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We introduce and study a one dimensional model of classical planar spins interacting self-
consistently through magnetic field. The spins and the magnetic field evolve in time according to the
Hamiltonian dynamics which mimics that of a free electron laser (FEL). We show that by rescaling
the energy due to magnetic field inhomogeneity, in equilibrium, this system can be mapped onto
a model very similar to the paradigmatic globally coupled Hamiltonian mean-field (HMF) model.
The system exhibits a continuous equilibrium phase transition from paramagnetic to ferromagnetic
phase, however unlike HMF, we do not see any magnetized quasi-stationary states.

I. INTRODUCTION

Long-range interactions are ubiquitous in nature and
can be found at all length scales, from cosmology [1]
to nanotechnology [2]. Systems with long-range inter-
actions are a challenge to study since, in the thermo-
dynamic limit, they deviate dramatically from short-
range interacting systems. In the thermodynamic limit,
the conventional formalism of the Boltzmann-Gibbs sta-
tistical mechanics does not apply to isolated systems
with long-range interactions, which become trapped in
non-equilibrium quasi-stationary states (QSS). Many in-
triguing dynamic and thermodynamic properties of long-
ranged interacting models have been found. These
range from ergodicity breaking, equilibrium and non-
equilibrium phase transitions, QSS, non-Maxwellian ve-
locity distribution, negative specific heat etc., see reviews
[3–6].
An exactly solvable – in equilibrium – paradigmatic

model of a system with long-range interactions which has
been extensively studied over the last two decades is the
Hamiltonian mean-field (HMF) model [7]. However, de-
spite its simplicity and usefulness in understanding many
properties of long-range interacting systems, the HMF
model is pathological, in the sense that, perturbations
propagate instantaneously between any two points. In a
more physically realistic model one expects that there is
no instantaneous action at a distance, and perturbation
should propagate in space and time. With this in mind,
we introduce and study a model of inertial planar spins
on a one dimensional lattice interacting through a spa-
tially and temporally varying magnetic field. The field
acting on a spin is generated by all the spins in the sys-
tem. Thus although the spins do not directly interact
with each other, they interact through the magnetic field
which they produce. This indirect interaction mediated
by the field precludes instantaneous action at a distance,
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making the dynamics physically realistic. We show that
by tuning the energy cost of inhomogeneity of magnetic
fields, this one dimensional classical model undergoes a
paramagnetic to ferromagnetic phase transition.
The paper is organized as follows. In Sec. II we intro-

duce the new model and show that at equilibrium, in the
thermodynamic limit, with a suitable scaling of the cou-
pling parameters it can be mapped onto a model similar
to the HMF. Next in Sec. III we discuss the numerical
approach and present the results obtained from simula-
tions showing evidence of dynamical slowing down in the
large system size limit and existence of a paramagnetic
to ferromagnetic phase transition. A summary of results
is presented in Sec. IV.

II. THE MODEL AND THE ANALYTICAL

RESULTS

We consider a one dimensional lattice with planar spins
~Si ≡ {Sx, Sy}i, at each site i, where 1 ≤ i ≤ N , N
being the system size. Each spin is coupled to the field

denoted by ~hi ≡ {hx, hy}i which is the magnetic field

produced by all the ~Sj spins. The Hamiltonian of this
Self-Consistent Interacting Spin Model (SCISM) under
periodic boundary conditions is

H =
∑

i

{

p2i
2

− ~hi · ~Si +
1

2
γ~h2

i +
1

2
ρ(~hi − ~hi+1)

2

}

, (1)

where γ, ρ are constants. The spin variables are all as-

sumed to have a fixed length |~Si| = 1 and a unit “mass”;
their orientation and conjugate momentum are denoted
by an angle variable 0 ≤ θi ≤ 2π and momentum pi, re-
spectively. The magnetic field components {hx, hy} are
also assumed to be conjugate variables and as such follow
the Hamiltonian dynamics. The dynamics for the mag-
netic field is motivated by the analogous behavior found
in the free electron laser (FEL), where the magnetic field
corresponds to the complex amplitude of the electromag-
netic wave [8–10]. The equations of motion for the sets
of variables {pi, θi} and {hxi, hyi} are:
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θ̇i =
∂H
∂pi

, (2)

ṗi = −∂H
∂θi

, (3)

ḣxi =
∂H
∂hyi

, (4)

ḣyi = − ∂H
∂hxi

(5)

which, written explicitly, yield

θ̇i = pi, (6)

ṗi = −hxi sin θi + hyi cos θi, (7)

ḣxi = − sin θi + γhyi + ρ(2hyi − hyi+1 − hyi−1), (8)

ḣyi = cosθi − γhxi − ρ(2hxi − hxi+1 − hxi−1). (9)

The Hamiltonian Eq. (1) can be expressed in terms of
the lattice Laplacian operator

H =
∑

i

p2i
2

− ~hi · ~Si +
1

2
γ~h2

i −
1

2
ρ~hi · △~hi, (10)

where △~hi = ~hi+1 + ~hi−1 − 2~hi. Similar to FEL, be-
sides the energy, the dynamics also conserves the total
momentum of the system,

J =
∑

i

{

pi −
|~hi|2
2

}

. (11)

After a sufficiently large time, this system will relax to
an equilibrium state described by the Boltzmann-Gibbs
statistics with partition function

Z =

∫

∏

i

dpid~Sid
2hie

−βH−βαJ , (12)

where α and β are the Lagrange multipliers. In the
canonical ensemble β corresponds to the temperature of
the reservoir, and α is determined by the condition of
momentum conservation

〈p〉 − 〈|~h|2〉
2

=
J0
N

, (13)

where J0 is the initial momentum and 〈...〉 indicates the
average over the lattice sites. In most of the simulations
presented in this paper we will start with zero initial
magnetic field and with 〈p〉 = 0 at t = 0, so that J0 = 0.
Writing the effective Hamiltonian as

Heff = H0 +
∑

i

{

p2i
2

+ αpi − ~hi · ~Si

}

, (14)

where

H0 =
∑

i

{

1

2
(γ − α)~h2

i −
1

2
ρ~hi · △~hi

}

, (15)

the partition function, Eq. (12), can be expressed as

Z= Z0

∫

∏

i

dpid~Sie
−β

∑

i

{

p2
i
2
+αpi

}

〈eβ
∑

i
~hi·~Si〉0 (16)

= Z0

∫

∏

i

dpid~Sie
−β

∑

i

{

p2
i
2
+αpi

}

+ β2

2

∑

i,j〈(
~hi·~Si)(~hj·~Sj)〉0

,

where Z0 =
∫
∏

i d
2hie

−βH0 and 〈...〉0 corresponds to the
thermal average with respect to the Hamiltonian H0. To
calculate the average appearing in the exponential, we
Fourier transform the magnetic fied,

~h(k) =

N
∑

j

~hje
−ikj (17)

The inverse transform is

~hj =

∫ π

−π

dk

2π
~h(k)eikj . (18)

In the thermodynamic limit N → ∞, the non-interacting
part of the Hamiltonian can then be diagonalized in the
Fourier space,

H0 =
γR
2

∫ π

−π

dk

2π
|~h(k)|2 − (19)

ρ

∫ π

−π

dk

2π
(cos k − 1)) |~h(k)|2,

where γR = γ − α, and the thermal average 〈...〉0 can be
evaluated explicitly,

Z = Z0

∫

∏

l

dpld~Sle
−β

∑

l

{

p2
l
2
+αpl−

1

2

∑

j
Vlj

~Sl·~Sj

}

, (20)

where

Vlj =

∫ π

−π

dk

2π

eik(l−j)

γR − 2ρ(cos k − 1)
(21)

≈ 1

2
√
γRρ

exp{−
√

γR/ρ(l − j)} (22)

In the last equation we have used cos k ≈ 1 − k2/2 to
perform the integration, which is valid for large ρ, since in
this limit most of the contribution to the integral comes
from small k. The potential in Eq. (22) has the range

of interaction proportional to
√

ρ/γR. If we rescale the
magnetic field inhomogeneity coupling constant as ρ =
ρ0N

2 (ρ0 > 0 is a constant), then from Eq. (22) we
obtain

Vlj ≈
1

2N
√
γRρ0

exp{−
√

γR/ρ0(l − j)/N}. (23)
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In order to perform molecular dynamics simulations with
this interacting spin model we define an effective Hamil-
tonian,

H′ =
∑

i

p2i
2

+ αpi −
1

2

∑

i

∑

j

Vij
~Si · ~Sj . (24)

For N → ∞, the above spin-spin interaction energy
in Eq. (24) is similar to the paradigmatic HMF model
where all the spins interact with each other with equal
strength [11, 12]. The linear term in momentum pro-
vides the drive which originates from the transfer of part
of the angular momentum to the magnetic field in the
original SCISM model. At thermodynamic equilibrium
we find 〈p〉 = −α. Therefore, we expect to see the sim-
ilar equilibrium behavior of the SCISM and of the re-
duced model if α is set to −〈p〉 obtained in equilibrium
state of SCISM model. Note that the two models are
not precisely the same, since in the definition of H′, we
have neglected the additive constant − ln(Z0)/β related
to the free energy of the magnetic field. Nevertheless,
we speculate that SCISM after rescaling of the inhomo-
geneity coupling parameter (ρ = ρ0N

2) should be very
similar to a driven HMF model, and in particular should
have an equilibrium paramagnetic to ferromagnetic phase
transition. The interesting question that we would like
to explore in this paper is if the model also has a non-
equilibrium dynamical QSS.

III. RESULTS FROM SIMULATION

A. Dynamical properties
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FIG. 1. (a) Evolution of the (cumulative) average momentum
p(t) with time t for different values of energy density u. The
conservation of the energy density u and the angular momen-
tum J is shown in (b) and (c) respectively for the same u
values as in (a). Here N = 100 and ρ = ρ0N

2 with ρ0 = 0.02.

We first study the dynamical properties of the SCISM
model described by the Hamiltonian Eq. (1) using nu-

merical integration of the equations of motion, Eqs. (6)-
(9). To integrate the equations numerically we employ
a Runge-Kutta algorithm with adaptive time-step that
uses embedded fifth order and sixth order Runge-Kutta
estimates to compute the solution and the relative error
[13]. The initial conditions for the angle variable θi are
chosen equidistantly in the range 0 < θi < 2π, so that
the initial magnetization is m = 0 at t = 0. The spin
momenta pi are chosen randomly from a uniform distri-
bution in the range 0 < pi < pm, such that for every
particle with momentum p there is another particle with
momentum −p; we always have even number of spins in
our system so that the initial average spin momentum
is strictly zero. Unless otherwise mentioned, the initial
magnetic field components are chosen as (hx, hy) = (0, 0)
at all the sites. Also, for all the simulation results pre-
sented in the following we have set the parameter γ to
unity.
We begin by verifying that the conservation of the total

energy per spin u and the total angular momentum J
are obeyed by our numerical integration scheme and the
average momentum 〈p〉 indeed saturates to a finite value
at large times as we have argued in the previous section.
In Fig. 1a we show the time evolution of the cumulative
average momentum defined as

p(t) =
1

t

∫ t

0

< p(t′) > dt′ , (25)

where 〈p〉 =
∑

i pi/N , and observe that at large time
we obtain a saturation (statistically). The energy den-
sity u = 〈H〉/N and the total momentum J (for our
choice of initial conditions J = 0) both remain conserved
throughout the simulation, ensuring that our numerical
scheme satisfies the two conservation laws. The evolution
of < p > also gives us an estimate of the equilibration
time teq of the system and all equilibrium properties that
we subsequently present are computed only after the sys-
tem has evolved past teq .
We are interested to see how SCISM evolves towards

equilibrium when the coupling constant of the magnetic
field inhomogeneity is scaled as ρ = ρ0N

2, and also
if there are any dynamical and thermodynamical phase
transitions. To explore this we compute the instanta-
neous magnetization m defined as

m =
[

m2
x +m2

y

]1/2
, (26)

where mx = 1
N

∑

i cos θi and my = 1
N

∑

i sin θi.
In Fig. 2 we present the cumulative magnetization

M(t) (similar to Eq. (25))

M(t) =
1

t

∫ t

0

m(t′)dt′ , (27)

for different values of the system size N , while maintain-
ing the ρ = ρ0N

2 scaling and energy per spin u = 〈H〉/N .
We see that starting from an initially paramagnetic state
the system relaxes to a ferromagnetic state. As the sys-
tem size increases, however, the magnetization M takes
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FIG. 2. Evolution of the magnetization M(t) with time t for
different values of N with the rescaling ρ = ρ0N

2. The inset
shows the same data with the x-axis rescaled as t → t/N0.33.
The energy density is u = 0.05 and ρ0 = 1.0.

longer time to saturate to the equilibrium value. In the
inset of Fig. 2 we show that if the time t is rescaled
as t/Nα all the data points for different N collapse onto
a single curve. The exponent is found to be α ≈ 0.33.
This indicates that a thermodynamically large system,
N → ∞, will take an infinite amount of time to relax
to equilibrium, remaining trapped in the initial param-
agnetic state. This is similar to what one encounters in
the HMF model where the equilibration time t grows al-
gebraically with the system size as [14] t ∼ N2 and thus
a thermodynamically large HMF will never relax to the
BG equilibrium state. Note that such dynamical slowing
down does not arise if the parameter ρ is not scaled in
the manner described above. This is shown in Fig. 3 for
the same values of the parameters that are used in Fig.
2. Therefore, a system without the ρ rescaling behaves as
a usual one dimensional short-range interacting systems
and always remains paramagnetic.
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FIG. 3. Evolution of the magnetization M(t) with time t for
different values of N with ρ = 1.0 and u = 0.05.

We also see a dynamical slowing down with the range
of the interactions when the system size is kept fixed,
while the parameter ρ0 is increased, maintaining scaling
ρ = ρ0N

2. This is demonstrated using the evolution of

cumulative magnetization and of kurtosis κ defined as

κ(t) =
1

3

1
t

∫ t

0
< p4(t′) > dt′

1
t

∫ t

0
< p2(t′) >2 dt′

, (28)

where the average < ... > is over all the spins. For BG
equilibrium state κ(t) → 1 as t → ∞. The time series
for M(t) and kurtosis κ(t) are shown in Fig. 4a and b
respectively. As ρ0 increases, both M and κ take longer
time to relax to their respective equilibrium values, indi-
cating dynamical slowing down with increasing range of
interaction.
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FIG. 4. (a) Evolution of the magnetization M(t) with time
t for different values of ρ0 with N = 100 and u = 0.02. (b)
Evolution of the kurtosis κ(t) with time t for different values
of ρ0 with N = 500 and u = 0.02.

In Fig. 5 we show that the system relaxes to the same
final magnetization independent of the initial condition
which is, again, a characteristic of the thermodynamic
equilibrium.

Finally, in Fig. 6 we show the short time dynamics of
relaxation of SCISM to the ferromagnetic state. Similar
to the coarsening dynamics of systems with short range
interactions, the relaxation dynamics is algebraic, very
different from the exponential relaxation to a ferromag-
netic QSS observed in the HMFmodel [15]. This suggests
that the ferromagnetic state to which the system evolves
is a true equilibrium and not a ferromagnetic QSS.
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FIG. 6. Short time dynamics of M(t) evolution to the magne-
tized state. Note that the algebraic behavior is very different
from the exponential instability observed in the HMF model.

B. Equilibrium properties

The mapping between the SCISM and the reduced
model described in Section II shows that if SCISM re-
laxes to equilibrium, then the properties of the equilib-
rium state should be identical to those of the reduced
model described by the effective Hamiltonian, Eq. (24).
The difficulty is to establish if the stationary state to
which the system relaxes is a true equilibrium state or
a QSS. To explore this we again perform the numerical
integration of the equations of motion Eqs. (6)-(9) as de-
scribed in the previous section. We also numerically inte-
grate the Hamilton’s equations of motion for the reduced
model, Eq. (24), to compare with the results obtained
for the SCISM, Eq. (1).
If the conjecture presented in the previous section is

true, then SCISM, under suitable rescaling of the mag-
netic field coupling constant ρ = ρ0N

2, should exhibit
a phase transition from a paramagnetic to ferromagnetic
phase, similar to the equilibrium phase transition in the
HMF model. To demonstrate the existence of the phase
transition in our model, we numerically compute the av-
erage magnetization M as a function of the energy den-
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FIG. 7. (a) Variation of the cumulative magnetization M as
a function of energy density u for different values of N . Here
ρ = ρ0N

2 with ρ0 = 0.02. (b) Comparison of the magnetiza-
tion for the SCISM with the reduced model for N = 100.

sity for different sizes N = 16, 32, 128, with the rescaling
ρ = ρ0N

2. We see in Fig. 7a that for small (large) u the
magnetization M is large (small) and there is a critical
value of u = uc ≈ 0.2 which separates these two regions.
As N increases the transition becomes more prominent,
indicating that the phase transition persists as N → ∞.
We also obtain the magnetization M vs u data by

molecular dynamics using a symplectic Verlet velocity al-
gorithm of the reduced Hamiltonian Eq. (24), and com-
pare it with the same for the original model. For the
reduced model the parameter α is obtained from the sat-
uration value of the momentum 〈p〉 of the original model
(α = −〈p〉) as has been argued in Sec. II and numeri-
cally shown in Fig. 1a for a few representative u values.
We find that the two models show very good agreement
over a wide range of u values, as can be seen in Fig.
7b, indicating equilibrium phase transition, which is also
consistent with the saturation of kurtosis at the value
appropriate for the BG statistics show in Fig. 4b.
We next compute the susceptibility χ defined as

χ = N
(

m2 −m2
)

, (29)

where bar corresponds to the time average, for different
system sizes N . The data for χ are shown in Fig. 8a as
a function of the energy density u for N = 32, 64, 128.
We see a susceptibility peak at energy close to u = uc,
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FIG. 8. (a) Variation of the susceptibility χ with the energy
density u for different values of N . Here ρ = ρ0N
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(b) Comparison of the susceptibility of the SCISM with the
reduced model for N = 100.

with the peak height scaling as N0.35, see inset of Fig8a,
indicating a thermodynamic second order phase transi-
tion. The susceptibility of SCISM and of the reduced
Hamiltonian once again show good agreement and both
predict phase transition at the same critical u = uc, see
Fig. 8b.

Thus we have shown that SCISM with the proper scal-
ing ρ = ρ0N

2, shows dynamical and equilibrium proper-
ties similar to the globally coupled HMF model. A finite
system relaxes to the thermodynamic equilibrium, as dic-
tated by the BG statistics, but in the N → ∞ limit the
system will fail to equilibrate, and will remains trapped
in a paramagnetic QSS, similar to what is observed for
the HMF model. Finite N SCISM has a second order
equilibrium phase transition from a paramagnetic to a
ferromagnetic phase similar to what is seen in the HMF
model, however, differently from the HMF which also has
a first order non-equilibrium para-to-ferro phase transi-
tion [16] we do not observe any non-equilibrium magne-
tized QSS in SCISM. To see if the failure to find non-
equilibrium magnetized QSS is due to initial condition,
we now initialize our system with all the spins aligned,
so that the initial magnetization is m(t = 0) = 1. The
initial magnetic fields is (hx, hy) = (1, 0), while spin ve-
locities are chosen from a uniform distribution as before.
The magnetization time-series for different system sizes

are shown in Fig. 9a. As can be seen, the magnetization
appears to relax directly to its final equilibrium value
at large times without becoming trapped in a QSS. We
also verified that the final state corresponds to the ther-
modynamic equilibrium by computing the kurtosis κ, as
described in Eq. (28). At late times the kurtosis relaxes
to κ ≈ 1, indicating that ferromagnetic state is, indeed,
a true thermodynamic equilibrium. In Fig. 9b we show
the same scenario for the HMF model under the iden-
tical initial conditions — the magnetization time-series
appears to behave very similarly, qualitatively and even
quantitatively. This leads us to speculate that failure to
observe magnetized QSS in SCISM might be due to the
smallness of the system sizes that we could study in our
simulations.
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FIG. 9. Evolution of the magnetization M(t) with time t for
different values of N : (a) SCISM with ρ0 = 1 and (b) the
HMF model, both for u = −0.45. To compare the energy
per particle of SCISM with HMF we have subtracted an ad-
ditive constant N/2 conventionally introduced in the HMF
Hamiltonian.

IV. CONCLUSION

We have introduced a Self-Consistent Interacting Spin
Model in which spins interact through the magnetic field
that they produce. The interaction through the field
avoids a problem of instantaneous action at a distance.
The dynamics of the magnetic field in SCISM is identical
to the one found in FEL. Using analytical and numeri-
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cal calculations we showed that by rescaling the magnetic
field inhomogeneity coupling parameter, our locally inter-
acting model behaves akin to the paradigmatic Hamilto-
nian mean-field model. Similar to the HMF model, we
find an equilibrium paramagnetic to ferromagnetic phase
transition. Furthermore, we observed that the life time
of paramagnetic state scales with N

1

3 , so that in the
thermodynamics limit the system initialized in a para-
magnetic state will stay in this state forever, even for
very low energies. Unfortunately, we were not able to see
any ferromagnetic QSS states in SCISM, all the ferro-
magnetic states that we have observed corresponded to a

true thermodynamic equilibrium. We speculate that the
reason for this failure is that the system sizes which we
could explore with computational resources available to
us are too small to observe non-equilibrium QSS.
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