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In its classical version, the theory of large deviations makes quantitative statements about the
probability of outliers when estimating time averages, if time series data are identically independently
distributed. We study large deviation probabilities (LDP) for time averages in short and long
range correlated Gaussian processes and show that long range correlations lead to sub-exponential
decay of LDP. A particular deterministic intermittent map can, depending on a control parameter,
also generate long range correlated time series. We illustrate numerically, in agreement with the
mathematical literature, that this type of intermittency leads to a power law decay of LDP. The
power law decay holds irrespective of whether the correlation time is finite or infinite, and hence
irrespective of whether the central limit theorem applies or not.
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I. INTRODUCTION

A commonly used tool in data analysis is to compute
a sample mean. Assuming a uni-modal distribution, its
mean provides valuable information about which value is
typically found in an observation. Also, it is one of the
simplest and therefore very robust statistics to compute
and suffers much less from sampling effects of tails of the
distribution than estimates of higher moments.

In the context of a time series, the sample mean is a
time average. Due to correlations among successive data
points, the information stored in a time series might be
much less than the information stored in a sample of in-
dependently drawn data points of equal size. Hence, the
issue of how close the sample estimate of a time average is
to the true mean value of the process depends on correla-
tions in data. In this paper, we will study the probability
that a single time average deviates by more than some
threshold value from the true process mean. This will
be called the Large Deviation Probability (LDP), and it
will be a function of the time interval over which the av-
erage is taken: The longer the time interval, the smaller
will this probability be. However, it is the precise func-
tional form of this decay which will be in the focus of this
article.

LDP were originally studied by mathematicians for
sum of independent random variables [1-3]. Large De-
viation Theory(LDT) was formulated and elaborated by
many mathematicians through the years [4-9]. Recent
progress was made by its extension to heavy tailed ran-
dom variables [10] and even non-stationary samples [11].
LDT has not originally played a major role in the physics
literature. Lately, there have been many studies using
the LDP principle in physical problems ([12-14]). LDP
has been discussed in the context of fluctuation theorem
[15-17], Rigorous LDF (Large Deviation Function) ex-
pressions in exactly solvable lattice gas models [18-20],
dynamical phase transition for glassy systems [21, 22]

and LDFs of largest Lyapunov exponents and numer-
ical methods to calculate them [23, 24]. R. Ellis and
H. Touchete are among those who have made an effort
to bring the ideas of the mathematical comminuty to
the physics community, by connecting LDT with mainly
statistical mechanics [7, 25, 26]. In this article, we ad-
dress LDT from a data analysis/empirical point of view
which will be useful in the analysis of data from exper-
iments and from numerical simulations. As mentioned
before, our particular focus is on the dependence of LDP
on sample size.

Before we calculate this time-dependence of the large
deviation probability for short range and long range cor-
related processes in Secs. 2 and 3 and for a deterministic
intermittent map in Sec. 4, let us recall some relevant
results about time averages of random variables.

Given is a time series {z1,...,;,..., 2y} of real num-
bers, where N is called the sample size. In applications,
these data are results of some measurements, and the
index i refers to time. We assume that the time inter-
vals between each two successive measurements are equal,
which is the case for most processes which are sampled
at a constant rate.

We interpret the time series to be a given realization
of a stationary stochastic process. This includes de-
terministic settings and simply means that we assume
the existence of well defined joint probability densities
P (Xiy Tit1,y -+« Xipm) for the joint occurrence of m spe-
cific values, for all orders m. Due to the stationarity
assumption, such probability densities are independent
of 4. This implies that the underlying process is oper-
ating at constant-in-time control parameters and that
there are no transients. Stationarity is often violated
in applications but nonetheless assumed for many data
analysis tasks. In such a situation the mean value of the
process is the mean of the marginal probability density
p1(z) = [ Pm (@i, Tig1, .. Tigm) [11ng dai, which we also
call the ensemble mean pu.



Time averages are then defined as

1 N
SN:N;% . (1)

This is called the Birkhoff sum in the mathematical lit-
erature. The Birkhoff ergodic theorem [27] states that if
a stationary process is ergodic then the time average Sy
converges to the ensemble average u = (x) for N — cc.
The Birkhoff ergodic theorem is also known as the Law of
Large Numbers for identically independently distributed
random numbers, so-called iid processes.

Since the number of observations N in all practical
applications is finite, the crucial issue is how far a single
time average for finite N can deviate from the limit p.
There are two statements which give partial answers in
some situations: The central limit theorem(CLT) (see for
example [28, Chapter 2]) tells us that the distribution of
VNS v converges to a Gaussian with fixed variance for
large N under certain assumptions, for example it suffices
that the observations x; are stationary, if their probabil-
ity density pi(x) has a finite second moment, and if any
dependencies between x; and x; decay exponentially fast
in |[¢ — j|. Therefore, all iid-processes with finite vari-
ance fulfill the central limit theorem, but processes with
long range correlations might violate it. Indeed, in Sec.4
we will discuss a deterministic map, which under itera-
tion generates time series with long range temporal cor-
relations and where under certain conditions the CLT is
violated.

A second relevant statement is made by the theory of
large deviations|7, 28]. It makes a quantitative statement
about the probability that a single Sy obtained from
a time series deviates from the ensemble average p by
more than some tolerance e, in the asymptotic regime
of large N. More specifically, for an iid process such
that E[e?"i] < oo for some 6 > 0 and satisfying other
mild assumptions , this large deviation probability (LDP)
reads:

P(|Sn — p| > €) < exp (=I(e)N) , (2)

where the rate function I(e) satisfies I(e) > 0 for e # 0.
For classical distributions the rate function can be de-
termined from the probability density p;(z) as the Leg-
endre transform of the cumulant generating function of
p1(x). E.g., for pi(x) being Gaussian with unit variance,

I(e) = % More relevant than the functional form of
I(¢) is the universal exponential decay of this probability
with N. It guarantees that large deviations of Sy from
1 are exponentially suppressed in growing sample size
N. Notice that the usual assumption is that the sample
is an independent sample of identically distributed ran-
dom variables, it might be violated by time series with
correlated elements.

In this article, we study this N dependence, and hence
the speed of convergence of Sy to p, for two classes of
correlated Gaussian processes and for a family of one-
dimensional deterministic maps. Whereas short range

correlations will lead to a simple correction of sam-
ple size N, long range correlations with diverging auto-
correlation time lead to a sub-exponential decay of LDPs.
We then go beyond Gaussian processes and study a deter-
ministic chaotic map, the Pomeau-Manneville map[29],
where in a certain parameter regime the Central Limit
Theorem breaks down and then also the LDP behav-
ior differs from that of a long range correlated Gaussian
stochastic process.

II. LDP FOR AR(1) PROCESSES

The auto-regressive process of first order, AR(1), is
defined as a stationary Gaussian stochastic process with
the following iteration rule:

Tpy1 = arp, +&p  la] <1 (3)

with Gaussian white noises &,, (£&;) = d;;. By ei-
ther taking the square of this equation or by multi-
plying by x, and performing ensemble averages under
the assumption of stationarity, one obtains its variance

2 . 2 _ 1 . . . .
(#%) = oAr(1) = 1oz and its auto-correlation function is

(T Tpyk) = ﬁa‘k‘. Hence, AR(1) processes are stable
if la| < 1, and their auto-correlation time is —1/In|al.

We obtain the LDP from a calculation of the proba-
bility density function for Sy. Since Sy, Eq.(1), in this
case is a linear superposition of Gaussian random vari-
ables x;, its distribution is a Gaussian itself, regardless
of correlations, i.e., without employing the central limit
theorem and without employing the limit N — oco. The
mean of this Gaussian distribution is the ensemble mean
of Sy which is evidently 0, and the only parameter to
calculate is its variance 0% (NN) where we are particularly
interested in the N-dependence..

A straightforward calculation of o3(N) =
<(% S xk)2> making use of the recursion rela-

tion Eq.(3) yields
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due to the pairwise independence of &, &; for ¢ # j and
the independence of & and x;. The mean of x% is the
process variance o3. The variance of the noises o2 ;..
is unity, so that the final expression reads:
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FIG. 1: Numerical evaluations of Eq.(7), the variance of
the Large Deviation Probability distribution for a = 0.993,
0.893,...,0.193 and for a = 0 from right top to bottom. The
1/N-behavior for large N is evident, but for a close to 1, there
is a complicated cross-over behavior.
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FIG. 2: The curves of Fig. 1 after rescaling the variance with
the process variance and after rescaling of the sample size N
by (1 —a)/(1+ a) as mentioned in the text. The red dashed
line represents 1/Nog = (1+a)/(1 —a)/N.

For a = 0 this expression reduces to o%(N,a = 0) = 1/N,
which is to be expected for the sum of white noises.

For a # 0, exact numerical evaluations of Eq.(7) as
functions of N for various a are shown in Fig.1, together
with the 1/N behavior of the white noise case. For large
N, the variance decays like 1/N for all a, whereas for
small N and a # 0 there is some a-dependent cross-
over behavior. For N large, the first summand in Eq.(7)
stemming from the initial condition z; becomes negligible
due to its rescaling with 1/N?. Since the individual terms
1 — a”* in the second summand tend to unity for large k,
this second sum grows like N, which, together with the
1/N? prefactor, leads to the overall 1/N behavior for
large N.

Since the variance of the AR(1) random variables z;
depends on a, it is reasonable to rescale the variance
0%(N,a) accordingly. After normalizing Eq.(7) by 0% 5
the dominant second term has a prefactor (1 +a)/(1 —
a)/N2. Recalling that 1/N YN (1 —a*)? — 1 for large
N, we arrive at the universal result

O'%«(N, a)

0,241%(1) (a)

l1+al 1

1—aN N ®)

where we interpret N(1—a)/(1+a) < N as an effective

data set size for these short-range correlated AR(1) data:
Due to lack of independence for a # 0, the Birkhoff sum
Sn behaves as if the true time interval were much smaller.
It is, however, remarkable that this rescaling factor for
la] &~ 1 is equivalent to (twice of) the correlation time
7 = —1/Ina as can be seen by an easy calculation. We
call 1 — a = § and make an expansion around § = 0 for
the correlation time and for the scaling factor and find
an identity in lowest order:

1/7=—In(1—6)~d+6%/2

4] 1

So in summary, we know that the probability density
PN .a(8) for the Birkhoff sum Sy is a Gaussian distribu-
tion with zero mean and with a variance given by Eq.(7)
and Eq.(8) for large Neg. Fig. 2 shows that after these
two rescalings, there is perfect data collapse.

We can now express the LDP through the complemen-

tary error function erfc(e) := % [ et dt as

Prob(Sy >¢) = /OO PN a(8)ds = %erfc(e/\/ios(N))
6 ©)

The asymptotic expansion of erfc for large arguments
yields in lowest order

Prob(Sy > €) ~ \/gweez/%é(m , (10)
7T

€

Using Eq.(8) and inserting 0% r(1)» We find asymptotically
for large IV and €

2 1 N _
Prob(Sy > €) = \/;me Na—az | (11)

Again, if we wish to study the a-dependence of the
LDP, it makes sense to rescale the threshold value € by
the a-dependent standard deviation of the corresponding
AR(1) process. The rescaled threshold then determines a
given percentile of the distribution, independent of a. We
call the new threshold € := €/oar = €\/(1 — a?). This
introduces in a natural way the ratio o%(N)/0% r(1) and
we find

Prob(Sy > ¢€) = lelrfc(

Il
|
D
=
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for large Neg.

The analytical calculations for the AR(1) process
therefore demonstrate that for large N the exponential
decay of the LDP in sample size sets in, but that the
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FIG. 3: The Large deviation probability LDP for AR(1) pro-

cesses for 10 different a-values ranging from a = 0.05 to
a = 0.95. The thresholds were € = 0.1 ———, i.e., they are a
/17012 ) )

fixed fraction of the processes’ standard deviation. Plotting
such LDPs versus the effective sample size N(1 — a)(1 + a)
leads to a perfect data collapse (apart from statistical fluctu-
ations for small LDP values, ensemble mean over 10° realiza-
tions each). The red dashed curve represents the asymptotic

theory: LDP(¢) = \/% - iv exp(—& Neg /2).
T € eff

effective time window is given by the true time window
divided by twice the correlation time of the process. For
la| close to zero, the rescaling factor tends to unity, re-
flecting the time-discrete nature of the process, i.e., the
correct behavior of white noise is recovered, whereas a
rescaling with the true correlation time 0 would not make
sense.

When rescaling the threshold value e¢ by the stan-
dard deviation of the AR(1) process which is reasonable
when comparing processes with different a, the asymp-
totic exponential decay in N is dressed by a rate func-
tion I(€) = €2/2 which is identical to the rate function of
Gaussian iid random variables with unit variance.

In Fig.3 we show a comparison of numerically ob-
tained LDPs for a range of a values versus the ana-
lytical prediction of the asymptotic behavior for fixed
€ = 0.1 and as a function of the effective sample size
Neg = N(1—a)/(1+a). We observe indeed an excellent
agreement between numerical results and the asymptotic
behavior.

III. LDP FOR ARFIMA MODEL

ARFIMA models[30] generate time series with long
range correlations.  Their formal definition involves
a backshift operator which can be interpreted as the
time-discrete version of a fractional time differentiation.
Thereby, the process properties are comparable to frac-
tional Gaussian noise[31]. We use the simplest version,
ARFIMA(0,d,0), which can be mapped to an MA(co)-
model

Tp = Zakfn,k (13)
k=1

where &, are iid Gaussian random variables with

unit variance and zero mean (i.e., white noise), and
L'(k+d)
T(k+1)L(d)

[o<jcria 7_;—+d [30]. The auto-correlation function ¢(7)
of this process exhibits asymptotically a power law de-
cay 77 for large time lags 7 with v = 1 — 2d. Hence
for 0 < d < 1/2 this process has positive long range tem-
poral correlations (LRC), since the integral over all time
lags of the auto-correlation function, which is interpreted
as the correlation time, diverges[30]. Apart from this, it
is a Gaussian process, i.e., all joint probability densities
are multivariate Gaussians.

The Birkhoff sum Sy of a time series generated by
Eq.(13) is therefore a linear combination of Gaussian
random variables and hence its probability density is
Gaussian itself. Its mean is zero by construction, hence
we have to determine its variance as in the last sec-
tion. We determine its scaling behavior in N using
slightly different arguments than for the AR(1) pro-
cess. A Brownian path W(N) is obtained by adding
up white noises, W (N) = sz\il &, (&i&5) = 0i5. Its es-
sential feature is that the Mean Squared Displacement
MSD(N) := ((W(N) — W(0))?), scales linearly in N.
If instead we replace the noises & by the output z;
of the ARFIMA model, the corresponding MSD scales
like N1*24_ for d € [-1/2,1/2]. ARFIMA models cre-
ate (a time discrete version of) fractional Gaussian noise
whose integration leads to fractional Brownian motion.
The relationship between MSD(N) and Sy is evident:
MSD(N) = N?(S%). With (Sx) = 0, the MSD is N2
times the variance of the probability distribution of Sy.
Hence we know that the variance of the distribution of
Sy scales like N2¢~1 with an unknown prefactor which
we call a.

Like in Sec.II, the LDP is the integral over the tail of
the Gaussian:

the coefficients are given by ap =

LDP(E,N)O(/ exp(—ae? /2N 72 qe! (14)

and can be expressed through the complementary error
function. We approximate this integral by its first order
asymptotic expansion and find:

2
LDP(e,d, N) RERWEYE exp(—aN'"242/2) .

Tae
(15)

For d = 0 the ARFIMA-process is identical to white
noise, and indeed with Eq.(15) we recover the asymp-
totically exponential decay in NV, in this case we know
that @ = 1. For other values of d, the LDP behaves like
a stretched exponential with a power law prefactor.

In Fig.4 we show the comparison between numerically
obtained LDPs, of Eq.(14) and of Eq.(15), for a = 1.

If we ignore the power law-prefactor, the decay is sub-
exponential if the MSD grows faster than linear (superdif-
fusion) and is super-exponential if the MSD grows slower
than linear in time (sub-diffusion), and the relationship
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FIG. 4: Panel(a):The Large Deviation Probability LDP (N, €)
of an ARFIMA(0,d,0) model with d = 0.3. The green solid
lines show the numerically obtained LDPs for an ensemble of
10000 trajectories and various threshold values e. The red
dashed curve is the numerical evaluation of the error function
Eq.(14) (aw = 1), which is the (numerically) exact representa-
tion of our theoretical prediction.

Panel(b): The same LDPs as in panel (a), but plotted versus
€?N'72¢ which, according to Eq.(15) should lead to a data
collapse in the asymptotic regime. The data collapse is evi-
dent. The blue dotted curve is the approximation by the error
function Eq.(15), and in this plot we used @ = 1/12 to ensure
the perfect match of numerics and theoretical curves.

is that the stretching exponent 8§ = 1 — 2d in the decay
of the LDP is related to the exponent 2H of the growth
of the MSD, N2H | by:

B=2-2H. (16)

The exponent H of the growth of the MSD is often also
called the Hurst exponent, and the relationship between
H and the power of the decay of the auto-correlation
function is known to be H =1+ 7/2 where —1 <~y <0
(i.e., d > 0).

In summary, within this model class of correlated
Gaussian processes, a diverging correlation time due to
a power law decay of the auto-correlation function in-
duces a sub-exponential decay of the LDP and hence a
sub-exponential convergence of time averages towards the
ensemble mean .

IV. LARGE DEVIATIONS IN THE
POMEAU-MANNEVILLE MAP

The last model system for our study of LRC on LDP
is the deterministic Pomenau-Manneville-map[29]. We
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FIG. 5: A typical trajectory of the Pomeau-Maneville map
Eq.(17) for z = 1.6. The origin for the power law decay of the
auto-correlation function lies in the power law distribution of
the durations of the laminar phases where z; < 1.

study a variant of this map due to Liverani, Saussol and
Vaienti [32]. Under iteration, this interval map

(14 (22)*71) 0<z<1/2

2w—1  12<e<1 (7

v = flan) = {
creates intermittent dynamics, i.e., an alternation of lam-
inar phases where x; &~ 0 for many iterations, and chaotic
bursts where x; > 1/2. This is caused by the fact that the
fixed point z = 0 is marginally stable, i.e. f/(z =0) =1,
and trajectories starting from z = § with 0 < § < 1 take
many iterates till they deviate significantly from zero.
This is illustrated in Fig.5. It has been shown[33] that
this type of intermittency causes a power law decay of
the auto-correlation function with the exponent -y.

=" (1)

here:
where ]

C(r) <777

Hence, for 1 < z < 3/2, v > 1, the process is not
“long range correlated” since the correlation time does
not diverge, which is, however, the case for z > 3/2. We
were able to reproduce the result v = i:‘i numerically for
the range z € [1.12,1.96] with some effort: The power law
is asymptotic, hence we need to study time lags where
the auto-correlation function is already very close to 0.
To suppress fluctuations sufficiently we used quadruple
precision in order to avoid trajectory trapping in round-
off induced periodic orbits [34].

For 1 < z < 3/2, the power law decay of correla-
tions is sufficiently fast so that the central limit theorem
still holds[35], and therefore, asymptotically for large N,
VNS v 1s a Gaussian random variable as in the case of
the ARFIMA model. Due to the lack of LRC, one might
expect a classical exponential decay of the LDP. However,
as shown in Fig.6, the convergence of the distribution of
V NSy to a Gaussian is slow. For every finite N, the
distribution has an almost Gaussian tail towards large
arguments, whereas there is a pronounced non-Gaussian
tail towards Sy = 0. Large deviations of Sy from pu are
dominated by this tail towards values smaller than p.
The anomalous decay of these tails has the consequence
that the decay of LDP in N is neither exponential nor




stretched exponential, but, as mathematically proven in
[36], follows a power law asymptotically:

LDP(e,N,z) « N¥T if 1 < 2 < 2;. (19)

Numerically, it is not easy to reach the asymptotic
regime, but for z close to 3/2 we succeed, as shown
in Fig.7, after some exponential cross-over behavior for
moderate N. In order to estimate probabilities of the
order of 1076 we need to run at least 10° different tra-
jectories for N time steps. Some sophisticated sampling
algorithm such as [37, 38] might be applicable in order
to speed up the computation.

As we discussed before the distribution for Sy in terms
of the MSD, let us stress here that the MSD increases
linearly with time if the autocorrelation function is a
power law with power larger than one. By expanding
the inner sum, the MSD, <(Zi\;1 x; — 19)?), can be read-
ily expressed as a summation over the auto-correlation
function ¢(7) with some 7-dependent prefactor. This ex-
pression has two dominant terms: one stemming from the
range of small |7|, where the auto-correlation function is
finite, the other range for large || covering the asymp-
totic power law. In combination with the prefactors, the
first one dominates when v > 1, and yields a linear in-
crease of MSD in N. For 0 < v < 1, the second term
dominates and results in MSDoc N277. Therefore, there
is no contradiction between the validity of the CLT, the
linear increase of the MSD, and a power law decay of the
LDP: LDP is also sensitive to the tails of the distribution
which have an anomalous scaling behavior in N.

For 3/2 < z < 2, the CLT is violated, as proven in
[39] and as visible in panel (b) of Fig.6, and the process
is LRC with 0 < v < 1. When v/ NSy is not asymp-
totically Gaussian random variable, the auto-correlation
function, which is a two-point-statistics, is insufficient
to fully characterize joint probability distributions. It is
therefore plausible that LDP indeed behaves differently
from the simple ARFIMA model. Indeed, [40] has stud-
ied this case mathematically and shown that the decay of
the LDP is given by the same power law as Eq.(19), i.e.,
in terms of LDP, there is no effect of whether or not the
CLT is fulfilled. In our numerical simulations we are able
to reach this asymptotic regime and thereby reproduce
the theoretical results, see Fig.7.

For z > 2, the invariant density cannot be normalized
and the system exhibits more complicated features such
as weak ergodicity breaking and aging[41]. In that case,
even the ensemble mean p is ill-defined and hence LDP
cannot be studied.

V. SUMMARY AND CONCLUSION

We have studied the behavior of the large devia-
tion probability LDP of Birkhoff sums for correlated
processes. For two Gaussian processes, AR(1) and
ARFIMA(0,d,0), we where able to find exact analyti-
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cal expressions. In these two model classes, the distri-
bution of the individual random variables is Gaussian,
and since these are linear models, also the distribution of
the Birkhoff sums Sy is Gaussian. Hence, the variance
of this distribution is enough to determine the LDP. For
AR(1) we find that LDP(N) always decays exponentially
fast in IV, where the time scale is given by an effective
sample size related to the decay of correlations of the
AR-process. For ARFIMA we obtain stretched exponen-
tials, depending on the value of d, which is an interesting
deviation from the standard behavior.

Mathematicians had already before obtained analytical
results for a class of intermittent maps of the Pomeau-
Manneville family. In contrast to our Gaussian processes,
the decay of LDP in N follows a power law. We were
able to interpret these results in view of the distribu-
tion of S and the decay of correlations, and also to re-
view the validity of the CLT for certain parameter ranges.
Asymptotic validity of the CLT does not mean that the
Birkhoff sum behaves as a Gaussian random variable for
finite N. Nonetheless, it remains a surprise that in terms
of LDP, there is no qualitative difference between the
regime 1 < z < 3/2 and the regime 3/2 < z < 2, al-

though in the first one the correlation time is finite and
the CLT is valid.

What our study also illustrates is the in principle well
known fact, which, however, is rarely discussed in the lit-
erature about LRC in data: A power-law decay of the
auto-correlation function can have different dynamical
origins, so the LRC does not define a single class of pro-
cesses with unique features. Here we have presented two
different such classes, Gaussian stochastic processes and
deterministic intermittent maps, whose parameters can
be tuned to possess identical power law decays of their
auto-correlations, but which behave quite differently in
terms of the N-dependence of their LDP.

Acknowledgment

Matthew Nicol thanks the NSF for partial support on
NSF-DMS Grant 1600780 and the hospitality and sup-
port of the Max Planck Institute for the Physics of Com-
plex Systems, Dresden.

[1] SV. Nagaev ,Large deviations of sums of independent ran-
dom wvariables, The Annals of Probability, vol. 7, No. 5,
pp. 745-789, (Oct., 1979).

[2] V. V. Petrov, On the Probabilities of Large Deviations for
Sums of Independent Random Variables ,Theory Probab.
Appl., 10(2), 287-298 (12 pages).

[3] J. Lynch, J. Sethuraman, Large deviations for processes
with independent increments, The annals of probability,
Vol. 15, No. 2 pp. 610-627, (Apr. 1987).

[4] H. Cramer . On a new limit theorem of the theory of
probability. Uspekhi Matematicheskikh Nauk, (10), 166-
178 (1944).

[6] S. R. S. Varadhan. Asymptotic probabilities and dif-
ferential equations. Comm. Pure. Appl. Math., 19:261-
286,(1966).

[6] S. R. S. Varadhan, Large Deviations and Applications

STAM, Philadelphia, (1984).

R. Ellis, Entropy, Large Deviations, and Statistical Me-

chanics. Springer-Verlag, New York, (1985).

[8] Sanov I.N. On the probability of large deviations of ran-
dom magnitudes. Matem. Sbornik, v. 42 (84), 11-44
(1957).

[9] C. C. Heyde, On large deviation probabilities in the case
of attraction to a nonnormal stable law. Sankhya, 30,253-
258 (1968).

[10] L. Liu, Precise large deviations for dependent random
variables with heavy tails, Statistics and Probability Let-
ters 79 129-1298 (2009).

[11] B. Bercu, L. Coutin, N. Savy, Sharp large devia-
tions for the non-stationary Ornstein-Uhlenbeck process,
arXiv:1111.6086, (2011).

[12] F. Ragone, J. Wouters and F. Bouchet,
putation of extreme heat waves
els wusing a large deviation

[7

Com-
i climate mod-
algorithm,  doi

http://www.pnas.org/cgi/doi/10.1073 /pnas.1712645115

[13] G. Dematteis, T. Gratke and E. Vanden-Eijnden, Rogue
waves and large deviations in deep sea, PNAS, 115 (5)
855-860 (2018).

[14] B. Derrida, Non-equilibrium steady states: fluctuations
and large deviations of the density and of the current,
Journal of Statistical Mechanics (IOP): Theory and Ex-
periment, Volume 2007, July (2007).

[15] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Prob-
ability of second law violations in shearing steady states
Phys. Rev. Lett. 71, 2401. Oct. (1993).

[16] G. Gallavotti and E. G. D. Cohen, Dynamical Ensembles
in Nonequilibrium Statistical Mechanics Phys. Rev. Lett.
74, 2694. April (1995).

[17] J. L. Lebowitz, H. Spohn, A Gallavotti-Cohen Type Sym-
metry in the Large Deviation Functional for Stochastic
Dynamics, Journal of Statistical Physics, Volume 95, Is-
sue 1-2, pp 333-365. April (1999).

[18] B. Derrida and J. L. Lebowitz, Ezact Large Deviation
Function in the Asymmetric Exclusion Process Phys.
Rev. Lett. 80, 209. Jan. (1998).

[19] B. DerridalJ. L. LebowitzE. R. Speer, Large Deviation of
the Density Profile in the Steady State of the Open Sym-
metric Simple Exclusion Process, Journal of Statistical
Physics, Volume 107, Issue 3-4, pp 599-634, May (2002).

[20] L. Bertini, A. De Sole,D. Gabrielli,G. Jona-Lasinio and
C. Landim, Macroscopic Fluctuation Theory for Sta-
tionary Non-Equilibrium States, Journal of Statistical
Physics, Volume 107, Issue 3-4, pp 635-675 May (2002).

[21] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, Dynamical First-Order
Phase Transition in Kinetically Constrained Models of
Glasses, Phys. Rev. Lett. 98, 195702. May (2007).

[22] L. O. Hedges, R. L. Jack, J. P. Garrahan and D. Chan-



(25]

[26]

27]
(28]

29]

(30]

31]

32]

dler, Dynamic Order-Disorder in Atomistic Models of
Structural Glass Formers, Science, Vol. 323, Issue 5919,
pp. 1309-1313, 06 Mar. (2009).

C. GiardinA , J. Kurchan and L. Peliti, Direct Fvalua-
tion of Large-Deviation Functions, Phys. Rev. Lett. 96,
120603. March (2006).

J. Tailleur and J. Kurchan, Probing rare physical trajec-
tories with Lyapunov weighted dynamics Nature Physics
volume 3, pages 203-207 (2007).

H. Touchette, The large deviation approach to statistical
mechanics, Physics Reports, 478 1-69 (2009).

R. Chetrite, H. Touchette, Nonequilibrium Markov Pro-
cesses Conditioned on Large Deviations, H. Ann. Henri
Poincare, Volume 16, Issue 9 (2015).

G. D. Birkhoff. Proof of the Ergodic Theroem, PNAS
MATHEMATICS, 17 (12) 656-660, (1931).

R. Durrett. Probability: Theory and Examples, Second
Edition, Duxbury Press, (2004).

Y. Pomeau and P. MannevilleIntermittent transition
to turbulence in dissipative dynamical systems., Comm.
Math. Phys. 74 189-197 (1980).

G. E. P. Box and G. M. Jenkins Time Series Analy-
sis: Forecasting and Control, (4th edition 2008, page
430):Eq.(10.3.6).

B. Mandelbrot. Fractional Gaussian Noise and Frac-
tional Brownina Motion and applications, STAM Rev.,
10(4), 422-437.

C. Liverani, B. Saussol and S. Vaienti, A probabilistic
approach to intermittency, Ergodic Theory Dynam. Sys-

33]

(34]

(35]

(36]

37]

(38]

39]

(40]

(41]

tems 19(3), 671-685 (1999).

L.-S. Young. Recurrence times and rates of mizing. Israel
J. Math. 110 153-188 (1999).

J. H. Hubbard, and B. H. West, Differential Equations:
A Dynamical Systems Approach, Part I (Springer, New
York), (1991).

L.-S. Young. Statistical properties of dynamical systems
with some hyperbolicity. Ann. of Math. 147 585-650
(1998).

1. Melbourne and M. Nicol,Large deviations for nonuni-
formly hyperbolic systems, Transactions of the AMS, 360,
6661-6676 (2008).

J. Wouters and F. Bouchet, Rare event computation in
deterministic chaotic systems using genealogical particle
analysis, J. Phys. A: Math. Theor. 49 374002 (2016).

T. Nemoto and A. Alexakis, Method to measure efficiently
rare fluctuations of turbulence intensity for turbulent-
laminar transitions in pipe flows Phys. Rev. E 97, 022207
(2018).

S. Gouézel. Central limit theorem and stable laws for in-
termittent maps, Probability Theory and Related Fields
128 :82-122, (2004).

I. Melbourne. Large and moderate deviations for slowly
mizing dynamical systems. Proc. Amer. Math. Soc. 137
1735-1741 (2009).

Ph. Meyer and H. Kantz, Infinite invariant densities due
to intermittency in a nonlinear oscillator, Phys. Rev. E
96, 022217 (2017).



