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Abstract 

In linear time-invariant systems acoustic reciprocity holds by the Onsager-Casimir principle of 
microscopic reversibility, and it can be broken only by odd external biases, nonlinearities or 
time-dependent properties. Recently it was shown that one-dimensional lattices composed of a 
finite number of identical nonlinear cells with internal scale hierarchy and asymmetry exbibit 
non-reciprocity both locally and globally. Considering a single cell composed of a large scale 
nonlinearly coupled to a small scale, local dynamic non-reciprocity corresponds to vibration 
energy transfer from the large to the small scale, but absence of energy transfer (and localization) 
from the small to the large scale. This has been recently proven both theoretically and 
experimentally. Then, considering the entire lattice, global acoustic non-reciprocity has been 
recently proven theoretically, corresponding to preferential energy transfer within the lattice under 
transient excitation applied at one of its boundaries, and absence of similar energy transfer (and 
localization) when the excitation is applied at its other boundary. This work provides experimental 
validation of the global acoustic non-reciprocity with a one-dimensional asymmetric lattice 
composed of three cells, with each cell incorporating nonlinearly coupled large and small scales. 
Due to the intentional asymmetry of the lattice, low impulsive excitations applied to one of its 
boundaries result in wave transmission through the lattice, whereas when the same excitations are 
applied to the other end, lead in energy localization at the boundary and absence of wave 
transmission. This global non-reciprocity depends critically on energy (i.e., the intensity of the 
applied impulses), and reduced-order models recover the non-reciprocal acoustics and clarify the 
nonlinear mechanism generating non-reciprocity in this system. 

Keywords: Nonlinear energy transfer, non-reciprocity, asymmetry, hierarchical materials, lattice 
materials  
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1. Introduction 

Reciprocity is a basic property in linear time invariant (LTI) acoustic systems going back to the 
work of H.v. Helmholtz [1] and J.W. Stutt (Lord Rayleigh) [2].It is a fundamental property of LTI 
acoustics and elastodynamics governed by self-adjoint operators and symmetric Green’s functions 
[3]. Reciprocity is directly related to time-reversal symmetry through the Onsager-Casimir 
principle of microscopic reversibility [4-6], and breaking of reciprocity is only possible by 
breaking time reversal symmetry on the micro-level [7].  
 Recently, the study of break of reciprocity in dynamical and acoustical systems has 
attracted considerable interest due to important potential applications, such as mechanical diodes, 
acoustic logic, preferential and irreversible propagation of sound, and targeted energy transfer in 
preferential directions within complex systems. Basic ways to break reciprocity (and time-reversal 
symmetry) in LTI systems is by applying odd-symmetric external biases [8-10], inducing 
time-variant properties [9,11,12], or incorporating nonlinearities [13-17]. Moreover, as shown in 
[18] breaking of reciprocity in nonlinear elastodynamics depends on the boundary conditions, the 
symmetries of the governing nonlinear operators, and the choice of the spatial points where the 
non-reciprocity criterion is tested. For a study of nonlinear non-reciprocal dynamics and acoustics 
of a finite, geometrically nonlinear, planar lattice behaving as a nonlinear “sonic vacuum” we refer 
to Zhang et al. [19]. 
 In a recent study [20], a unit cell of two coupled oscillators was considered. It was 
composed of a grounded, weakly damped linear oscillator representing a large scale – LS which 
was nonlinearly coupled to an ungrounded oscillator of smaller mass, representing a small scale – 
SS. Theoretical analysis and experimental testing of this nonlinear unit cell under impulsive 
excitation revealed that it exhibited non-reciprocity: When the LS was excited there occurred 
irreversible energy transfer to the SS, whereas, when the SS was excited there occurred energy 
localization and absence of similar energy transfer to the LS. Since this non-reciprocal 
phenomenon occurred within a single unit cell it was referred to as local dynamic non-reciprocity1. 
It was shown that the irreversibility and uni-directionality of the energy transfer from the LS to the 
SS was caused by the frequency-energy dependence of the strongly nonlinear (nearly 
non-linearizable) stiffness coupling the two scales, yielding either early or delayed transient 
resonance captures in the transient dynamics. Generalization of non-reciprocity to unit cells 
composed of a LS coupled to multiple SSs was also discussed [20].  
 A natural extension of the previous study was carried out in another recent work [23] where 
the acoustics of a lattice composed of a finite number of the aforementioned unit cells was 
theoretically studied. Global acoustic non-reciprocity1 was demonstrated in the lattice under both 
broadband and narrowband excitations: When the LS at one of the boundaries of the lattice was 
excited by a low-intensity excitation, energy was transmitted through the lattice in the form of 
traveling breathers; whereas when the same excitation was applied to the LS at the other boundary 
of the lattice could not propagate through the lattice, but instead energy localization in the end cell 

                                                               
1 By “acoustics” we refer to short time-scale, traveling waves or pulses ([21] G. B. Whitham, Linear 
and nonlinear waves (John Wiley & Sons, 2011), Vol. 42.) in media with local or non-local boundary 
effects ([22] L. I. Manevitch and A. F. Vakakis, SIAM Journal on Applied Mathematics 74, 1742 
(2014).); whereas by “dynamics” we denote long time-scale oscillations (standing waves) in finite media 
with non-local boundary effects. 



3

occurred. As the intensity (energy) of the applied excitation increased, however, the acoustic 
non-reciprocity diminished, and, eventually, for relatively strong excitations wave transmission 
from both boundaries of the lattice occurred. The nonlinear mechanisms governing this global 
acoustic non-reciprocity were discussed in the same work [23]. 
 The aim of the present study is to experimentally verify global acoustic non-reciprocity in a 
lattice of three identical unit cells, with each cell composed of two scales coupled by a strongly 
nonlinear stiffness. Asymmetry in the lattice is introduced by linearly coupling the LS of each unit 
cell to the SS of unit cell of its right, and impulsive excitation is considered. A reduced-order 
model derived from system identification of the experimental lattice is used to reproduce and 
theoretically study the nonlinear mechanism that governs non-reciprocity in the lattice. 

2. Theoretical overview of nonlinear non-reciprocity 

In this Section we provide an overview of nonlinear non-reciprocity in a lattice incorporating 
nonlinearity, internal hierarchy and asymmetry. As shown in Figure 1 we consider a lattice system 
composed of  repeated, linearly coupled identical unit cells with internal nonlinear hierarchical 
structure. Introducing appropriate normalizations, each unit cell consists of a linear oscillator with 
unit mass grounded through the linear stiffness  in parallel to the weak viscous damping  – 
representing the large scale – LS of the system – which is nonlinearly coupled to a series of  
strongly nonlinear oscillators in series. These oscillators have increasingly smaller mass (or finer 
scale) and represent the small scales – SSs of the unit cell (labeled as SS1 – SSn). The  
small oscillator, SSk, has mass equal to  with  to 
enforce the internal hierarchy of small scales in the unit cell. In addition, the SSs are coupled to 
each other and to the LS by means of essentially nonlinear stiffnesses nonlinearities with pure (or 
nearly pure) cubic characteristics with stiffness constants , respectively, in parallel to 
the weak viscous dampers . As shown later a small linear component in the nonlinear 
stiffness characteristics would not significantly affect our results. Note that the weak linear viscous 
dampers of each unit cell are scaled by the small parameter . Asymmetry in the lattice 
is introduced through the coupling elements between cells; specifically, the smallest scale of each 
unit cell, SSn, is coupled to the LS of its adjacent LS of the unit cell on its right through the linear 
stiffness . Exception is the last unit cell , where the smallest scale lacks a coupling element. 

 

Figure 1. The non-reciprocal lattice system composed of  linearly coupled unit cells; each usit 
cell is composed of a system of coupled oscillators in series, and incorporates strong stiffness 
nonlinearity, high asymmetry and large-to-small scale hierarchy; LS denotes the large scale 
whereas SSk, k=1,…,n the small scales with decreasing mass as k increases.  

 Recently, non-reciprocity in the nonlinear lattice of Figure 1 has been theoretically 
established, both in a local and a global sense. Considering first each unit cell in isolation, it was 
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shown both theoretically and experimentally [20] that local dynamic non-reciprocity occurs. 
Specifically, when the LS of the unit cell is forced by an impulsive excitation there is intense 
transfer of energy from the LS to the internal SSs. On the contrary, when the smallest scale (SSn) 
of the unit cell is excited by the same impulse the resulting nonlinear response is mainly localized 
to the smallest scale and the small scales that neighbor it, but no energy transfer to the LS is 
realized. It follows that non-reciprocal energy transfer from large to small scales within each unit 
cell occurs. Key to the local dynamic non-reciprocity is the strong nonlinearity coupling the SSs, 
as the SSs have no preferential resonance frequencies due to their pure cubic stiffness; as such their 
oscillation frequencies are fully tunable with energy [20]. Assuming for simplicity that there is 
only a single SS, when the LS is impulsively excited a 1:1 transient resonance capture - TRC 
[24,25] occurs in the initial, high-energy regime of the transient dynamics as the SS tunes its 
instantaneous frequency to the (fixed linear) resonance frequency ω଴  of the LS, passively 
absorbing energy from it [26]; in this case this is the only characteristic frequency where resonance 
capture can occur in the system since the directly excited LS has the fixed preferential resonance 
frequency ω଴  (i.e., its frequency does not depend on the instantaneous energy of the LS). 
However, completely different dynamics occur where the small scale is impulsively excited, since 
in the initial, high-energy regime of the transient dynamics the instantaneous oscillation frequency 
of the SS is relatively high (ب ω଴) since its stiffening response is tunable with energy and its 
frequency increases with increasing energy; in this case there is no characteristic frequency for 
resonance capture in the initial highly energy regime, and resonance capture at the characteristic 
frequency ω଴ can only occur after sufficient reduction of the frequency of the SS occurs due to 
viscous damping dissipation. In that case, no 1:1 TRC can occur in the initial highly energetic 
regime of the response, but rather, only delayed 1:1 TRC with the LS can be realized at a 
reduced-energy regime after the instantaneous frequency of the SS decreases due to energy viscous 
dissipation and becomes comparable to the linear resonance frequency ω଴. This restricts the 
amount of energy that can be transferred from the SS to the LS at the regime of the delayed 1:1 
TRC and yields energy localization in the SSs. 
 Considering then the lattice of Figure 1 in its entirety it was computationally proved [23] 
that global acoustic non-reciprocity occurs. Hence, it was shown that strong non-reciprocity in the 
scale of each unit cell and in the scale of all unit cells in unison occurs. Note that the smallest scale 
(inner-most oscillator) of each hierarchical unit cell is coupled to the large scale (outer oscillator) 
of the next unit cell on its right via a linear stiffness in such a manner as to break left-to-right (L-R) 
and right-to-left (R-L) symmetry. This asymmetry, combined with the strong nonlinearity in each 
cell, leads to globally non-reciprocal acoustics: 

• L-R: Propagating waves transfer energy from the large to the smaller scales (LS to SSs) via 
TRCs. The smallest internal scale then transfers energy to the LS of the next (right) cell via 
linear coupling; energy transfer and propagation continues. 

• R-L: Propagating waves arrive at the smallest scale of a cell via linear coupling from the LS of 
the cell on its right, but due to restricted SS to LS energy transfer, the wave is arrested.  

Note that the internal nonlinear scale hierarchy (asymmetry) of the cells breaks also time-reversal 
symmetry. In forward time leftward propagating disturbances transfer energy from the LSs to the 
inner SSs within a cell, and then across cells (to LSs) via the linear coupling; this propagation is 
consistent with the preferred energy transfer direction. Upon time reversal, this propagation would 
violate the preferred small-to-large scale energy transfer direction. 
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 The aim of this work is to experimentally validate acoustic non-reciprocity in a three-cell 
nonlinear lattice of the general configuration of Figure 1, incorporating two-scale internal 
hierarchy (a LS and a SS in each unit cell) and linear coupling between cells. Then, the 
experimental results will be matched with a reduced-order model from system identification. 

3. Experimental fixture and reduced-order modeling through system identification 

The experimental lattice composed of three unit cells (labelled as cell 1,2 and 3) is depicted in 
Figure 2, together with a schematic representation of a unit cell indicating how strong nonlinearity, 
internal scale hierarchy and linear coupling are realized. Each unit cell is composed of a LS 
coupled to a SS, both oscillating in the direction indicated by the double-sided arrow in Fig. 2c. 
Adjacent cells are coupled by linear springs. All LSs and SSs were fabricated with acrylic and 
were laser-cut to shape. Each LS was grounded to an optical table using two 80/20 aluminum 
(T-slotted extrusions), aluminum L-brackets, steel flexures, and bolts. The steel flexures served as 
the linear grounding stiffnesses and were bolted to the 80/20 members. To achieve strong 
nonlinearity, the (lightweight) SS in each unit cell was suspended from the corresponding LS using 
two parallel, initially untensioned, steel wires of 0.035” thickness, with fixed ends; these were 
realized by clamping the two wires to the LS using thin acrylic strips to obtain the required cubic 
nonlinearity.  

 
Figure 2. Experimental three-cell lattice: (a) Top view, (b) unit cell, and (c) schematic of the unit 
cell – yellow parts constitute the large scale (LS), red parts the small scale (SS), blue elements the 
linear coupling springs between cells, green parts the linear grounding stiffness of the LS, and the 
two transverse wires suspend the (lightweight) SS and generate the strong nonlinear stiffness 
coupling the LS to the SS. The wires are marked by blue arrows. 

(a) 

(b) (c) 

Cell 1 Cell 2 Cell 3
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In theory, provided that the wires are initially untensioned and obey the classic wave 
equation, under transverse deformation at their center they act as strongly nonlinear, nearly cubic 
springs; that is, their force-displacement law is approximately cubic with no linear component 
[27,28]. However, in practice, due to their thickness, the wires always possess a small bending 
stiffness, so they behave more like thin Euler-Bernoulli beams instead of strings. This gives rise to 
a small linear stiffness in addition to the strongly nonlinear stiffness, but this does not affect the 
non-reciprocity. It follows that a small linear term in the spring that couples the LS and SS is 
unavoidable in practice, but this can be made small by reducing as much as possible the 
thickness-to-length ratio of the clamped wires. 

 
Figure 3. The reduced-order model (ROM) of the unit cell of the experimental fixture of Fig. 2. 

Prior to performing the experimental tests for acoustic non-reciprocity, characterization of 
the experimental three-cell lattice was conducted, and a six degree-of-freedom (DOF) 
reduced-order model (ROM) was constructed. To this end, the two DOF ROM of each of the three 
experimental unit cells is presented in Figure 3, where ܯ and ݉ are the masses of the LS and the 
SS, ݇ଵ and ݀ଵ are the linear stiffness and linear viscous damper of the grounding connection of 
the LS, ݇ଷ and ݀ଶ are nonlinear (cubic) stiffness and linear viscous damper connection between 
the LS and the SS, and ݇ସ is the linear stiffness coupling the SS of the ݅ െ  unit cell to the LS of ݄ݐ
the ሺ݅ ൅ 1ሻ െ  unit cell of the lattice. In addition, a small linear part (due to a small wire ݄ݐ
pretention) has been identified in the nonlinear connection between the LS and SS of each unit cell, 
and this is denoted by the linear stiffness ݇ଶ. Accordingly, the ROM of the experimental lattice is 
governed by the following set of ordinary differential equations with zero initial conditions: ݔܯሷ௜ ൅ ݀ଵݔሶ௜ ൅ ݀ଶሺݔሶ௜ െ ሶ௜ାଵሻݔ ൅ ݇ଵݔ௜ ൅ ݇ଶሺݔ௜ െ ௜ାଵሻݔ ൅ ݇ଷሺݔ௜ െ ௜ݔ௜ାଵሻଷ൅݇ସሺݔ െ ௜ିଵሻሺ1ݔ െ ௜ଵሻߜ ൌ ሷ௜ାଵݔሻ݉ݐ௜ሺܨ െ ݀ଶሺݔሶ௜ െ ሶ௜ାଵሻݔ െ ݇ଶሺݔ௜ െ ௜ାଵሻݔ െ ݇ଷሺݔ௜ െ ௜ାଵሻଷݔ ൅ ݇ସሺݔ௜ାଵ െ ௜ାଶሻሺ1ݔ െ ௜ହሻߜ ൌ ௜ሺ0ሻݔ0 ൌ ሶ௜ሺ0ሻݔ ൌ ௜ାଵሺ0ሻݔ ൌ ሶ௜ାଵሺ0ሻݔ ൌ 0,   ݅ ൌ 1,3,5  

(1) 

where ߜ௜௝ is the Kronecker delta symbol, indicating that the LS of the unit cell 1 and the SS of the 
unit cell 3 are not coupled to a SS and LS, respectively. As mentioned previously the coupling 
configuration between the LSs and SSs of the unit cells is the source of asymmetry in the lattice 
which is one of basic prerequisites for the realization of acoustic non-reciprocity [23]. Moreover, 
for generality we account for excitation of each of the LSs of the unit cells, as indicated by the 
forcing functions ܨ௜ሺݐሻ, ݅ ൌ 1,3,5. 
  The characterization of the experimental lattice was performed by nonlinear system 
identification [29-33]. The aim of the identification exercise was to estimate the parameters of the 
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two DOF ROM of each of the three unit cells (cf. Figure 3) so that the overall six DOF ROM of the 
experimental lattice reproduces (predicts) as close as possible the experimental measurements 
under varying impulsive forcing conditions. Then, after its validation the mathematical ROM 
could be used, (i) to confirm that the experimental results indeed reproduced the theoretically 
predicted nonlinear acoustics, and (ii) to perform predictive design, i.e., for parametric studies and 
optimization of the nonlinear acoustic non-reciprocity. To achieve this we optimized the system 
parameters of the model of Figure 3 of each unit cell so that the simulation transient responses 
matched as close as possible the experimental measurements. 

First, the system parameters of each unit cell were identified by decoupling it from the 
lattice (i.e., by setting ݇ସ ൌ 0 in the ROM (1)) and characterizing it separately. The masses of the 
LS and SS of each unit cell of the experimental lattice were directly measured. Then, an impulsive 
load of small magnitude (to excite mainly the linearized dynamics of the unit cell) was applied to 
the LS of each decoupled unit cell by means of a modal hammer, and the corresponding transient 
accelerations of the LS and the SS were measured by means of accelerometers. In the next step, the 
accelerations were numerically integrated and the resulting velocities were high-pass filtered using 
a third-order Butterworth filter with a cut-off frequency of 20 Hz. By performing a Fast Fourier 
transform (FFT) to the velocity time series two linearized natural frequencies (peaks) were 
identified in the FFT plot corresponding to two linearized modes of the cell. One of these 
frequencies was due to the linear grounding spring (݇ଵ) of the LS. The other was caused by a linear 
component in the coupling spring between the LS and the SS (݇ଶ). System identification analysis 
of the FFT results yielded good initial estimates of the linear components of the grounding and 
coupling stiffnesses of each unit cell.  

The final identification of the system parameters of the ROM of each decoupled unit cell 
was performed by optimally matching the simulated ROM and the experimentally measured 
transient responses. To accomplish this, the response of the ROM of each decoupled unit cell 
subject to the actual experimental impulsive force (which was interpolated in the time domain) 
was simulated using MATLAB’s ode45, and the optimization was carried out using MATLAB’s 
patternsearch algorithm with the objective to minimize the following ratio, 

ܲ ൌ ∑ ቀݑ௘௫௣ሺݐ௞ሻ െ ∑௞ሻቁଶ௧ೖݐ௦௜௠ሺݑ ൫ݑ௘௫௣ሺݐ௞ሻ െ തݑ ௦௜௠ሺݐ௞ሻ൯ଶ௧ೖ ൅ ∑ ቀݒ௘௫௣ሺݐ௞ሻ െ ∑௞ሻቁଶ௧ೖݐ௦௜௠ሺݒ ൫ݒ௘௫௣ሺݐ௞ሻ െ ҧݒ ௦௜௠ሺݐ௞ሻ൯ଶ௧ೖ                      ሺ2ሻ 

where the overbar denotes temporal mean, ݐ௞ the discrete time instants where the responses are 
computed, the superscripts ‘exp’ and ‘sim’ refer to experimental and simulated time series, 
respectively, and ݑ, ݒ  refer to the transient velocity responses of the LS and the SS of the 
decoupled unit cell, respectively. We note that the minimization of the ratio ܲ is equivalent to the 
maximization of the R-squared fit between the simulated and experimentally measured velocity 
time series simultaneously for the both the LS and SS of the unit cell. 
  As a second step, the linear springs coupling adjacent unit cells were identified by 
removing the SSs and the nonlinear stiffness elements from the cells of the lattice, and coupling 
pairs of the resulting linear LSs through the coupling springs. Applying the restoring force method 
[29,30] to the resulting linear fixture of two coupled LSs yields accurate identification of the linear 
coupling springs, and, in addition, verification of the absence of any dissipative effects. This 
completed the characterization of the experimental lattice. 
  The identified system parameters of the unit cells of the experimental lattice are listed in 
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Table 1. We note that the unit cells are not identical, but rather small variations of the system 
parameters are estimated; this is inevitable due to manufacturing, material and geometrical 
imperfections, as well as uncertainties and unmodeled effects in the system identification 
procedure. Yet, as shown in a later Section these small imperfections do not affect in any 
significant way the realization of acoustic non-reciprocity in the experimental lattice. 

Table 1. Identified system parameters of the ROM of the experimental lattice 

Parameter Unit Cell 1 Unit Cell 2 Unit Cell 3 ܯ [kg] 0.4349 0.4385 0.4325 ݉ [kg] 0.0204 0.0206 0.0202 ݇ଵ [N/m] 30166 35014 31306 ݇ଶ [N/m] 1598.2 1571.8 1756.6 ݇ଷ [N/m3] 5×108 1×108 3×108 ݀ଵ [Ns/m] 4.5 4.5 4.25 ݀ଶ [Ns/m] 0.18 0.18 0.15 ݇ସ [N/m] 3753.75 3753.75 3753.75 

 
  As an example of the efficacy of the nonlinear system identification, in Figure 4 we depict 
the comparison between the experimentally measured velocity time series and the corresponding 
predicted simulated results of the ROM of the uncoupled unit cell 2 for impulsive excitation of the 
LS of the unit cell with maximum magnitude equaling 17.3 ܰ. These experimental responses were 
used for identifying the ROM of the uncoupled unit cell 2. The responses of the LS and the SS of 
the unit cell are considered separately in Figures 4a and 4b, respectively, and comparisons of the 
velocity time series, the corresponding modulus of their continuous wavelet transform spectra, and 
the corresponding FFTs are provided in each case. We note that the identified ROM accurately 
reproduces the experimental measurements, validating the system identification procedure. As a 
further test of the accuracy and robustness of the identified ROM, in Figure 5 we depict the 
analogous comparisons for the case of a higher magnitude impulse applied to the LS where it is 
anticipated that the nonlinear effects are more profound. For the comparisons shown in Figure 5 
the ROM identified from the experimental time series of Figure 4 were used. Yet, the responses of 
the ROM accurately capture the nonlinear measured responses even for this higher energy (and 
stronger nonlinear) case, which validates the identified ROM.  
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Figure 4. Comparison of experimental and identified ROM responses for the uncoupled unit cell 2, 
impulse of maximum magnitude 17.3 ܰ applied to the LS: (a) LS, and (b) SS responses; this 
experimental test was used to identify the ROM of the unit cell.   
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Figure 5. Comparison of experimental and identified ROM responses for the uncoupled unit cell 2, 
of maximum magnitude 281.6 ܰ.  applied to the LS: (a) LS, and (b) SS responses; the ROM of ݏ
the unit cell was identified based on the experimental test depicted in Figure 4. 
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4. Experimental measurement of nonlinear acoustic non-reciprocity in the lattice 

In the experimental study, the three-cell lattice was forced by impulsive excitations applied 
sequentially to the LSs of the unit cells at its left and right boundaries. Specifically, impulsive 
excitations of varying intensity were applied first to the LS of unit cell 1 (cf. Fig. 2a), and then to 
the LS of the unit cell 3 by means of a modal impact hammer. The acceleration time series of the 
LSs of all three unit cells of the lattice were measured by attached accelerometers, and from these 
measurements the velocity and displacement time series could be obtained using numerical 
integration and high-pass filtering. In [23], it was theoretically predicted that for sufficiently 
low-intensity impulsive loads strong acoustic non-reciprocity occurs, in the sense that waves 
generated due to excitation of (the left) unit cell 1 propagated through the lattice (i.e., there 
occurred L-R wave propagation); on the contrary, when (the right) unit cell 3 was forced by similar 
low-intensity impulsive loads there occurred localization of the response in that cell and absence 
of R-L wave propagation. However, for sufficiently high-intensity impulsive excitations, although 
the acoustic non-reciprocity persisted, localization was eliminated and both L-R and R-L wave 
propagation in the lattice occurred. 
  The theoretically predicted global acoustic non-reciprocity phenomena were fully 
confirmed experimentally with the three-cell lattice of Figure 2. Our study involved numerous 
experimental tests corresponding to impulsive excitations of varying intensity, but in this work, we 
present only three representative experimental cases corresponding to impulsive excitations of 
low- (cf. Fig. 6), intermediate- (cf. Fig. 7) and high-intensity (cf. Fig. 8). In each case we forced the 
lattice by impulsive excitations applied separately at cells 1 and 3; we note that, whereas exact 
replication of the left- and right impulsive loads was not possible experimentally, the applied 
excitations ended up being nearly similar (in each case we report the maximum magnitudes of the 
impulsive excitations applied to cells 1 and 3). For each case of impulse excitation, we depict plots 
showing the spatio-temporal variation of the normalized (with respect to the total input impulsive 
energy) instantaneous energies of the three cells of the lattice; these plots were constructed by 
computing the potential and kinetic energy of each unit cell, depicting them in contour plots in 
space and time, and interpolating the results to get continuous graphs. In addition, we depict the 
temporal variations of the non-normalized total energy of the lattice following the application of 
the impulsive load, together with the temporal variations of the non-normalized energies of each of 
the three cells. These plots show the overall energy decay in the experimental lattice following the 
impulsive excitation, as well as interesting energy exchanges between unit cells. Finally, as a direct 
measure of global acoustic non-reciprocity in the lattice, we compare the response of the LS of cell 
1 when the impulsive excitation is applied to the LS of cell 3, to the response of the LS of cell 3 
when a similar impulse excitation is applied to the LS of cell 1. These experimental plots depict 
clearly the propagating or localized nature of the lattice response when excited at the LSs on its left 
or right boundary cells. 
Considering first the case of low-intensity impulsive loads depicted in Figure 6 we clearly deduce 
the realization of non-reciprocal acoustics in the lattice. Specifically, considering the 
spatio-temporal normalized energy variations in Figs 6a and 6b we note wave transmission and 
response localization when the unit cells 1 and 3 are excited, respectively. The global acoustic 
non-reciprocity in this case is further confirmed by the plots of energy variations, where for 
excitation applied to the left cell 1 energy exchanges (beats) occur between all three unit cells, 
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Figure 6. Small impulsive intensity: (a) Impulsive magnitude 15.28 N applied to cell 1, (b) 
Impulsive magnitude 18.01 N applied to cell 3: Spatio-temporal variation of normalized energy 
(with respect to input energy) for each cell (top), temporal variations of the lattice energy and the 
non-normalized energy of each cell (middle), and LS response of cell 3 (cell 1) when the LS of cell 
1 (cell 3) is excited (bottom).

(a) (b) 
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whereas for similar excitation applied to the right end cell 3 we deduce energy localization in that 
cell. Moreover, judging from the decay of the overall energy of the lattice in these two plots, it is 
interesting to note that for excitation applied to cell 3 the overall energy decay in the lattice is faster, 
which indicates that response localization in cell 3 results in more efficient overall energy 
dissipation in the lattice. Finally, we note that for this low-intensity excitation the response of the 
LS of cell 1 when the impulse is applied to cell 3 is similar to the response of the LS of cell 3 when 
a similar impulse is applied to cell 1, with their difference being of ࣩሺ10ି଺݉ሻ. 
  Considering the case of intermediate-intensity impulsive loads (~100 N) depicted in 
Figure 7 we note similar nonlinear acoustic non-reciprocity in the lattice, with L-R wave 
transmission when the unit cell 1 is excited, and response localization when the impulsive 
excitation is applied to the unit cell 3. In this case the global acoustic non-reciprocity is more 
profound compared to the previous low-intensity load case, as indicated by the relatively large 
difference in the time series of the cell responses, which now is on the order of ࣩሺ10ିହ݉ሻ. In 
addition, for impulsive excitation applied to cell 1 the energy exchanges between cells are more 
pronounced, as can be deduced from the temporal energy variations in Figs. 7a and 7b. From the 
same plots we note much more efficient overall energy dissipation when cell 3 is excited (case of 
localization), compared to when cell 1 is excited (case of L-R wave propagation). 
  Finally, the case of high-intensity applied loads (~800 N) depicted in Figure 8, where 
qualitatively different nonlinear acoustics are noted in the lattice. As the time series comparisons 
of Figure 8 indicate there is strong acoustic non-reciprocity in this case, but both L-R and R-L 
wave propagation is realized and there is absence of response localization when the unit cell 3 is 
excited by the impulsive load (as in the previous two cases); this result is in full agreement with the 
theoretical predictions of Fronk et al. [23]. Another qualitative difference of the nonlinear 
acoustics in this case compared to the low- and intermediate-intensity impulse cases, is that the 
response of cell 1 when cell 3 is impulsively excited is now much higher than the response of cell 
3 when cell 1 is excited. This result which correlates with the spatiotemporal normalized energy 
plots of Figs. 8a and 8b, reveals that for high-intensity impulse excitation R-L wave propagation is 
much stronger than L-R wave propagation; this result contrasts to the results of Figs. 6 and 7, 
where only L-R wave propagation occurred and localization for cell 3 excitation. Finally, similar 
to the previous cases there is much stronger overall energy dissipation in the lattice when cell 3 is 
impulsively excited, compared to when cell 1 is excited. This can be clearly deduced by the overall 
energy decay plots shown in Figs. 8a and 8b. From these plots we note that for high-intensity 
impulsive excitation there occur energy exchanges between cells for both left- and right-applied 
loads, confirming L-R and R-L wave propagation in this case. 

At this point, we comment on the possible origin of non-reciprocity in the lattice. The 
asymmetric localization in the system response seems to be caused by the specific arrangement 
and coupling of the cells. In the studied configuration the “free” SS of the right-end cell 3 is 
activated briefly after the application of the impulse to the LS of cell 3, and, in essence, behaves as 
a non-linear energy sink (NES) in resonance, absorbing and dissipating a considerable amount of 
the input energy; as a result, motion localization occurs in cell 3. On the contrary, when the LS of 
the left-end cell 1 is excited by an impulse, the corresponding SS of that cell is not “free” to act as 
an NES since it’s linearly coupled to the LS of the neighboring cell 2. As a result, there is absence 
of localization when the left cell 1 is excited by the impulse, so wave propagation through the 
lattice occurs. Comparing the L-R and R-L excitation cases we conclude that the “free” SS mass in 
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cell 3 should play a significant role in the energy localization, acting as an NES. Moreover, it has 
been shown that the effectiveness of an NES to dissipate energy strongly depends on the input 
energy; at low input energy levels the NES is not activated to its full capacity, but at intermediate 
input energy levels the energy dissipated by the NES grows and reaches a peak value [26]. As the 
input energy further increases the effectiveness of the NES to absorb and dissipate input energy 
diminishes [26]. It is conjectured at this time that the same mechanism holds for the hierarchical 
lattice: In the R-L configuration at low to intermediate energy levels the NES dissipates a 
significant portion of the input energy which leads to localization of energy at the right side of the 
system; however as the input energy increases and the maximum dissipative capacity of the NES is 
exceeded, a smaller fraction of the input energy is dissipated locally by the NES in cell 3, and the 
remaining energy is released to propagate through the lattice. 
  Summarizing, the experimental tests confirm fully the theoretical predictions of Fronk et 
al. [23] and prove experimentally the realization of strong nonlinear acoustic non-reciprocity in the 
three-cell lattice of Figure 2. For low- and intermediate-intensity applied impulsive loads there 
occurs only L-R wave propagation in the lattice, and strong response localization when the right 
cell was excited. Increasing the impulse intensity eliminates the localization phenomenon and both 
L-R and R-L wave propagation occurs in the lattice. In all cases, however, strong global acoustic 
non-reciprocity occurs in this nonlinear, asymmetric, hierarchical lattice. This non-reciprocity 
affects drastically the dissipative capacity of the lattice, with impulsive excitations applied to cell 3 
yielding much stronger dissipation of energy. Additional experimental tests with different 
magnitudes of impulsive excitations confirmed these findings.  
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Figure 7. Intermediate impulsive intensity: (a) Impulsive magnitude 102.04 N applied to cell 1, (b) 
Impulsive magnitude 96.19 N applied to cell 3: Spatio-temporal variation of normalized energy 
(with respect to input energy) for each cell (top), temporal variations of the lattice energy and the 
non-normalized energy of each cell (middle), and LS response of cell 3 (cell 1) when the LS of cell 
1 (cell 3) is excited (bottom).  

(a) (b) 
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Figure 8. Intermediate impulsive intensity: (a) Impulsive magnitude 856.99 N applied to cell 1, (b) 
Impulsive magnitude 835.72 N applied to cell 3: Spatio-temporal variation of normalized energy 
(with respect to input energy) for each cell (top), temporal variations of the lattice energy and the 
non-normalized energy of each cell (middle), and LS response of cell 3 (cell 1) when the LS of cell 
1 (cell 3) is excited (bottom).  

(a) (b) 
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We attempt to describe the non-reciprocity more quantitatively. We note at this point that, 
while the spatio-temporal energy plots are a good way to assess energy distribution and, 
distinguish between the different types of non-reciprocal responses (i.e., localization versus wave 
propagation when the system is forced from the left or the right), the normalization at each time 
step in the plots with respect to the total instantaneous energy in the system does not help to assess 
quantitatively the non-reciprocity in the system. As a result, the spatio-temporal energy plots of 
Fig. 6-8 cannot be used directly to assess quantitatively the degree of non-reciprocity in the system, 
and should only be used to distinguish between the regimes of energy localization or transmission. 
Instead, to measure quantitatively the degree of acoustic non-reciprocity in the system and its 
evolution as energy increases, another measure is considered as follows. Based on the adopted 
forcing protocol of this study, i.e., sequential excitation of the system at two different points of the 
lattice using the same force, say ݅  and ݆ , a measure of the normalized difference of the 
corresponding responses at these points is computed, and a “global” measure of nonreciprocity, ݔൣߜ௜,  ௝൧, in the lattice is calculated following the scheme used by Blanchard et al. [18] and Herreraݔ

et al. [34], 

,௜ݔൣߜ ௝൧ݔ ൌ భ೅ ׬ ൫௫೔ି௫ೕ൯మௗ௧೅బටభ೅ ׬ ሺ௫೔ሻమௗ௧೅బ ටభ೅ ׬ ൫௫ೕ൯మௗ௧೅బ         (3) 

  

where ܶ is the time window of the data record based on which the measure is computed, and ݔ௜ 
and ݔ௝ are the corresponding responses at the reciprocal points ݅ and ݆. Based on its definition, ݔൣߜ௜,  ௝൧ provides a direct quantitative measure to assess non-reciprocity in the lattice. In theݔ

following results we considered the LSs of each of the three cells as the measurement points, and 
assembled them in pairs to compute the non-reciprocity measure (3) based on the recorded 
responses. In Figure 9 the resulting measure ߜ for various impulse intensities is depicted. Note 
that in a fully reciprocal system the measure should vanish, i.e., ߜ ൌ 0, for any combination of 
reciprocal points ݅ and ݆, and at any excitation level. The results for the nonlinear lattice of our 
study are rather interesting. 

 

Figure 9. Non-reciprocity measure ߜ based on the responses of the LSs of the three cells of the 
lattice: (a) LSs in cells 1 and 2; (b) LSs in cells 2 and 3; and (c) LSs in cells 1 and 3; both 
experimental data (red) and simulated data (black) are considered at various impulse intensities.

(a) (b) (c) 
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 First, non-reciprocity in the lattice appears to be stronger when the end cell 3 is considered 
as one of the measurement points. Furthermore, the further to cell 3 is the second measurement 
point, the stronger is the resulting non-reciprocity measure. On the contrary the closest to the left 
cell 1 is the second measurement point, the weakest is the resulting non-reciprocity measure. 
Hence, it appears that there is localization of non-reciprocity close to the right-end cell 3, 
indicating the important role that the “free” SS of the right-cell 3 plays in non-reciprocity, in 
accordance to our previous observations.  
 Second, non-reciprocity appears to increase with increasing force intensity, in spite of the 
fact that there are different response regimes in the lattice with increasing energy, i.e., motion 
localization at cell 3 versus wave propagation for increasing energy. Indeed, at the lower impulse 
intensities the apparent non-reciprocity observed at all measurement points is small even though 
the distribution of energy throughout the system is fundamentally different (cf. Fig. 6). However, 
at larger impulse intensities strong non-reciprocity is still maintained even though the localization 
phenomenon is lost (cf. Fig. 8), indicating that the non-reciprocity and localization phenomenon 
are distinct phenomena. Interestingly, a global maximum value of ߜ occurs experimentally at an 
impulse intensity of ~250N.  
 Third, we note good agreement between the experimental and computational 
non-reciprocity measures, with the exception of very large force intensities. In similarity to the 
experimental results, for the reduced-order model the corresponding measure of non-reciprocity ߜ 
is calculated using as measurement points the LSs of each cell. The experimental and simulated 
trends are in good agreement for low-to-intermediate impulse excitations but diverge for very 
large impulse excitations for measurement points involving cell 3. In addition, in contrast to the 
experimental results, no global maximum is predicted by the ROM simulation. Nonetheless, the 
satisfactory agreement between experiment and ROM simulations provides a first confirmation of 
the efficacy of the ROM to accurately predict and model the nonlinear non-reciprocal acoustics of 
the lattice up to intermediate impulse intensities. 

As a final task of our study we study in detail the six DOF mathematical ROM of the 
three-cell lattice discussed in Section 2 (with system parameters listed in Table 1), with the aim to 
show that it accurately reproduces the experimental results. This provides confidence in the 
interpretation of the experimental results, but also validates the ROM as an accurate and reliable 
tool for predictive design of the lattice, e.g., for optimization of global acoustic non-reciprocity 
according to certain criteria. 

In Figure 10 we depict the results of the numerical simulations of the ROM for the case of 
low-intensity impulsive excitation corresponding to the results of Fig. 6. To perform these 
simulations we considered two separate impulsive excitations, first applied to the unit cell 1 and 
then to the unit cell 3, respectively. Moreover, the actual experimentally measured impulsive leads 
corresponding to the plots of Fig. 6 were used in each of these simulations, in order to get a direct 
comparison between simulation and experiment. These results agree with the corresponding 
experimental results of Fig. 6 both qualitatively and quantitatively. The ROM accurately predicts 
L-R wave propagation and response localization depending on the point of application of the 
excitation. In addition, the nonlinear energy exchanges or beats between cells during L-R wave 
propagation (cf. the left plot of Fig. 10b) are accurately reproduced by the ROM. 
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Figure 10. Numerical simulation results of the ROM for small impulsive intensity, impulsive 
magnitude 15.28 N applied to cell 1, and impulsive magnitude 18.01 N applied to cell 3: (a) 
Spatio-temporal variation of normalized energy (with respect to input energy) for each cell, and (b) 
and temporal variations of the lattice energy and the non-normalized energy of each cell; these 
plots correspond to the experimental results of Fig. 6. 

 

(a) (b) 
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Figure 11. Numerical simulation results of the ROM for intermediate impulsive intensity, 
impulsive magnitude 102.04 N applied to cell 1, and impulsive magnitude 96.19 N applied to cell 
3: (a) Spatio-temporal variation of normalized energy (with respect to input energy) for each cell, 
and (b) and temporal variations of the lattice energy and the non-normalized energy of each cell; 
these plots correspond to the experimental results of Fig. 7. 

 

Similar conclusions are drawn from the ROM results depicted in Figures 11 and 12, 
corresponding to the experimental results of Figs. 7 and 8, respectively. For intermediate 
impulsive excitation (cf. Fig. 11) the ROM simulations confirm L-R wave propagation for cell 1 
excitation and response localization for cell 3 excitation. For strong impulsive excitation (cf. Fig. 
12), the ROM accurately predicts both L-R and R-L wave propagation, in accordance to the 
experiments (cf. Fig. 8); also the energy exchanges between cells are recovered. The ROM 

(a) (b) 
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simulation, however, predicts that a portion of the impulse energy remains localized while the 
same is not observed in the experiment. This might explain the divergence between computation 
and experiment of the non-reciprocity measure ߜ for high impulse intensities that is observed in 
the plots of Figure 9. 

 

 
Figure 12. Numerical simulation results of the ROM for large impulsive intensity, impulsive 
magnitude 856.99 N applied to cell 1, and impulsive magnitude 835.72 N applied to cell 3: (a) 
Spatio-temporal variation of normalized energy (with respect to input energy) for each cell, and (b) 
and temporal variations of the lattice energy and the non-normalized energy of each cell; these 
plots correspond to the experimental results of Fig. 8. 

  

(a) (b) 
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5. Concluding remarks 

Following the theoretical and experimental study of local dynamic non-reciprocity in an 
hierarchical nonlinear unit cell [20], and the theoretical study of global acoustic non-reciprocity in 
a lattice of coupled unit cells [23], in this work we presented the experimental validation of global 
acoustic non-reciprocity in a three-cell lattice with unit cells incorporating a large scale (LS) and a 
small scale (SS).  

The experimental results confirmed the theoretical predictions: For sufficiently 
small-to-intermediate applied impulsive loads there occurred L-R wave propagation in the 
hierarchical lattice, but nonlinear localization prevented an analogous R-L wave propagation. For 
strong applied impulses, however, both L-R and R-L wave propagation occurred in the lattice, 
although strong non-reciprocity still persisted in the lattice. A reduced order model (ROM) derived 
from system identification and characterization of the unit cells accurately reproduced the 
experimental findings, and was validated as a useful computational tool for parametrically 
studying and optimizing global acoustic non-reciprocity in the lattice. 

Such an optimization study is closely tied to building an understanding of the nonlinear 
mechanism that gives rise and governs global acoustic non-reciprocity in the nonlinear, 
asymmetric and hierarchical lattice. As proven in [20] the nonlinear mechanism governing local 
non-reciprocity in each unit cell is 1:1 resonance capture between the LS and SS dynamics. 
Accordingly, it is logical to assume that a similar resonance capture mechanism would be 
responsible for the global acoustic non-reciprocity in the lattice. This conjecture agrees with the 
numerical observation that wave propagation in the lattice is in the form of traveling breathers 
possessing a dominant “fast” frequency. In addition, the generation of nonlinear localization in the 
right-most unit cell for sufficiently small impulsive loads needs to be examined, together with the 
bifurcations that cause its elimination as the applied impulse increases and R-L wave propagation 
commences in the lattice. Such a study can be performed by asymptotic analysis of the acoustics of 
the derived ROM. Moreover, the effect on acoustic non-reciprocity of the adding more internal 
scales (i.e., more SSs of increasingly smaller mass – cf. Fig. 1) in the hierarchical structure of each 
unit cell needs to be studied. 

In synopsis, the presented experimental results validate the existence of nonlinear acoustic 
non-reciprocity in the proposed lattice. As such, they promote a new passive paradigm for 
realizing acoustic non-reciprocity in a broad class of nonlinear hierarchical lattice systems, 
without requiring external sources of energy (e.g., external biases or time-varying system 
properties) as current applications do. However, the role and interplay of internal hierarchy, 
asymmetry, and nonlinearity in such non-reciprocity needs to be more closely investigated. 
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