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Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches general-
ize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and
one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining
these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctua-
tion contexts: the cost of performing a protocol in finite time instead of quasistatically. The average
dissipated work has been shown to be proportional to a relative entropy between phase-space den-
sities, one between quantum states, and one between probability distributions over possible values
of work.We derive one-shot analogs of all three equations, demonstrating that the order-infinity
Rényi divergence is proportional to the maximum possible dissipated work in each case. These
one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits
for small-scale, nonequilibrium statistical physics.

I. INTRODUCTION

Thermodynamics concerns large scales and infinites-
imally slow evolutions. In the thermodynamic limit,
a system’s size approaches infinity and is typified by
mean behaviors. Quasistatic processes proceed slowly
enough that the system remains in equilibrium. Equi-
librium quantities describe quasistatic processes—for ex-
ample, the temperature T and the free energy F such
as Helmholtz’s, −kBT lnZ (wherein kB denotes Boltz-
mann’s constant and Z denotes a partition function).

Two recently developed frameworks generalize thermo-
dynamic concepts, such as work and heat, beyond slow
processes and infinite sizes. Fluctuation relations interre-
late equilibrium quantities such as F and nonequilibrium
processes (e.g., [1–6]). One-shot statistical mechanics is
used to quantify the efficiency with which work can be
invested or extracted, including outside the assumptions
of conventional statistical mechanics (e.g., [7–11]): First,
the system may be small, violating the thermodynamic
limit. Second, the work performed in any given trial—
rather than just the work averaged over trials—may be
reasoned about. Third, the system may occupy a quan-
tum state coherent relative to the energy eigenbasis.

One-shot statistical mechanics relies on the mathemat-
ical toolkit of one-shot information theory, or informa-
tion theory beyond i.i.d. (independent and identically
distributed variables and quantum states) (e.g., [13–16]).
Conventional information theory concerns information-
processing tasks such as data compression. One assumes
that n random variablesX , or quantum states ρ, are pro-
cessed. The variables and states are assumed to be i.i.d.
For example, the probability px that X evaluates to x
is the same for all instances of X . One calculates the

optimal efficiency with which the task can be performed,
on average over n, in the limit as n → ∞. Asymptotic
entropies, such as the Shannon and von Neumann en-
tropies [12], quantify these efficiencies. These entropies
are generalized in one-shot information theory. Exam-
ples include the Rényi divergences Dα, discussed below.
The generalized entropies quantify the efficiencies with
which more-general information-processing tasks can be
performed. For example, few copies of X or ρ may be
processed. The variables or states may not be i.i.d.
One-shot information theory generalizes conventional

information theory, as one-shot statistical mechanics ex-
tends conventional statistical mechanics. A combination
of fluctuation relations and one-shot statistical mechanics
describes quite general thermodynamic systems [17].
Transforming one equilibrium state quasistatically into

another requires an amountW of work equal to the differ-
ence between the states’ free energies: W = ∆F . Imple-
menting a protocol in finite time yields a nonequilibrium
state and costs extra work, some dissipated as heat. This
penalty of irreversibility is called the dissipated work, or
irreversible work. The average 〈Wdiss〉 := 〈W 〉 − ∆F
over many trials has been studied in fluctuation contexts
(e.g. [18–20]).1 We define the one-shot dissipated work

Wdiss := W −∆F as the penalty paid in one trial.
〈Wdiss〉 has been shown to be proportional to three

instances of the Kullback-Leibler divergence, or aver-
age relative entropy, D1. D1 quantifies how much two
probability distributions, or two quantum states, dif-
fer. (See the “Rényi divergences” section and [12] for

1 Our discussion of work can be phrased alternatively in terms of
entropy production (e.g., [19]).
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reviews.) 〈Wdiss〉 has been related to three average rel-
ative entropies: (i) a D1 between phase-space densi-
ties ρ(p, q, t) and ρ̃(p,−q, t), associated with forward and
time-reversed processes [4]; (ii) a D1 between quantum
states ρ(t) and ρ̃(t), associated with forward and reverse
processes [21]; and (iii) a D1 between probability distri-
butions Pfwd(W ) and Prev(−W ) over the work performed
during the forward and reverse processes.
This D1 belongs to a family of Rényi divergences Dα

that quantify the discrepancies between distributions or
between states. D1 quantifies a discrepancy in terms of
an average over many copies of a distribution or state.
The order-∞ Rényi divergence D∞ quantifies the distin-
guishability apparent, in a worst case, from just one copy.
We derive one-shot analogs of all three thermodynamic

equalities. The averages 〈Wdiss〉 andD1 are replaced with
the one-shot Wworst

diss and D∞. The trio reveals the gen-
erality of the proportionality between the worst-case dis-
sipated work and a one-shot entropy.
We begin by reviewing fluctuation theorems and Rényi

divergences, focusing on D∞. We recall each 〈Wdiss〉 pro-
portionality and derive its one-shot analog. Our main
results relate the maximum possible penalty Wworst

diss of
investing work in finite time to three instances of D∞.
We apply our results to a quantum quench, whose work
distribution has been studied in several settings [20, 22–
27]. Our one-shot analogs of fluctuation-relation results
illustrate the insights offered by merging fluctuation re-
lations with one-shot statistical mechanics.

II. BACKGROUND

We review fluctuation theorems, then Rényi diver-
gences.

A. Fluctuation theorems

Consider a system governed by a time-dependent
Hamiltonian H(λt). The external parameter λt changes
in time: t ∈ [−τ, τ ]. Suppose the system begins in the
thermal state γ−τ := e−βH(λ

−τ )/Z−τ , wherein β denotes
a heat bath’s inverse temperature and Z−τ normalizes
the state. Suppose an agent switches λt from λ−τ to λτ

while the system interacts with the bath. The switch-
ing costs work, the amount of which varies from trial
to trial. A probability distribution Pfwd(W ) represents
the probability that a given trial costs work W . By
Prev(−W ), we denote the probability that initializing
the Hamiltonian to H(λτ ) and initializing the system in
γτ := e−βH(λτ )/Zτ , then reversing the drive according to
λ−t, outputs work W .
Fluctuation relations such as Crooks’ Theorem gov-

ern these distributions [18]. Let ∆F := F (γτ ) − F (γ−τ )
denote the difference between the free energy of γτ and
that of γ−τ . (Throughout this article, we shall assume
∆F is finite.) Assuming the system is classical; coupled

to a bath; and undergoing a Markovian, microscopically
reversible evolution, Crooks proved that

Pfwd(W )

Prev(−W )
= eβ(W−∆F ) (1)

[18]. Identical theorems have been shown to govern quan-
tum systems isolated from [3], or interacting with the
bath while work is performed (e.g., [5]).

B. Rényi divergences

Let P and Q denote probability distributions over the
set of values {x}. The order-α Rényi divergence quanti-
fies the distinctness of P and Q [13, 28],

Dα(P ||Q) :=
1

α− 1
ln

(
∫

dx Pα(x)Q1−α(x)

)

, (2)

or of quantum states ρ and σ [29]:

Dα(ρ||σ) :=
1

α− 1
ln(Tr(ρασ1−α)), (3)

wherein Tr denotes the trace, for α ∈ [0, 1) ∪ (1,∞).
The order-1 Rényi divergence, known also as the

Kullback-Leibler divergence and the average relative en-
tropy, follows from the limit as α → 1:

D1(P ||Q) =

∫

dx P (x) ln(P (x)/Q(x)) (4)

for classical distributions, and D1(ρ||σ) = Tr(ρ[ln(ρ) −
ln(σ)]) for quantum states. D1 quantifies an average of
the information learned when one mistakes Q for P , or
σ for ρ, then is corrected [30, 31].
We focus on the order-∞ divergences: For classical

distributions,

D∞(P ||Q) = ln(min{λ ∈ R : P (x) ≤ λQ(x) ∀x}) (5)

if the support supp(Q) ⊆ supp(P ), and D∞(P ||Q) = ∞
otherwise. For quantum states,

D∞(ρ||σ) = ln

(

max
i,j

{

ri
sj

: 〈ri|sj〉 6= 0

})

(6)

for quantum states ρ =
∑

i ri|ri〉〈ri| and
σ =

∑

j sj |sj〉〈sj | [32]. Imagine receiving just one
copy of a state that is ρ or σ. Suppose, for simplicity,
that the states share the eigenbasis {|ri〉〈ri|}, which
you measure. In the worst case, two events occur: (1)
The outcome, i0, maximizes the ratio ri0/si0 . Since
ri0 is enormous, while si0 is tiny, you guess that you
received ρ. (2) You then learn that you received σ.
The information gained from event (2), after (1), equals
D∞(ρ||σ).
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III. RESULTS

We now derive equalities between the worst-case work
and (i) phase-space densities, (ii) quantum states, and
(iii) work distributions.

A. Divergences between phase-space densities

Kawai et al. consider a classical system that remains
isolated from the bath while work is performed [4]. Gov-
erned by Hamiltonian dynamics, the system follows a de-
terministic trajectory through phase space. Specifying a
phase-space point (q, p) at any time t uniquely specifies
a trajectory and a work cost W (q, p, t).
An experimenter does not know which trajectory the

system follows in any given forward trial, because the
experimenter ascribes to the system the initial state
e−βH(λ

−τ )/Z−τ . The probability that the system occu-
pies an area-(dq dp) region centered on (q, p) at time t is
ρ(q, p, t) dq dp, wherein ρ(q, p, t) denotes the phase-space
density. ρ̃(q, p, t) denotes the phase-space density after
an amount t̃ = 2τ − t of time has passed during the re-
verse protocol.
Kawai et al. proceed as follows. As the system loses

no heat while work is performed, the work required
to evolve the system along some trajectory equals the
difference between the final and initial Hamiltonians:
W (p, q, t) = H(qτ , pτ , τ) − H(q−τ , p−τ ,−τ). The for-
ward process’s initial ρ and the reverse process’s ini-
tial ρ̃ are equated with thermal states. The Hamilto-
nian is assumed to have time-reversal invariance (TRI):
H(q, p, t) = H(q,−p, t). From TRI, the preservation of
phase-space densities by Hamiltonian dynamics, and the
correspondence of ρ(q, p, t) and ρ̃(q,−p, t) to the same
Hamiltonian follows the “generalized Crooks relation”

eβ[W(q,p,t)−∆F ] =
ρ (q, p, t)

ρ̃ (q,−p, t)
. (7)

By taking logs, multiplying each side by ρ̃(q,−p, t), and
integrating over phase space, Kawai et al. derive

〈Wdiss〉 =
1

β
D(ρ(q, p, t)||ρ̃(q,−p, t)). (8)

The right-hand side (RHS) is well-defined if the sup-
port of ρ lies in the support of ρ̃: supp(ρ(q, p, t)) ⊆
supp(ρ̃(q,−p, t)) [21].
The nonnegativity of D1 implies that, on average,

performing a protocol quickly dissipates positive work.
The work penalty’s nonnegativity has been interpreted
as the Second Law of Thermodynamics [4, 33]. Accord-
ing to Stein’s Lemma, D1(P ||Q) quantifies the average
probability that an attempt to distinguish between P
and Q will fail [30, 34]. D1(ρ(q, p, t)||ρ̃(q,−p, t)) quanti-
fies the distinguishability of the forward-process density
from its time-reverse. D1(P ||Q) vanishes if and only if

P = Q [30]. Equation (18) shows that reversing the tra-
jectory followed during the forward protocol yields the
trajectory followed during the reverse protocol if and
only if the system dissipates no work on average. No
work is dissipated if the process proceeds quasistatically,
such that the system remains in equilibrium. Hence D1

quantifies roughly how far from equilibrium the system
evolves.
Let us turn from averages over infinitely many trials

to single trials, starting with our first theorem.

Theorem 1. The worst-case dissipated work of the fore-
going protocol is proportional to an order-∞ Rényi diver-
gence between phase-space distributions:

Wworst
diss =

1

β
D∞(ρ(q, p, t)||ρ̃(q,−p, t)), (9)

if supp(ρ(q, p, t)) ⊆ supp(ρ̃(q,−p, t)).

Proof. First, we take the logarithm of each side of the
generalized Crooks relation [Eq. (7)]:

W −∆F =
1

β
ln

(

ρ(q, p, t)

ρ̃(q,−p, t)

)

. (10)

We maximize each side of the equation, invoking the log-
arithm’s monotonicity to shift the maximum into the ar-
gument:

Wmax −∆F =
1

β
ln

(

max

{

ρ(q, p, t)

ρ̃(q,−p, t)

})

. (11)

Comparing the left-hand side (LHS) with the definition
of Wworst

diss and the RHS with the definition of D∞ yields
Eq. (9).

Like Eq. (8), Theorem 1 relates dissipated work
to a measure of the difference between ρ(p, q, t) and
ρ̃(p,−q, t). The more work is dissipated during the most
expensive possible trial, the less the forward-process den-
sity can resemble its time-reversed cousin, as measured
by D∞. The lesser the resemblance, the farther the
system is expected to depart from equilibrium. As in
Eq. (8), the LHS of Eq. (9) is time-independent, so the
RHS remains constant for all t ∈ [−τ, τ ].
Equation (9) has the correct quasistatic limit: If work

is invested infinitesimally slowly, the worst amount of
work that can be dissipated—the only amount that can
be dissipated—vanishes: Wmax −∆F = ∆F −∆F = 0.
Because the system remains in equilibrium, H(λt) and
β determine the state completely. The RHS of Ineq. (9)
becomes D∞(ρ(q, p, t)||ρ̃(q,−p, t)) = 0.
Theorem 1 can aid an agent who has imperfect infor-

mation about phase-space densities. Kawai et al. rec-
ommend using Eq. (8) to predict 〈Wdiss〉 from ρ and ρ̃.
Phase-space densities, they acknowledge, can be difficult
to learn about. So they bound 〈Wdiss〉 with aD1 between
coarse-grained densities. Theorem 1 offers an alternative
to coarse-graining. One can use the theorem upon learn-
ing just the maximum of ρ/ρ̃, rather than the densities’
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precise forms. Instead of bounding 〈Wdiss〉, one can cal-
culate a one-shot dissipated work exactly.
One might worry that the RHS of Eq. (9) diverges.

For instance, a point particle has a Dirac-delta-function
ρ, if the particle has a particular momentum. Evaluating
D∞ on a divergent ρ would yield infinity. In reality, how-
ever, finite precision limits measurements of a particle’s
position and momentum. This practicality regulates the
divergence, rendering Theorem 1 applicable to realistic
particles.
Interchanging the arguments of D∞ yields the worst-

case forfeited work. One can extract less work by im-
plementing the reverse protocol at finite speed than by
implementing the protocol quasistatically, due to dissi-
pation. The worst-case forfeited work

Wworst
forfeit := ∆F −Wmax (12)

is the most work an agent might sacrifice for time in any
finite-speed reverse trial:

Wworst
forfeit =

1

β
D∞(ρ̃(q,−p, t)||ρ(q, p, t)), (13)

if supp(ρ̃(q,−p, t)) ⊆ supp(ρ(q, p, t)).

B. Divergences between quantum states

Parrondo et al. have quantized Eq. (8) [21]. They con-
sider a quantum system governed by a quantum Hamil-
tonian H(λt) specified by an external parameter λt. Let
ρ(t) denote the state occupied by the system at time t. In
the forward protocol, the system begins in thermal equi-
librium: ρ(−τ) = e−βH

−τ /Z−τ . During t ∈ (−τ, τ), the
system is isolated from the bath, and an agent invests
work to switch λt from λ−τ to λτ . The state changes
unitarily. During the reverse protocol, the system is pre-
pared in the state ρ̃(τ) = e−βHτ /Zτ ; time runs from t = τ
to t = −τ ; and work is extracted via the time-reversed
schedule λ−t.
Assuming that supp(ρ(t)) ⊆ supp(ρ̃(t)), Parrondo et

al. derive

〈Wdiss〉 =
1

β
D1

(

ρ(t)||ρ̃(t)
)

. (14)

Recycling their set-up, we will prove a proportionality
between the worst-case dissipated work and an order-
∞ Rényi divergence. We must define “work” explicitly.
In some quantum fluctuation-relation contexts, work is
defined in terms of two energy measurements [3, 35]:
The system begins in the thermal state γ−τ . An en-
ergy measurement at t = −τ yields some eigenvalue Ei of
H−τ . The system is isolated from the bath, and the state
evolves unitarily. An energy measurement at t = τ yields
some eigenvalue Ẽj of Hτ . As the system exchanges no
heat during the unitary evolution, the difference between
the measurement outcomes equals the work performed:
W = Ẽj − Ei.

We assume that the agent does not learn the initial
measurement’s outcome until the end of the protocol. Be-
cause the state begins block-diagonal relative to the ini-
tial Hamiltonian, this measure-and-forget operation pre-
serves the initial state.

Theorem 2. The worst-case work dissipated during any

such quantum forward trial is

Wworst
diss =

1

β
D∞(ρ(t) || ρ̃(t)). (15)

Proof. Let ρ(t) =
∑

i pi|i(t)〉〈i(t)| and ρ̃ =
∑

j p̃j |j̃(t)〉〈j̃(t)| denote the states’ eigenvalue de-
compositions. The eigenvalues, and the inner products
〈i(t)|j̃(t)〉, remain constant throughout the unitary
evolution. D∞(ρ(t)||ρ̃(t)) therefore remains constant.
Without loss of generality, we can evaluate the definition
[Eq. (6)] at t = τ :

D∞(ρ(t)||ρ̃(t)) = ln

(

max
i,j

{

pi
p̃j

: 〈i(τ)|j̃(τ)〉 6= 0

})

.

(16)
Let U denote the unitary that evolves the initial state

to the final in the forward process: ρ(τ) = Uρ(−τ)U †.
We can express the inner product as 〈i(−τ)|U †|j̃(τ)〉.
The thermal natures of ρ(−τ) and ρ̃(τ) imply that pi =

e−βEi/Z−τ and p̃j = e−βẼj/Zτ . Since Zτ/Z−τ = e−β∆F ,
Eq. (16) is equivalent to

D∞(ρ(t)|ρ̃(t)) = ln
(

max
i,j

{

eβ(Ẽj−Ei−∆F ) :

〈i(−τ)|U †|j̃(τ)〉 6= 0
})

. (17)

The work dissipated in some forward trial is propor-
tional to the exponential’s argument. The forward pro-
tocol is unable to map |i(−τ)〉 to |j̃(τ)〉 if and only if
〈i(−τ)|U †|j̃(τ)〉 = 0, i.e., if and only if the condition in
Eq .(17) is violated. Hence the worst-case work that can
be dissipated during any forward trial is proportional to
exponential’s argument, maximized under the condition
in Eq. (17). Rearranging Eq. (17) yields Eq. (15).

The discussion of irreversibility, distinguishability, t-
dependence, the quasistatic limit, and coarse-graining
that characterizes the classical Theorem 1 characterizes
also the quantum Theorem 2. Wworst

diss is bounded when
H−τ and Hτ have bounded spectra. Bounded spectra
characterize many realistic systems, including one-shot
problems (e.g., [11]).
An unbounded example seemingly curtails the the-

orem’s applicability: the classical harmonic oscillator
(HO). Specifically, take a positively charged classical par-
ticle that moves in one dimension (the x-axis), in a poten-
tial well centered at x = 0. Consider turning on and off
an electric field. In the worst case, prima facie, the field
pushes the particle to the top of the well—infinitely high
up, costing Wworst

diss = ∞. However, an HO accurately
models a realistic particle only near x = 0. Farther away,
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a realistic potential likely flattens, or turns over into a
deeper potential well, or becomes well-modeled by an in-
finitely hard wall, etc. In real-world situations, therefore,
Wworst

diss is finite.2

Let us apply Theorem 2 to a sudden quench. Quantum
quenches’ work distributions have been studied in the
context of the transverse-field Ising model [22, 23, 26],
trapped ions [20], randomly quenched finite-dimensional
systems [24], Fermi gases [25], and semiclassical approx-
imations [27]. Consider a finite-dimensional quantum
system S, e.g., a set of N qubits (two-level systems).
Let H(λt) denote the Hamiltonian. The parameter
λt is quenched (changed instantaneously) from λ to

λ̃ during the forward protocol and from λ̃ to λ dur-
ing the reverse protocol [4]. S begins the forward
protocol in the state ρ(−τ) = e−βH(λ)/Z−τ , wherein
H(λ) =

∑

j Ej |Ej〉〈Ej |. S begins the reverse protocol

in ρ̃(τ) = e−βH(λ̃)/Zτ , wherein H(λ̃) =
∑

j Ẽj |Ẽj〉〈Ẽj |.
By the density operator’s statistical interpretation, S
can be regarded as starting each trial in an energy
eigenstate chosen according to a Gibbs distribution.
In the worst case, S begins in the forward process in
the lowest-energy eigenstate of H(λ), |Emin〉, which is

the highest-energy eigenstate of H(λ̃), |Ẽmax〉. The

work dissipated is Wworst
diss = Ẽmax − Emin − ∆F .

Now, we calculate D∞. The state’s form has no time
to change during the quench. Hence ρ(t) = ρ(0)
and ρ̃(t) = ρ(τ) ∀t. Therefore, D∞(ρ(t)||ρ̃(t)) =

log
(

minj,k

{

λ ∈ R : e
−βEj

Z
−τ

≤ λ e−βẼk

Zτ

})

=

log
(

e−βEmin+βẼmax

)

+ log(Z−τ/Zτ ). Equation (15)

is satisfied.

C. Divergences between work distributions

We have related dissipated work to a divergence D∞

between phase-space densities and to a D∞ between
quantum states. We now relate Wworst

diss to a D∞ between
distributions over possible values of work.

2 Even extreme settings lead to finite Wworst

diss
values. Consider,

as an example, a work protocol P that preserves the system’s
volume, V . The greatest amount W of work that could be
performed would turn the system into a volume-V black hole.
Adding more energy would raise the black hole’s mass, M . The
mass varies directly with the radius, R: M ∝ R. Hence adding
more energy would violate the protocol’s finite-volume constraint
and so would not be work performable during P. Though this
example might appear contrived, it has relevance to contempo-
rary physics: The intersection of general relativity and quantum
thermodynamics, especially together with high-energy physics,
forms a frontier being explored now. Initial steps in this direc-
tion include [36–38] and many works inspired by the black-hole-
information paradox. We leave a detailed unification of these
fields with one-shot statistical mechanics as an opportunity for
further study.

The Kullback-Leiber divergence between Pfwd(W ) and
Prev(−W ) is proportional to the average dissipated work:

1

β
D(Pfwd(W )||Prev(−W )) = 〈W 〉fwd −∆F = 〈Wdiss〉

(18)
[39, 40]. The first equality follows from the substitution
from Crooks’ Theorem [Eq. (1)] for Pfwd(W )/Prev(−W )
in the definition of D(Pfwd(W )||Prev(−W )). We will de-
rive a one-shot analog of Eq. (18).

Theorem 3. The worst-case work that can be dissipated
in any forward trial is proportional to the order-∞ Rényi
divergence between Pfwd(W ) and Prev(−W ):

Wworst
diss =

1

β
D∞(Pfwd(W )||Prev(−W )), (19)

if the set of possible work-values is bounded.

Proof. By the definition of D∞,

D∞(Pfwd(W )||Prev(−W )) (20)

= ln(min {λ ∈ R : Pfwd(W ) ≤ λPrev(−W ) ∀W}).

Let us solve for the minimal λ-value λmin that satis-
fies the inequality. First, we check that we can divide
the inequality by Prev(−W ). Crooks’ Theorem implies
that Pfwd(W ) = eβ(W−∆F )Prev(−W ). By assumption,
Pfwd(W ) and Prev(−W ) are nonzero only if W is finite.
Also, ∆F is finite. Hence Crooks’ Theorem implies that
Prev(−W ) = 0 if and only if Pfwd(W ) = 0. In this case,
the inequality becomes 0 ≤ λ · 0, which is satisfied by
any finite λ and so does not determine λmin. To solve for
λmin, we can restrict our focus to Prev(−W ) 6= 0, then di-
vide each side of the inequality in Eq. (20) by Prev(−W ):

λmin ≥
Pfwd(W )

Prev(−W )
∀W. (21)

Substituting into the RHS from Crooks’ Theorem
yields λmin ≥ eβ(W−∆F ). The bound saturates when W
assumes its maximal valueWmax: λmin = eβ(Wmax−∆F ) =
eβW

worst

diss . Substituting into Eq. (20) yields Eq. (19).

Just as 1
β
D1(Pfwd(W )||Prev(−W )) equals the

average, over many trials, of dissipated work,
1
β
D∞(Pfwd(W )||Prev(−W )) equals the most work

that could be dissipated in any trial. An agent can
calculate this dissipated work upon inferring Pfwd and
Prev from experimental or simulation statistics.
Theorem 3 contains a Rényi divergence between work

distributions, rather than aD∞ between phase-space dis-
tributions or a D∞ between quantum states. Hence The-
orem 3 governs more protocols than Theorems 1 and 2, as
it describes all protocols—quantum or classical, regard-
less of whether the system exchanges heat while work is
performed—that obey Crooks’ Theorem.
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Interchanging the divergence’s arguments yields the
worst-case forfeited work [Eq. (12)]:

Wworst
forfeit =

1

β
D∞(Prev(−W )||Pfwd(W )). (22)

IV. OUTLOOK

We have developed one-shot analogs of three relation-
ships between the average dissipated work 〈Wdiss〉 and
the average Rényi divergence D1. We related the worst-
case dissipated work Wworst

diss to an order-∞ Rényi di-
vergenceD∞ between classical phase-space distributions,
between quantum states, and to a D∞ between work dis-
tributions. The triptych of theorems demonstrates an un-
expected generality of the equality Wworst

diss = 1
β
D∞(.||.).

Beyond this theoretical contribution, our results may
have applications to experiments and simulations. We
applied Theorem 2 to a quantum quench, whose work
distribution has been studied in diverse settings [20, 22–
27]. Work distributions have been studied also for
trapped ions [42], single-electron boxes [43], and classical
gases [41].
Applications to such settings could assume many

forms. For instance, experimentalists simulating their
systems, before performing experiments, might infer the
right-hand side of Eq. (9) or of Eq. (15). The Wworst

diss
estimate could inform the preparation of work resources
(e.g., a sufficiently charged battery) sufficient to ensure
that any implementation of the protocol succeeds. Also,
dissipated work may manifest as heat. Equipment such
as transistors can break if inundated with too much
heat. Such equipment may be strengthened to withstand
Wworst

diss . Additionally, high-precision measurements of
small heat quantities are being developed (e.g., [44]). Our
results could provide a “sanity check” on whether new
instruments are working properly. If the measured heat
exceeds Wworst

diss , the instrument is likely malfunctioning.
A few practicalities merit consideration in applications

of our theorems. Consider applying Theorem 3 to exper-
imental data. One measures W in each of several tri-
als, and bins the outcomes to form a histogram. Only
finitely many trials can be performed, so Pfwd(W ) and
Prev(−W ) are estimated with finite precision [45–47].
Some W = W0 bin in the Prev(−W ) histogram might

have height zero, though Prev(−W0) 6= 0. The worst-case
work would appear to diverge. Given physical expecta-
tions that Wworst

diss 6= ∞, one could vary the histograms’
bin widths to model Prev(−W ) better.

Relatedly, the histograms can be smoothed. An agent
can trade off the guarantee that each trial will accom-
plish its purpose for the possibility of paying less work
(or extracting more work). An agent’s risk tolerance can
be quantified with a parameter ǫ ∈ [0, 1]. The agent
ignores area-ǫ tails of the distributions, because they
correspond to highly unlikely W -values [48]. This pro-
cess, called smoothing, has been introduced into Rényi
divergences [15] and into one-shot statistical mechanics
(e.g., [9, 11, 49–51]). Smoothing offers a theoretical and
practical opportunity to advance this article’s results fur-
ther into applications.

Note added: Theorem 3 appeared in a preprint
of [17], not in the published article. Since the first
preprint of this article appeared, [48, 52–54, 56] have
addressed other aspects of the one-shot-and-fluctuation-
relation overlap. Rényi divergences were applied to fluc-
tuation relations within a resource-theory model in [49].
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[16] F. Dupuis, L. Krämer, P. Faist, J. M. Renes, and R. Ren-

ner, XVIIth Int. Congress on Math. Phys., in XVIIth In-

ternational Congress on Mathematical Physics, Aalborg,
Denmark, 2012, 1211.3141.

[17] N. Yunger Halpern, A. J. P. Garner, O. C. O. Dahlsten,
and V. Vedral, New J. Phys. 17, 095003 (2015).

[18] G. E. Crooks, J. Stat. Phys. 90, 1481 (1998).
[19] S. Deffner and E. Lutz, Phys. Rev. Lett. 105, 170402

(2010).
[20] R. Dorner, J. Goold, C. Cormick, M. Paternostro, and

V. Vedral, Phys. Rev. Lett. 109, 160601 (2012).
[21] J. M. R. Parrondo, C. V. den Broeck, and R. Kawai, New

J. of Phys. 11, 073008 (2009).
[22] Phys. Rev. Lett. 101, 120603 (2008).
[23] N. O. Abeling and S. Kehrein, Phys. Rev. B 93, 104302

(2016).
[24] M.  Lobejko J.  Luczka and P. Talkner, Phys. Rev. E 95,

052137 (2017).
[25] A. Sindona and J. Goold and N. Lo Gullo and F. Plastina,

New J. Phys. 16 (2014).
[26] A. Gambassi and A. Silva, arXiv e-print (2011), cond-

mat/1106.2671.
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