMI curve as a function
of time lag. The upper and lower parts in each panel cor-
respond to the linear and nonlinear systems in Example B,
respectively.

C. unidirection misinferred as reversed

unidirection

In this example, we start with the following linear dy-
namical system,



























xt = −

8
∑

k=1

ckxt−k + εt

yt = −

8
∑

k=1

ckyt−k + 100

9
∑

k=1

ck−1xt−k + ηt

where {εt} and {ηt} are Gaussian random vari-
ables with zero mean and covariance as var(εt, ηt) =
(

5.16× 10−6 0
0 1

)

, and the coefficients {ck} is given

by the following polynomial

8
∑

k=0

ckz
k = [(1 − re−2πif z)(1− re2πif z)]4

with f = 0.1 and r = 0.8.
A realization of this linear system generates the time

series {xt} and {yt} with data length 106. By performing
the GC analysis to {xt} and {yt}, the GC value fromX to
Y is Fx→y ≈ 4.2×10−1 and that from Y to X is Fy→x ≈
1.8× 10−5. Accounting for the fact that the significance
threshold for non-zero GC value is Fthr ≈ 5.1×10−5, the
GC analysis identifies the direction of causal interaction
from X to Y but not from Y to X , which is consistent
with the underlying dynamics of the linear system.
By performing the nonlinear quintic transform f(x) =

x5 to signal X , we can obtain a new signal X̃ with its re-
alization as x̃t = x5

t . The GC analysis between {x̃t} and
{yt} gives that Fx̃→y ≈ 3.6×10−5 and Fy→x̃ ≈ 2.3×10−2.
Therefore, the GC value Fx̃→y is above the significance
threshold Fthr ≈ 5.1× 10−5 while the GC value Fy→x̃ is
below the significance threshold. This indicates that, af-
ter the nonlinear transform, the causal direction changes
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FIG. 3. (A) Causal direction identified by GC. (B) Causal
direction identified by TDMI. (C) TDMI curve as a function
of time lag. The upper and lower parts in each panel cor-
respond to the linear and nonlinear systems in Example C,
respectively. (D) TDMI curve between X and itself (left) and
that between Y and itself (right). The global peak of the
TDMI curves at zero time lag is truncated in order to better
visualize the local peaks of small amplitude.

from that X drives Y to that Y drives X̃, which is obvi-
ously inconsistent with the dynamics.
In contrast, by performing the TDMI analysis, the

causal direction of interactions in both the linear and
nonlinear systems can be correctly identified. From Fig.
3, both the TDMI curves reach a significant non-zero
global peak at a negative time lag, indicating that the
direction of causal interaction is always from X(X̃) to
Y in both the linear and nonlinear systems, not being
disturbed by the nonlinear transform.
We note that there are also several local peaks at some

positive time lags. To interpret these peaks, we calculate
the TDMI between X and itself, and that between Y and
itself. As shown in Fig. 3D, both of the curves show the
highly similar decaying profile and identical number of
oscillatory periods to the TDMI feature in Fig. 3C, indi-
cating that these positive peaks in Fig. 3C are probably
induced by the memory of the signal itself rather than the
causal information flow from Y to X . The interpretation
of local peaks in TDMI curves will be further discussed
in Sec. Discussion.

D. bidirection misinferred as no interaction

In this example, we start with the following linear dy-
namical system,

{

xt = −0.1yt−1 + εt

yt = −0.1xt−1 + ηt
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FIG. 4. (A) Causal direction identified by GC. (B) Causal
direction identified by TDMI. (C) TDMI curve as a function
of time lag. The upper and lower parts in each panel cor-
respond to the linear and nonlinear systems in Example D,
respectively.

where {εt} and {ηt} are i.i.d standard Gaussian random
variables. A realization of this linear system generates
the time series {xt} and {yt} with data length 107. By
performing the GC analysis to {xt} and {yt}, the GC
value from X to Y is Fx→y ≈ 9.8 × 10−3 and that from
Y to X is Fy→x ≈ 9.9 × 10−3. Accounting for the fact
that the significance threshold for non-zero GC value is
Fthr ≈ 1.4×10−6, the GC analysis identifies bidirectional
causal interactions between X and Y , which is consistent
with the underlying dynamics of the linear system.

By performing the quadratic transform to signal X , we
can obtain a new signal X̃ with its realization as x̃t =
x2

t . The GC analysis between {x̃t} and {yt} gives that
Fx̃→y ≈ 1.0× 10−8 and Fy→x̃ ≈ 3.1× 10−7. Both of the
GC values are below the significance threshold Fthr ≈
1.4×10−6, indicating that there is no interaction between
the signals X̃ and Y . This result given by GC is obviously
incorrect because X̃ and Y are closely linked by X rather
than being independent of each other.

In contrast, by performing the TDMI analysis, the
causal direction of interactions in both the linear and
nonlinear systems can be correctly identified. From Fig.
4, both the TDMI curves reach two significant large
peaks, one at positive lag τ = 1 and the other at nega-
tive time lag τ = −1. This indicates that the direction
of causal interactions between X(X̃) and Y are always
bidirectional in both the linear and nonlinear systems,
not being disturbed by the nonlinear transform.

E. bidirection misinferred as unidirection

In this example, we start with the following linear dy-
namical system,



























xt = −

8
∑

k=1

ckxt−k + 0.5

9
∑

k=1

ck−1yt−k + εt

yt = −

8
∑

k=1

ckyt−k + 0.5

9
∑

k=1

ck−1xt−k + ηt

where {εt} and {ηt} are the same Gaussian random vari-
ables defined in Example C, and the coefficients {ck} are
given by the same polynomial in Example C.
A realization of this linear system generates the time

series {xt} and {yt} with data length 106. By performing
the GC analysis to {xt} and {yt}, the GC value from X
to Y is Fx→y ≈ 2.2 × 10−1 and that from Y to X is
Fy→x ≈ 2.2 × 10−1. Accounting for the fact that the
significance threshold for non-zero GC value is Fthr ≈
4.5×10−5, the GC analysis identifies bidirectional causal
interactions between X and Y , which is consistent with
the underlying dynamics of the linear system.
By performing the nonlinear hyperbolic tangent trans-

form f(x) = tanh(10x) to signal X , we can obtain a

new signal X̃ with its realization as x̃t = tanh(10xt).
The GC analysis between {x̃t} and {yt} gives that
Fx̃→y ≈ 2.1 × 10−5 and Fy→x̃ ≈ 1.1 × 10−1. Therefore,
the GC value Fy→x̃ is above the significance threshold
Fthr ≈ 4.5 × 10−5 while the GC value Fx̃→y is below
the significance threshold. This indicates that, after the
nonlinear transform, the causal direction changes from
bidirectional to unidirectional, i.e., from Y to X̃ , which
is obviously incorrect because X̃ also drives Y .
In contrast, by performing the TDMI analysis, the

causal direction of interactions in both the linear and
nonlinear systems can be correctly identified. From Fig.
5, the TDMI curves have global peaks at both positive
and negative time lags. This indicates that the directions
of causal interaction are always bidirectional in both the
linear and nonlinear systems, not being disturbed by the
nonlinear transform.

F. interactions between neuronal signals

From the above examples, we have shown that TDMI
rather than GC is able to successfully identify causal in-
teractions in our constructed minimal nonlinear systems.
Yet the applicability of TDMI in high-dimensional, com-
plex, real systems remains to be evaluated. To illustrate
this, here we apply TDMI to detect causal interactions
between neuronal signals using data recorded in neuro-
science experiments [41, 42] and contrast its performance
with GC.
In the experiments [41, 42], multichannel extracellu-

lar recordings were performed in hippocampal CA1 area
of three rats during open field tasks. Spike signals of
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FIG. 5. (A) Causal direction identified by GC. (B) Causal
direction identified by TDMI. (C) TDMI curve as a function
of time lag. The upper and lower parts in each panel cor-
respond to the linear and nonlinear systems in Example E,
respectively. The mutual information at zero time lag is set
as zero since it contains little information of the causal direc-
tion.

each neuron and LFP signals reflecting neuronal popula-
tion activity were extracted from the raw data by band-
pass filtering and spike sorting. Examples of the spike
and LFP signals are shown in Fig. 6A and Fig. 6B, re-
spectively. The duration of each recording session lasted
from 17 minutes to 1 hour 46 minutes, providing us with
more than 106 data points to perform the TDMI analy-
sis. Additional experimental details can be found in Refs.
[41, 42].
We first perform power spectrum analysis to the LFP

and spike signals and find that both signals have sub-
stantially strong energy at the theta band (4-12 Hz), as
shown in Fig. 6C. This fact inspires us to study causal in-
teractions between the spike activity of each neuron and
the theta-band LFP signals, which could provide us with
insights into the generating mechanisms underlying the
theta-band wave. For instance, it is yet unclear whether
the theta wave is generated by the majority of the neu-
rons or only a small group of neurons in the network.
By performing the TDMI analysis between the spike

signal of each selected neuron (Fig. 6A) and the corre-
sponding theta wave filtered from the LFP signal (Fig.
6D), we discover that only 10 out of ∼ 130 recorded neu-
rons share substantial information with the theta wave,
thus interact strongly with the theta wave. In addition,
only two out of the ten neurons possess negative time
lags at the global peak of the TDMI curve through the
full recording session (Fig. 6E), indicating that their
spike activity consistently drives the theta wave. The
two neurons are thereafter named as “theta-driving neu-
rons”. The result indicates that only a small group of
neurons participate in the generation of the theta wave.
As shown in Fig. 6E, in addition to the global peak, the

TDMI curve has a decaying oscillatory pattern with sev-
eral local peaks at which the corresponding time lags are
positive. To interpret these peaks, we perform the TDMI
analysis between the theta wave and itself. As shown in
Fig. 6F, we find that the self-TDMI curve exhibits sim-

ilar decaying profile and identical number of oscillatory
periods as the TDMI curve has in Fig. 6E. Therefore,
the local peaks are likely induced by the memory of the
the theta wave signal rather than the causal drive from
the theta wave to the spike activity of the theta-driving
neuron.

To further investigate whether the interaction between
the theta-driving neuron and the theta wave is predomi-
nant compared with other frequency bands of waves, we
calculate the TDMI between the theta-driving neuron’s
firing activity and waves of different frequency bands fil-
tered from the LFP signal including the delta wave (1-4
Hz), the beta wave (12-30 Hz), the gamma wave (30-
100 Hz), and the ripple wave (100-250 Hz). Examples
of these filtered waves are shown in Fig. 6D. As shown
in Fig. 6E, except for the case of the theta wave, the
amount of information shared between the theta-driving
neuron and the other waves is almost negligible. There-
fore, the theta-driving neuron interacts and drives the
theta wave predominantly.

For the same group of theta-driving neurons, the GC
analysis draws the opposite conclusion from the TDMI
analysis. As shown in Fig. 6G, after applying the GC
analysis between the spike signal and the original LFP
signal in the frequency domain, the interaction between
them is inferred to be bidirectional, and the interaction
from LFP to spike is even stronger than that from spike
to LFP by comparing their corresponding amplitudes of
GC values as a function of frequency. In addition, as
shown in Fig. 6G, the interaction between the theta-
driving neuron and the LFP signal exists across a wide
range of frequency from delta band to gamma band,
which is inconsistent with the TDMI analysis showing
that the theta-driving neuron predominantly drives the
theta-band wave.

The feature of the theta-driving neuron in rat hip-
pocampus discovered here is very similar to the feature of
neurons discovered in mouse hippocampus in a previous
experiment [29, 43]. As shown in Fig. 6D, the theta-
driving neuron fires action potentials that are phase-
locked to the theta wave, and it fires preferentially in the
ascending phase of the theta wave. The theta-driving
neuron has a relatively high firing rate ∼ 40 Hz contrast
to the remaining neurons ∼ 1 Hz recorded in the ex-
periments. The total number of theta-driving neurons
are less than 5% in the recorded population. All these
features have been observed in mouse theta-driving neu-
rons. Therefore, although the result of the TDMI analy-
sis cannot be thoroughly verified since the underlying de-
tailed dynamics is unknown, the consistent results of the
TDMI analysis from the two independent experiments
[29, 41, 42] validates TDMI to a certain extent. To fully
validate the result of TDMI, one needs to rely on fur-
ther experiments, e.g., those using optogenetic tools to
control the activity of neurons [44]. To be specific, the
inferred direction from the theta-driving neuron to the
theta wave by TDMI can be thoroughly validated if the
theta wave appears (disappears) when the activity of the



8

-1
0
1

-0.5
0

0.5

  
V

o
lt
a
g
e
 (

m
V

)

-0.5
0

0.5

ripple 

-0.2
0

0.2

-2
0
2

625 ms

gamma

beta

theta

LFP

Frequency (Hz)

20 40 60 80 100

P
o
w

e
r 

(d
B

)

-20

-10

0

10

20
LFP

spike
spikes

Time lag (ms)

-1000 -500 0 500 1000

M
u
tu

a
l 
In

fo
rm

a
ti
o
n
 (

n
a
ts

) x10
-3

0

2

4

6
delta
theta
beta
gamma
ripple

-1000 -500 0 500 1000

M
u
tu

a
l 
In

fo
rm

a
ti
o
n
 (

n
a
ts

)

0

1

2

3

Frequency (Hz)

80 100 120

G
C

 V
a
lu

e

0

0.1

0.2

0.3

0.4

spike to LFP

20 30 40 50

0

1

2

0

6040200

LFP to spike

Time lag (ms)

x10
-2

x10-2

F

A

B

C

E

G

D

FIG. 6. (A) the spike signal of a theta-driving neuron. (B) the
local field potential signal. (C) The power spectrum density
of the spike and LFP signals. (D) the corresponding waves
of various frequencies filtered from the LFP signal in B. The
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train of the theta-driving neuron in A. (E) The TDMI curve
between the theta-driving neuron’s spike and the waves of
various frequencies. (F) The self-TDMI curve for the theta
wave. (G) The GC curves between the spike and LFP signals
in both directions in the frequency domain. Dashed line is
the significance threshold. Inset is the zoom in of the regime
close to the significance threshold.

theta-driving neuron is evoked (inhibited).

IV. DISCUSSIONS

In this work, we have first constructed five examples
of nonlinear systems in which the GC analysis fails to
infer the causal interactions and gives rise to all possi-
ble types of incorrect directions. The inference failure
of GC for causal interactions in nonlinear systems can
be understood as follows. In our previous work, the GC
value is shown to be well approximated by the summation
of squared correlation coefficients [45, 46]. Because the
correlation coefficients are not invariant under nonlinear
transforms, the GC analysis in general fails to capture
the causal information flow in nonlinear systems. In con-
trast, TDMI is invariant under invertible static nonlinear
transforms [35] and is capable of identifying the correct
causal directions in nonlinear systems consistent with the
underlying dynamics.

The mathematical framework of GC is built on the
linear regressive model. However, in practice, the GC
analysis has been applied in nonlinear systems arising
from a large number of fields. This may lead to inconsis-
tent results with the underlying dynamics. The inferred
causality is generally interpreted as effective causality,
which is acceptable to be different from the underlying
dynamics. However, through our examples, we demon-
strate that the meaning of such effective causality could
be confusing and unclear. For example, when applying
the GC analysis in a nonlinear system, a pure recipient
signal could be inferred as the effective cause of a pure
driver signal.

Yet it is important to point out that the GC analysis
could still be valid when being applied to certain par-
ticular nonlinear systems. For example, in neuroscience,
despite the fact that the underlying neuronal dynamics is
nonlinear, the application of the GC analysis to neuronal
voltage signals under certain conditions has been shown
to be able to successfully reconstruct the anatomical con-
nectivity of neuronal networks [45, 46]. In addition, the
reason why the GC analysis is applicable in this case has
been fully elucidated by analyzing the linear subthresh-
old and nonlinear firing-reset structures of neuronal dy-
namics [45, 46]. In contrast, it has also been shown that,
the results from the GC analysis can be difficult to in-
terpret without examining the component behaviors of
the system model [47]. Therefore, the GC analysis is not
applicable to a nonlinear system unless one has sufficient
a priori knowledge of the system.

Our work is partly similar to a recent study [47] that
GC can fail to identify causal direction practically. How-
ever, our work emphasizes on different aspects from the
above study. In Ref. [47], the failure of GC is due to
the computational approach of Granger-Geweke causal-
ity even when the underlying model is a linear system.
Granger-Geweke causality estimates can be severely bi-
ased or of high variance. The issues of bias and high vari-
ance demonstrated in Ref. [47] can be resolved using dif-
ferent computational approaches such as the state space
approach [48], as pointed out by other studies [49, 50].
In contrast, our work demonstrates that GC in general
fails to capture the causal interactions in the presence of
nonlinearity, which cannot be simply resolved by using
those computational approaches, e.g., the state space ap-
proach. To capture the causal relations in systems with
nonlinearity, we have introduced the method of TDMI.

TDMI is an information-theoretic approach, therefore,
it can be applied to nonlinear systems to infer causality.
In addition, the result of the TDMI analysis is invariant
under any nonlinear invertible transformations of signals
[35], thus it is independent of the method of the sig-
nal measurement. This fact can be observed in Example
C and Example E, in which the nonlinear transform is
monotonic and the TDMI curves corresponding to both
the linear and nonlinear systems have exactly the same
profile.
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The expression of TDMI can also be casted as

I(X,Y, τ) =
∑

xt

∑

yt−τ

p(xt, yt−τ )log
p(xt|yt−τ )

p(xt)
.

It measures the difference between p(xt|yt−τ ) and p(xt)
that quantifies the reduction of the uncertainty of X ’s
future by incorporating Y ’s history. Different from GC,
TDMI does not exclude the effect induced by its own his-
tory. Therefore, except for the global peaks, it is possible
that the non-vanishing local peaks of the TDMI curve is
attributed to the history of the signal itself rather than
the causal information flow from another signal. There-
fore, the physical interpretation of the non-vanishing lo-
cal peaks in general requires one to further investigate
the underlying structure of dynamics in nonlinear sys-
tems. For instance, in Example C, if one has the prior
knowledge that the interaction in the system is unidi-
rectional, then the direction of interaction can be easily
identified as from X to Y by the global peak. Further-
more, if one has the prior knowledge that the directed
interaction between any two signals in the system, if ex-
ists, possesses the identical form, then the bidirectional
(unidirectional) interaction can be easily identified from
the symmetric (asymmetric) profile of TDMI. In certain
cases, the underlying structure can also be revealed by
computing the TDMI between the signal and itself, as
shown in our Example C.
In addition to TDMI, TE is another measure of in-

formation transport from signal Y to signal X with the
exclusion of the influence of the X ’s own history [18]. It
has further been shown that TE is equivalent to GC for
linear Gaussian models [19]. The value of TE from signal
Y to signal X is defined as

TEY→X =
∑

xt

∑

x
−

t

∑

y
−

t

p(xt, x
−
t , y

−
t )log

p(xt|x
−
t , y

−
t )

p(xt|x
−
t )

,

where x−
t = {xt−1, xt−2, ..., xt−m}, y−t =

{yt−1, yt−2, ..., yt−n} are the history of xt and yt,
respectively. In principle, TE can eliminate the effect
of the history of the two signals while TDMI cannot.
In practice, however, TE requires much longer data
length to construct the high-dimension probability
density distribution, i.e., p(xt, x

−
t , y

−
t ). The dimension

of probability distributions in TE is determined by

the number of time lags between X and Y and that
between Y and its own history, whereas the dimension
of probability distribution in TDMI is only two. For
instance, in Examples C, E, and F, the dimension
of the conditional probability distributions is greater
than ten. If the value of the continuous signals X and
Y are discretized into 102 levels respectively, then the
probability sample space will be greater than 1020, which
makes TE difficult to implement. Therefore, TDMI is a
more practicable approach than TE for causal inference
in nonlinear systems by using relatively short length of
observational data.
The TDMI analysis is applicable to systems with dy-

namic nonlinearity. In our examples, we use static non-
linearity because it commonly appears in many engineer-
ing and biological systems such as artificial and biologi-
cal neural networks. In addition to systems with static
nonlinearity, TDMI also works for certain systems with
dynamic nonlinearity especially when the absolute value
of the coefficient decreases rapidly as the time lag in-
creases. For instance, it can be shown that TDMI is able
to successfully identify the directions of interactions in
each of the five constructed examples when the corre-
sponding static nonlinearity F (xt) is replaced by the dy-
namic nonlinearity F (ctxt + ct−1xt−1 + ct−2xt−2), where
ct = 0.85, ct−1 = 0.1, and ct−2 = 0.05.
The TDMI analysis is applicable in high dimensional

complex systems. In our Example F, by applying TDMI
to neural data measured in experiment, we have con-
firmed the existence of the theta-driving neuron in rat
hippocampus that has been reported in mouse hippocam-
pus previously [29, 43]. In addition, the TDMI analysis
can be successfully applied to neuronal spike signals to re-
construct the connectivity matrix of a neuronal network,
in which the accuracy could be above 95% in certain dy-
namical regimes [51].
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