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Departamento de Electrónica, Universidad de Guadalajara.

Av. Revolución 1500, 44430, Guadalajara Jal, México
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Abstract

We examine how stochastic time-delayed negative feedback affects the dynamical behavior of

a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks

to a point Field-Körös-Noyes (FKN) photosensitive oscillator and compare their effects. Negative

feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity

proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first

characterize the system under non-delayed inhibitory feedback; then we explore and compare the

effects of constant (deterministic) vs. stochastic time-delayed feedback. We find that the oscillatory

amplitude, frequency and waveform are essentially preserved when low-dispersion stochastic delayed

feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

∗ hector.tnh@gmail.com

1



I. INTRODUCTION

Oscillatory chemical reactions show complex nonlinear phenomena with a rich diversity

of patterns, many resembling those found in biological processes. For instance, striking sim-

ilarities can be noted in wave patterns displayed by the Belousov-Zhabotinsky (BZ) reaction

[1–5], starving amoeba Dictyostelium discoideum [6] and calcium waves in Xenopus laevis

oocytes [7, 8]. Turing was the first to propose reaction-diffusion as a possible underlying

mechanism in the process of morphogenesis [9]. The structures predicted by Turing have

been experimentally observed in both continuous [10] and cell-compartmentalized chemical

systems [11]. Chemical oscillators are reaction-diffusion systems, which have been proposed

and used as model systems for elucidating complex biomimetic dynamics [11–14]. The BZ

reaction is the prototypical chemical oscillator in such investigations. The reaction, which

occurs in acidic aqueous solution, consists of the oscillatory oxidation by bromate of an

organic substrate, usually malonic acid, catalyzed by metal ions or metallo-complexes. A

photosensitive version of the BZ reaction, which uses the light-sensitive complex Ru(bpy)3

as the metal catalyst, can be modulated by the application of an inhibiting electromag-

netic field [15, 16]. Richard J. Field, Endre Körös and Richard M. Noyes performed, on the

grounds of chemical kinetics, a detailed analysis of the BZ reaction and developed a mech-

anism, the FKN, (after Field-Körös-Noyes) to account for its oscillatory behavior [17]. The

FKN mechanism identifies 11 principle reactions and 12 chemical species and successfully

reproduces the behavior of the BZ reaction [18]. Later, the model was extended to include

photoinhibition [16, 19, 20].

The application of feedback to a nonlinear dynamical system can induce complex be-

havior. Feedback can also be used as a control mechanism to drive the system toward a

desired dynamics. Different feedback strategies have been explored. Time-delayed feed-

back has demonstrated its efficacy in controlling chaotic systems [21, 22] since this approach

was introduced by Ott and coworkers [23] and later by Pyragas [24]. Additionally, delayed

feedback has been used to suppress relaxation oscillations [25], synchronize ensembles of

coupled oscillators [26], and investigate emergent dynamics in mechanical [27] and optoelec-

tronic [28] systems. This technique has also been investigated in chemical and biological
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systems in both, pointlike and spatially extended diffusive systems. Time-delayed feedback

was applied to control unstable orbits in the oscillatory BZ reaction [29]. A rich diversity

of spatiotemporal patterns has been investigated by the use of differential-difference equa-

tions in a one-species reaction-diffusion system with delay [30]. Control of spatiotemporal

chaotic patterns has been attained in the reaction-diffusion Gray-Scott two-species model

by means of time-delayed feedback [31]. This strategy can be harnessed to induce pattern

transitions [32], spiral waves and their modulation [33], and complex dynamics of localized

structures [34] and Turing patterns [35] in reaction diffusion systems. The emergence of

spatial patterns triggered by a time delay via a Hopf bifurcation is observed in a plankton

prey-predator model [36]. The combination of noise, inherent to any physical system, with

time delay in the feedback applied to oscillatory systems can induce undesirable oscillations

[25, 37], phenomenon observed in different systems [38–40]. The introduction of a second

feddback loop with delay has been applied to stabilize the system or suppress the undesirable

dynamics [41–43].

The application of global feedback has been investigated with oscillatory systems [44],

coupled oscillator networks [45, 46], and spatially distributed reaction-diffusion systems [47,

48]. The combination of time-delayed with global feedback has been explored in chemical

systems [49] and oscillator arrays [50]. Double delayed feedback [51], event-triggered feedback

[52] and variable delay feedback [53] have been also explored. The above investigations have

employed negative feedback, positive feedback or both.

Time delays can arise from finite time propagation and processing of signals. A reasonable

assumption in systems with time-delayed feedback is that in real processes time delay will

not be deterministic, but in general will undergo stochastic fluctuations as a consequence of

uncontrolled variables or perturbations. This is particularly important in synchronization

processes when the intended synchronizing elements do not share a unique time delay in

their feedback. Nevertheless, in the active and diverse field of research on feedback, to our

knowledge there have been no previous investigations of the role of feedback with stochastic

time delay and its effects on system dynamics. We investigate here the behavior of a model

chemical oscillator subjected to a time-delayed negative feedback where the delay time is

stochastic with a known probability distribution and compare our results with the effects
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of a deterministic time delay. We perform numerical experiments on the photosensitive

FKN mechanism augmented with inhibitory electromagnetic radiation to study the effects

of applying a negative feed-back (NFB). The light intensity is set proportional to the instan-

taneous concentration of photosensitive catalyst in the reaction, and we choose the normal

and Gumbel distributions for the stochastic time delay.

II. SIMULATION

We investigate the effect of time-delayed feedback on the dynamics of the FKN mechanism

with photoinhibition. NFB is applied as an inhibitory electromagnetic radiation field on a

point FKN oscillator. An experimental realization approximating a point FKN oscillator is

a small drop [54, 55] or a continuously stirred tank reactor containing the BZ reaction [56].

The complete model used in the simulations is presented in equations (1−10), which include

time-delayed feedback by photoinhibition.

ẋ1 = −k1x1x2 + k2x2 − 2k3x
2
1 − k4x1 + krx

2
6 + kredx6x7, (1)

ẋ2 = −k1x1x2 − k2x2 − k5x2x4 + k6x5 + k7x5 + k9x3 + φ, (2)

ẋ3 = kredx6x7 − k9x3 − k10x3 + φ, (3)

ẋ4 = 2k1x1x2 + k2x2 + k3x
2
1 − k5x2x4 + k6x5 − k8x4, (4)

ẋ5 = k5x2x4 − k6x5 − k7x5, (5)

ẋ6 = 2k4x1 − 2krx
2
6 − kredx6x7, (6)

ẋ7 = −kredx6x7 + k9x3 + k10x3 − φ, (7)

φ(x, t) = k(I)x7b/(bC + b), (8)

k(I) = q1I, (9)

I = q2x3(t− τ). (10)

The ordinary differential equations (1−7), excluding the function φ, are generated from

the original FKN mechanism under mass action kinetics and constitute an adequate model
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of the BZ reaction. Here x1 = [HBrO2], x2 = [Br−], x3 = [oxidized catalyst], x4 = [HOBr],

x5 = [Br2], x6 = [BrO·
2], and x7 = [reduced catalyst]. Additionally x3 + x7 = c0, where c0

is the total concentration of the catalyst either in reduced or oxidized form, which remains

constant over time. The catalyst, Ru(bpy)3, which has reduced [Ru(bpy)3]
2+ and oxidized

[Ru(bpy)3]
3+ forms, is used in the photosensitive version of the BZ reaction. When there is

no illumination, an idealized point BZ reactor, or alternatively the point FKN mechanism,

behaves as a nonlinear oscillator. The photosensitive BZ reaction is inhibited partially or

totally by electromagnetic radiation, which is accounted for by the presence of the function

φ (defined in eq. (8)) in eqs. (2), (3) and (7) of the photosensitive FKN mechanism. Photoin-

hibition is mediated by bromide ion when the photosensitive catalyst Ru(bpy)3 is subjected

to electromagnetic radiation (λ = 450 nm) [16]. Here b = [BrCH(COOH)2], bC = 0.05 M,

and k(I) is the reaction rate constant for light-mediated production of [Ru(bpy)3]
2+* (photo-

activated [Ru(bpy)3]
2+), which in turn promotes the production of bromide (see [19, 20] and

[16] for details).

We perform numerical experiments to simulate the application of an inhibiting radiation

beam of intensity I to the FKN oscillator in order to build a NFB signal. We assume that

k(I) is proportional to the inhibitory radiation intensity I according to eq. (9). Additionally,

in eq. (10) we define I to be proportional to the concentration of oxidized catalyst (x3 =

[Ru(bpy)3]
3+) at t − τ , where t is time and τ a time delay. q1 and q2 are appropriate

constants for dimensional consistency. Thus, if x3 (the oxidized catalyst concentration)

increases, the inhibitory radiation illuminating the oscillator rises after a time delay τ , which

in turn increases the concentration of bromide, thereby incrementing the inhibition on the

reaction. The net result is that the radiation inhibition φ is dependent upon the time-delayed

concentration of the species x3. We can tune the total and average radiation intensity by

varying I.

We explore different scenarios as described below by applying feedback without time delay

(τ = 0) and with a time delay τ . When τ > 0, we examine the delay effects and discover

the preservation of key aspects of the FKN dynamics in the presence of feedback with

constant (therefore deterministic) and with stochastic time delay. The constant time delay

calculation is straightforward. We apply stochastic time delay as follows. At each solution
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point while solving the system of differential equations (1−7), we control, through eq. (10),

the time delay τ stochastically, choosing it from a given probability distribution. Hence τ

is time-dependent. For stochastic time delay, we investigate two probability distributions,

the normal distribution and the type I extreme value distribution (Gumbel distribution) of

the minimum [57]. In the first case, τ is a random number taken from a normal distribution

with known mean µ and standard deviation σ. In the second case τ is a random number

taken from a Gumbel distribution with known location parameter α and scale parameter β

according to the expression.

P (t− τ) = β−1 exp

[
t− τ − α

β
− exp

(
t− τ − α

β

)]
. (11)

For each distribution we analyze six families, varying the width of the distribution by

choosing six values of the standard deviation (σ) for the normal distribution and six values

of the scale parameter (β) for the Gumbel distribution. For simplicity in exposition, we

define the nominal time delay τN such that: i) τ = τN when τ is constant, ii) µ = t − τN
when τ is stochastic and normally distributed, and iii) α = t − τN when τ is stochastic

and follows a Gumbel distribution. As a result, the distribution from which stochastic time

delay, τ , is obtained, is constantly translated to the right at the same speed as t increases,

i.e., as each new solution point is calculated. The distribution is centered (µ for the normal

and α for the Gumbel are located) behind t an amount τN . Feedback is applied only when

t ≥ 397 + 2τN s, and τN is at least five times larger than the width of the distribution

(τN ≥ 5σ, 5β). As a consequence, only the tails of the distribution reach τ < 0 and τ > t

and the probability to obtain these values of τ is zero in our simulations.

The system of differential equations (1−7) is numerically integrated with MATLAB R©

variable order, multistep solver ode15s, which is based on the numerical differentiation for-

mulas and optionally the backward differentiation formulas, methods particularly suitable

to solve stiff problems [58–60].
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FIG. 1. Effects of radiation intensity on system dynamics. (a) Plot of x3 time dependence for

increased values of I. Critical radiation intensity IC = 0.011 suppresses oscillatory dynamics. (b)

Peak amplitude x3,p decreases linearly and (c) oscillation period T increases as inhibitory radiation

increases. (d) T and x3,p time profiles normalized to free system (no-inhibition) values. Values

of maximum amplitude en period are means averaged over several oscillatory cycles. Error bars

(standard deviation) are barely noticeable in plots (b) and (c).

III. RESULTS AND DISCUSSION

First, we explore the role played by the average intensity level of the applied inhibiting

radiation intensity, I. Due to the fundamental role played by the oxidized photosensitive

catalyst x3, and since all seven FKN variables have the same oscillation frequency, we use

x3 to characterize the system dynamics. Figure 1a shows a comparison of the behavior of x3

vs. time in the free system, i.e., when there is no inhibitory radiation, and when inhibitory

radiation is present. At I = 0.01, the oscillation period T is increased and the peak amplitude

x3,p slightly decreased. Oscillations are suppressed at a critical average radiation intensity

IC = 0.011. Below this critical intensity, the main consequences of increasing inhibitory

radiation intensity are the lengthening of the oscillation period and a slight decrease of the

peak amplitude, with no significant effect on the shape of the curve. Figures 1b-d illustrate
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FIG. 2. Time dependence of x3 at critical radiation intensity for increasing time-delayed feedback.

The introduction of τ ≥ 2 s in feedback, results in system recovery of oscillatory dynamics at

critical radiation intensity. The scale is the same for all plots.

these effects over a range of intensities. In Figure 1 b, c, and d, t0 is the time at which the

radiation feedback is turned on. The graphs show no difference when inhibitory radiation is

turned on at time t0 = 0, the time at which the simulation is initiated, or when the radiation

is turned on at t0 = 397 s. This result is unexpected, because transient behavior occurs

during the first cycle of x3. We selected the time at the second minimum of x3 (t = 397

s) because at this point regular periodic behavior is already established in the free system

(Figure 1a, I = 0 curve). Even though there is no dependence on the time at which radiation

inhibition is turned on, henceforth unless specified otherwise, we turn on inhibitory radiation

at t0 = 397 + 2τ s.

Next we introduce a time delay τ in the application of the feedback and examine its
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FIG. 3. Plot of x3 vs. time as a function of increasing constant time delay (shown in the top right

side in seconds). As time delay increases new peaks per cycle emerge, differentiate, and disappear.

Note that free system dynamics appears to be recovered at τ = 250 s, compare with τ = 10 s and

with Figure 1a curve I = 0. Also note that system behaves similarly at τ = 40 s and τ = 300 s.

effects. First we consider constant, i.e., deterministic time delay. Figure 2 shows x3 vs. time

at the critical inhibiting radiation for different values of τ . As previously noted, oscillations

are suppressed at the critical radiation intensity in the absence of time delay. Interestingly,

the system recovers its oscillatory dynamics if the inhibiting critical radiation is applied with

a time delay. For τ ≥ 2 s, system oscillations are recovered with no significant change in the

x3 peak amplitude and time profile.

We now consider how the system dynamics is modified when inhibitory feedback is applied

at a subcritical radiation intensity with constant time delay. Figure 3 shows nine plots of

x3 vs. time at I = 0.01 for increasing values of τ . These plots correspond to the different
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FIG. 4. Real, (a) and (b), and Fourier (c) space plots of x3 for all time delay conditions investigated

at τN = 100 s. Real space profiles exhibit closely similar dynamic behavior for all time delay

conditions. Fourier analysis shows the concordance of the main and some secondary frequency

components roughly divided into small and large dispersions. Plots of x3 at small (a) and large (b)

dispersion exhibit essentially equal amplitude.

characteristic time profiles exhibited by x3 as a function of time-delayed feedback. The time

window for each plot was selected after the transients died out and the system exhibited

regular periodic behavior.

The figure shows significant changes in the x3 time profile as τ increases. At τ =

40, 80, 110, 120, 200, and 240 s, we observe more complex time profiles, which contain 2,

3, 4, 3, 2, and 3 peaks per cycle, respectively. Interestingly, at τ = 250 s, the waveform

of the system at τ ≤ 10 s is recovered (which essentially is the same of the free system),

with one peak per cycle. The oscillation period of 245 s, is the same as that at τ = 10 s

(Figure 9). The last plot at τ = 300 s resembles that at τ = 40 s with a similar period.

This could suggest that system behavior is periodic in τ with a period of about 250 s. See

discussion of figure 9 on this issue.
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Finally, we investigated the role of negative feedback with stochastic time delay at a

subcritical radiation intensity (I = 0.01). Stochastic time delays with normal and Gumbel

probability distributions were used. In choosing the normal and Gumbel distributions, one

of our purposes was to compare the effects of stochastic time delay from a symmetric and

a nonsymmetric distribution. The dispersions applied were σ = 0.25, 1, 2, 4, 10, and 20

s for the normal distribution and β = 0.25, 1, 2, 4, 10, and 20 s for Gumbel distribution.

Figure 4 shows plots of x3 in the real, (a) and (b), and Fourier (c) spaces at τN = 100 s for

the 13 conditions of time-delayed feedback investigated: one constant and the 12 stochastic

just described. Again, the frame has been chosen after transients, once periodic behavior

is established. In real space, all plots exhibit outstanding similar dynamics. We observe

good matching between plots for dispersions of 4 s and below for both distributions. At

large dispersion, 10 and 20 s (b), the only important difference between plots is in frequency

and/or phase. The first peaks, which occur at the same location in Fourier space in most

of the plots, correspond to the major frequency component. The slight frequency difference

at low dispersion (≤ 4 s), noticeable in real space, is not evidenced in the peak’s location in

Fourier space, due to the large scale of the plot. However, at large dispersion (≥ 10 s) the

frequency is significantly larger, as evidenced by the shift of the main peaks in the Fourier

transform. Additionally, a large set of lower amplitude frequency components is apparent

in the Fourier domain. Figure 5 shows an analogous plot at τN = 200 s. Again, there is

a remarkable match of dynamic behavior in real space, (a) and (b) parts of the figure, for

all the conditions investigated. The most significant differences occur in phase for large

dispersions (b). Primary and several secondary frequency components exhibit impressive

agreement as shown in plots of the Fourier domain (c), for all conditions.

The same trend of closely matching dynamics for the entire set of time-delayed feedback

conditions investigated is observed for the complete interval of nominal time delay explored

(10 s ≤ τN ≤ 300 s). Time profile, frequency and mainly phase exhibit growing differences

as the dispersion in time delay increases. The similarity is particularly noticeable at low

time delay dispersion (≤ 4 s) with the striking exceptions of τN = 110 and 240 s. Figure 6

shows the case of τN = 110 s. In real space (a), only plots 1, 2, 3, and 8 (constant, σ = 0.25

s, σ = 1 s, and β = 0.25 s) exhibit near-perfect agreement in every aspect of their dynamics.
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FIG. 5. Real, (a) and (b), and Fourier (c) domains of x3 state at τN = 200 s for all time delay

conditions explored. As in the previous Figure, the agreement between all plots is remarkable.

Plots of x3 at small (a) and large (b) dispersion exhibit essentially equal amplitude.

These plots present four maxima (one global and three local) per oscillation cycle in contrast

with three or two for the remaining conditions with periodic behavior. The transition from

four to three maxima per oscillation occurs at σ = 2 s in the normal distribution (plot

4). This plot appears to be aperiodic with an apparently random peak sequence 4-3-3-4-3.

An analogous transition in the number of peaks per oscillation with aperiodic behavior is

observed in plot 9, (Gumbel distribution β = 1 s) which has the peak sequence 3-4-4-4-3. In

both cases (normal and Gumbel distributions) two different runs with identical simulation

conditions but different random sequences of time delays, generated different peak sequences.

One outcome of the increase in time delay dispersion is the suppression of secondary peaks

in the real space dynamics and a decrease in oscillation period. This is revealed in Fourier

space (b), where plots for σ ≥ 4 s and β ≥ 2 s show the main frequency component peaks

shifted to the right.
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FIG. 6. Plots of x3 in real (a), and Fourier (b) spaces for all conditions of time delay investigated

at τN = 110 s. Periodicity is preserved in curves 1, 2, 3, 5, and 7. Plots 1, 2, 3, and 5 still exhibit

a close match while plot 7 shows a larger frequency, evidenced in the Fourier domain, where the

frequency component peaks are shifted to the right. Plots 4 and 6 appears to be aperiodic functions,

though they still exhibit main frequency components very similar to those of the periodic plots.

In order to have a quantitative measure of the match between x3 waveforms subjected to

feedback with stochastic and constant time delays independent of frequency and phase, we

define the quantity qi as

qi =

∫ 1

0
|vi − u|dt∫ 1

0
udt

, i = 1, 2, ...12. (12)

where u(t) = x3(Tt + tM) under constant time delay and vi(t) = x3i(Tit + tMi) under

stochastic time delay (the index i specifies which form of stochastic time delay is used, see

Figure 7); T (Ti) is the oscillation period at constant(stochastic) time delay and tM(tMi) is

the time of the penultimate peak when time delay is constant(stochastic). Equation (12)

integrates the absolute difference between frequency-normalized states x3 under stochastic
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FIG. 7. Plot of qi vs. τN shows that for all conditions of time delay studied qi remains below 30%

for nearly all τN , except near τN = 240 s. The inset shows a logarithmic plot of the same data.

and constant time delay, over one oscillation cycle (the last simulated), with their phases

matched, and normalizes this integrated difference to the one-cycle integral of u.

Figure 7 shows qi as a function of nominal time delay for all conditions of stochastic

time-delayed feedback investigated. Remarkably, there is only one condition of nominal time

delay, τN = 240 s, at which qi is larger than 30%. This occurs solely for the largest dispersions

in time delay explored (≥ 10 s). For discussion purposes and based on the figure, we define

low (≤ 4 s) and high (≥ 10 s) time delay dispersions for the behavior of qi. At low dispersion

qi is always less than 2% over the entire range of nominal time delay, with two exceptions

τN = 110 and 240 s. The case of τN = 110 s has been discussed in Figure 6. A similar

situation occurs at τN = 240 s. Even in these cases, qi is close to 10%. At large dispersion, qi

increases moderately, remaining below 30% with the exception mentioned above. The largest

qi values occur at the largest dispersion explored, 20 s, and the Gumbel distribution generally

exhibits larger qi than the normal distribution. There are three intervals that contain large
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FIG. 8. Plot of x3 peak amplitude, x3,p as a function of τN . The plot shows a remarkable agreement

between all time-delayed feedback conditions. A logarithmic plot of these data is shown in the inset.

values of qi: τN = 100− 110 s, τN = 130− 180 s and τN = 240 s.

Finally, we present results for the signal x3 amplitude (maxima) and period (frequency).

Figure 8 shows a plot of signal amplitude, x3,p , vs. nominal time delay. The plot compares

constant and all stochastic time-delayed feedback conditions. Besides small local differences,

there is a surprising match for the whole set of curves. The largest mismatch, which occurs

at τN = 240 s for β = 10 s, is less than 1.6% relative to constant time delay. There are

three intervals where noticeable decrements in peak amplitude occur (including conditions at

constant and small dispersion stochastic time delay), at or around τN = 110 s, τN = 140−190

s, and τN = 240 − 250 s. In all three cases there is a decrease in the number of maxima

per oscillation cycle of the state x3 (see Figure 3). The number of peaks per cycle decreases

from four to three peaks at τN ' 110 s, from three to two at τN = 190 s, and from three to

one τN = 250 s (in this case the number of peaks increases from two to three at τN = 240 s).

Notice that secondary (local) maxima fade or dissapear as the dispersion increases, as seen
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in Figures 4 and 6. We emphasize that the intervals mentioned roughly correspond to the

peaks in Figure 7.

Figure 9 shows the oscillation period as a function of the nominal time delay. The signal

exhibits four continuous regions of increasing period as τN increases. In the boundary be-

tween these regions there are intervals (three) which suggest the existence of a discontinuity.

These intervals loosely coincide with a) the regions where the x3 amplitude and number of

peaks per cycle decrease and with b) the peaks of Figure 7, i.e., at τN ' 140− 190, and 240

s. Two regions of period increase exhibit non-linear behavior (first and fourth regions from

left to right) and two exhibit linear behavior (regions two and three). We find four cases at

which state x3 does not exhibit periodic behavior, marked with infinite period in the Figure

(vertical lines). The cases are: 1) σ = 2 s, τN = 110 s; 2) β = 1 s, τN = 110 s; 3) σ = 20

s, τN = 150 s; and 4) σ = 20 s, τN = 240 s. These cases lie within the intervals described.

As discussed in figure 3, the recovering of the oscillation period and waveform at τN = 250s

16



suggests that system behavior is periodic in time delay τ . However, we note in figure 9 that

the first region of the plots (10 s ≤ τN ≤ 60 s) grows faster and have a larger first derivative

than the last region (250 s ≤ τN ≤ 300 s).

IV. CONCLUSION

We have investigated the effect of time-delayed negative feedback on a point photosensitive

FKN oscillator by means of simulated inhibitory radiation. We find that increasing the

radiation intensity with no time delay lengthens the oscillatory period and lowers the peak

amplitude of the oxidized photosensitive catalyst concentration profile. At a critical intensity

of illumination, oscillatory dynamics is suppressed. These observations can be attributed to

the production of bromide, which in turn inhibits the oxidation of [Ru(bpy)3]
2+. If the

concentration of the inhibitor increases, the time needed for its concentration to decrease

to values compatible with oxidation transitions will also increase; thus, the refractory time

and therefore the oscillation period should also increase. Similarly, at increased inhibitor

concentrations, the maximum concentration of oxidized catalyst should decrease, as the

available activator is partially depleted relative to the inhibition-free case. We also observe

that the response of the system is the same whether non-delayed feedback is initiated during

transient behavior or once periodic behavior is established, and that introduction of delayed

feedback allows recovery of oscillatory behavior in the presence of a radiation level that

suppresses oscillation in the absence of delay.

Our main objective is to investigate the effects of incorporating a stochastic time delay

in the feedback. We compare the response of the FKN oscillator under constant versus

stochastic time-delayed feedback. Investigation with stochastic time delay included two

probability distributions, a symmetric normal and a non-symmetric Gumbel, with six values

of parameter dispersion for each. The FKN model exhibits a surprising amplitude and

frequency match for low dispersion (≤ 4 s) in the probability distribution of the time-

delayed feedback over a wide interval of time delay values, which spanned more than 1.3

times the natural oscillation period of the free system (10 s≤ τN ≤ 300 s). Additionally,

there is a striking agreement in the time profiles for the situations described. The amplitude
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and period of x3 decrease or show a significant curvature change in three intervals of the

nominal time delay: 1) τN = 90 − 120 s, 2) τN = 140 − 190 s, and 3) τN = 240 − 250 s.

The time delay (nominal) at which the transition occurs shifts towards lower values as the

dispersion in the probability distribution of stochastic time delay increases. These regions

closely coincide with those at which qi exhibits bumps or peaks, i.e., when the waveform of x3

under stochastic time delay feedback diverges most from that under constant delay. In these

parameter regions, one secondary peak in the oscillation cycle of x3 fades and disappears,

and the signal exhibits aperiodic behavior in some cases when time delay is stochastic.

Experimental implementation of this investigation will carried out in future work. This

can be accomplished with droplets of the BZ reaction prepared in the oscillatory regime and

subjected to an inhibitory light beam [11, 61]. A PC connected to a CCD video camera can

evaluate, from droplet image brightness, the concentration of oxidized catalyst in the drops

and tune accordingly the beam intensity with an appropriate constant or stochastic time

delay.
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