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Fractional transport equations are used to build an effective model for transport across the running
sandpile cellular automaton [T. Hwa and M. Kardar, Phys. Rev. A 45, 7002 (1992).]. It is shown
that both temporal and spatial fractional derivatives must be considered to properly reproduce the
sandpile transport features, that are governed by self-organized criticality, at least over sufficiently
long/large scales. In contrast to previous applications of fractional transport equations to other
systems, the specifics of sand motion require in this case that the spatial fractional derivatives used
for the running sandpile must be of the completely asymmetrical Riesz-Feller type. Appropriate
values for the fractional exponents that define these derivatives in the case of the running sandpile
are obtained numerically.

I. INTRODUCTION

Sandpile cellular automata became the posterchild
for self-organized criticality (SOC) from the very early
days1, and many variants have been constructed to pro-
vide simplified frameworks in which the complex dynam-
ics of many different systems could be studied, from
earthquakes to forest fires, from solar flares to accre-
tion disks2–8 [Although, curiously enough, it has been
proven9,10 that these automata do not provide a good
description of natural sandpile dynamics!]. All of these
automaton variants contain, in one way or another, the
main ingredients needed for SOC dynamics to appear:
an open, driven system with a local instability thresh-
old and a large separation of scales between local drive
and instability relaxation. The resulting dynamic steady
state, once the external drive and sandpile losses are bal-
anced on average, is known as the SOC state1. It ex-
hibits properties typical of critical points such as scale-
invariance, long-term memory and divergent correlations.
Transport through the system is inherently bursty and of
non-diffusive nature, being dominated by avalanches.

In the field of magnetically confined fusion (MCF)
toroidal plasmas, a variant of the sandpile automaton
known as the running sandpile11–14 has been used exten-
sively to try to understand turbulent transport charac-
teristics in tokamaks and stellarators15. A main feature
of the running sandpile, that somewhat moves it away
from other sandpile automata often discussed in the lit-
erature, is that the separation between the timescales
of drive and relaxation is finite and, sometimes, not very
large. This comes about because, in contrast to the stan-
dard sandpile automaton, the drive is not stopped once
an avalanche starts and reactivated after all avalanching
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activity dies away. Instead, the sandpile keeps on be-
ing driven as avalanches progress in time. This choice of
rules makes both analytical progress and numerical char-
acterization of avalanches more challenging (avalanches
do overlap, for instance) but, at the same time, intro-
duces a time scale in the problem that is essential for
many practical applications and, in particular, in the con-
text of MCF plasmas15–17.

Among the many needs of the MCF tokamak program,
an important one is the development of effective mean-
field transport models with reliable predictive capabili-
ties regarding the confinement of the plasma density and
energy in these toroidal traps18. Several authors have
suggested that, at least in those plasma regimes in which
SOC-like dynamics appear to dominate radial transport,
these effective models would require the use of fractional
transport equations15,19–23. In this article, we describe
in detail how one such effective transport model could be
built for the running sandpile cellular automaton, given
its role as a simple, but still meaningful paradigm for the
transport dynamics taking place in MCF plasmas while
in a SOC-like regime. The results reported here, albeit
meaningful in their own right within the context of the
study of sandpile automata, might also teach some useful
lessons regarding the construction of effective models in
MCF plasmas, as well as for any other natural systems
with similar directed transport dynamics.

The article is thus organized as follows: in Sec. II the
running sandpile automaton is briefly introduced. Then,
an effective transport equation is built for the running
sandpile in Sec. III starting from a continuous-time ran-
dom walk (CTRW) model that incorporates the most
salient features of transport in the sandpile. The result-
ing effective transport equation contains both fractional
derivatives in space and time. The most relevant free
parameters that define the fractional transport model,
namely its fractional exponents, are then quantified nu-
merically in Sec. IV, with the help of tracers (i.e., marked
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grains of sand). We will then proceed to discuss the
meaning of these results in Sec. V and draw some fi-
nal conclusions in Sec. VI.

II. THE RUNNING SANDPILE MODEL

The sandpile celluar automaton that we will consider
in this paper is the one-dimensional, driven and directed
running sandpile11,12 (see Fig. 1). The sandpile domain
consists of L cells or sites, numbered from n = 1 to n = L.
To each cell n, a variable hn is assigned that represents
the amount of sand stored (or its height) in the cell.

The running sandpile state is evolved in time in the
following way. First, by randomly dropping Nb grains
of sand on every cell at each iteration with a probability
P0. What happens next depends on the value of the local
slope at each of the sandpile cell. A critical slope exists,
−Zc (Zc > 0) that, when locally overcome (i.e., when the
local gradient Zn = hn+1 − hn exceeds −Zc), causes the
removal of Nf grains of sand to the adjacent position.
All cells are checked for instability once per iteration.
After this is done, a new iteration starts, and new sand
is randomly dropped over the sandpile cells. The rules of
the running sandpile are completed by imposing a closed
boundary condition at n = 1, so that no sand flux enters
that cell from the left, and an open boundary condition
at n = L, so that all sand grains reaching the bottom
edge of the sandpile (in chunks of Nf , since they must be
transported by avalanches; rain is not added to the last
cell!) are removed from the system.

The SOC character of the sandpile transport dynamics
is rooted in the existence of this critical slope. In addi-
tion, it is also important that the relaxation process has
some inertia. That is, that Nf > Nb, to avoid the average
slope staying at the critical value −Zc all the time. Also,
it must happen that Nf > P0NbL in order to avoid the
sandpile becoming overdriven. The reason for this con-
dition is that, since the sandpile receives P0NbL grains
of sand per iteration (on average), steady-state requires
this value to be less than what can be extracted at the
sandpile edge per iteration, given by Nf .

The running sandpile will always reach a steady state
under a continuous, fixed-average external drive. The
average slope of the sandpile, at steady state, is roughly
given by Z̄ ' −(Zc − Nf/2) due to the aforementioned
inertia of the relaxation (see Fig. 2; an explicit estimation
of the average slope in the running sandpile is given, for
instance, in Ref. 24; an alternative estimation is provided
in Ref. 25). Transport across the sandpile domain will
be driven by avalanches, that exhibit an approximately
self-similar distribution of linear sizes and durations over
an extended range of scales (or mesorange) that is lim-
ited only by finite size effects12. Avalanche initiation
points are roughly uniformly distributed throughout the
pile, except at the very edge, where the open boundary
condition imposes a larger mean slope. The probabil-
ity of an avalanche stopping increases with the cell in-

FIG. 1: (Color online) (left) Sketch of the one-dimensional
sandpile in real space explaining the corresponding automaton
rules. (right) Sketch of an avalanche taking place.

dex, n, due to the fact25 that the sand that needs to
be transported down the slope must increase to balance
the integrated drive over all cells n′ < n. Furthermore,
the time series of the sandpile activity, defined as the
number of unstable cells at each time, exhibits long-term
persistence over scales much longer than the maximum
avalanche duration12,26. In particular, persistence in
the running sandpile has been extensively studied using,
among other methods, its power spectrum (that scales as
f−a, 0 < a < 1 over the SOC mesorange) or determining

FIG. 2: (Color online) Plot of the average sandpile slope,
−〈Z〉, vs the estimate −(Zc − Nf/2) for two sandpiles with
lengths L = 100 (in red/dark grey squares) and L = 300
(in green/light grey circles) and various values of NF and
Zc. The error bars represent the standard deviation, that
naturally scales with NF .
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FIG. 3: (Color online) Global scaling of the mean value of the
transit time (τc) with sandpile parameters L, Nf , Nb and P0.

its Hurst exponent (that satisfies H > 0.5 over the SOC
mesorange timescales).

In order to characterize the particle confinement in the
sandpile from a global perspective, it is useful to measure
the average time taken for a marked grain of sand to move
across the whole sandpile and reach the edge. We will
later describe in detail how these marked grains are ad-
vanced (see Sec. IV). For now, it suffices to say that their
average confinement time τc has been estimated using a
large number of marked grains and then fit to a product
of powers of the main sandpile parameters. Namely, the
sandpile length L, the number of grains locally moved
when unstable Nf , the number of grains dropped on ev-
ery cell at each iteration Nb and the rain probability P0

[The critical threshold Zc does not affect the confinement
time. It has been set to Zc = 200 in all simulations.]. The
resulting global scaling for τc is (see also, Fig. 3):

τc = 0.34L0.4Nf (NbP0)
−1
. (1)

Clearly, the most remarkably feature of this global scal-
ing law, that reveals its non-diffusive (i.e., avalanche) dy-
namics, is the value of the L-exponent.

III. MEAN FIELD TRANSPORT MODEL FOR
THE RUNNING SANDPILE AUTOMATON IN

TERMS OF FRACTIONAL DERIVATIVES

In this section, we will construct an effective mean
field transport model for the running sandpile just de-
scribed. The starting point is the well-known continuous-
time random walk (CTRW) formalism27, that we have
adapted to the reality of transport in the running sand-
pile automaton. The effective transport model results
from considering the long-time, large-distance asymp-
totic behaviour of this CTRW, as it has traditionally been
done for many other problems28. In the one-dimensional
CTRW, a number of walkers N are considered. Each
walker stays at its initial position, x0, for a waiting time
∆t. Then, it carries out a jump of size ∆x, that takes

the walker to its new position, x0 + ∆x. This process is
carried out many times by each walker. The CTRW is
defined, naturally, by prescribing the pdf of both jump
sizes, p(∆x), and waiting-times, ψ(∆t). In a purely dif-
fusive system, the transport process is expected to have
finite characteristic scales, both in time and space (in
a gas, for instance, these scales could be the mean free
path and the inverse collision frequency, respectively). In
a SOC system, however, the self-similar, critical nature of
the SOC state prevents these characteristic scales from
existing. The choices for p and ψ must then naturally
reflect these features, as will be discussed soon. These
waiting-times will endow the CTRW with an interest-
ing property, that is sometimes referred to as a semi-
Markovian character. Namely, it refers to the fact that
in spite of the waiting-times being identically distributed
and independent random variables, their accumulation
introduces a memory in the absence of a finite first mo-
ment, and thus non-Markovian properties29.

Before getting any deeper into that discussion, it is
however convenient to solve the CTRW. By that, we
mean to calculate its propagator, G(x, t|x0, t0), as a func-
tion of the choices made for p(∆x) and ψ(∆t). The prop-
agator simply gives the probability of finding one walker
at position x and time t, assuming it was at position x0
at a previous time t0. Once known, the general solu-
tion of the CTRW can be written, for arbitrary initial
(i.e., t = 0) walker density, n0(x) and external source of
walkers, S(x, t) as:

n(x, t) =

∫ ∞
−∞

dx′G(x, t|x′, 0)n0(x′) + (2)

+

∫ t

0

dt′
∫ ∞
−∞

dx′G(x, t|x′, t′)S(x′, t′).

By defining an augmented source as Saug(x, t) = S(x, t)+
n0(x)δ(t), we can recast this equation as:

n(x, t) =

∫ t

0

dt′
∫ ∞
−∞

dx′G(x, t|x′, t′)Saug(x′, t′). (3)

Since the CTRW is invariant under translations in both
space and time (or, in other words, since the pdfs p and ψ
do not explicitly depend on the position x of the walker or
the current time t), it then follows that the propagator
only depends on the relative distance and the elapsed
time, which turns Eq. 3 into:

n(x, t) =

∫ t

0

dt′
∫ ∞
−∞

dx′G(x− x′, t− t′)Saug(x′, t′). (4)

This double convolution combines well with the fact
that the propagator of the CTRW can straightforwardly
be found in Fourier-Laplace space, as shown in Ref. 27.
It is given by:

Ḡ(k, s) =
(1− ψ̃(s))/s

1− ψ̃(s)p̂(k)
. (5)
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Here, s and k respectively stand for the Laplace and
Fourier variables related to ∆t and ∆x. The Laplace
transform is represented by a tilde on top of the function
being transformed, the Fourier transform by a hat, whilst
the double Laplace-Fourier transform by a bar.

A mean field transport model can now be built by first
proposing suitable choices for p(∆x) and ψ(∆t), and then
keeping just the long-time, large-distance asymptotic be-
haviour of the resulting propagator. In Fourier-Laplace
space, this means taking the asymptotic behaviour for
k → 0 and s → 0. For instance, the classical diffusive
equation is obtained28 by choosing p and ψ to be, re-
spectively, a Gaussian (with zero mean and variance σ2)
and exponential pdf (with mean time τ0). The Gaussian
law satisfies that,

p̂(k) ∼ 1− σ2k2, k → 0, (6)

and the exponential pdf that,

ψ̃(s) ∼ 1− τ0s, s→ 0. (7)

This leads to an asymptotic behaviour of the propagator
of the form,

Ḡ(k, s) ∼ 1

s+ (σ2/τ0)k2
, s→ 0, k → 0. (8)

Inserting this expression into Eq. 3, one can easily reorder
terms and get,

sn̄(k, s)− n̂0(k) ' −σ
2

τ0
k2n̄(k, s) + S̄(k, s), (9)

whose Laplace-Fourier inverse becomes the usual diffu-
sive equation:

∂n

∂t
=
σ2

τ0

∂2n

∂x2
+ S(x, t), n(x, 0) = n0(x). (10)

It should be noted that, in the purely diffusive case, σ
and τ0 provide the finite characteristic scales for trans-
port. For that reason, one must choose functions for
p(∆x) and ψ(∆t) that respectively lack a finite variance
and a finite mean if the intention is to build a trans-
port model for a system in which the dynamics are self-
similar and divergent. The same central limit that ad-
vises picking Gaussians in many situations, points us now
towards strictly stable Lévy distributions L[α,λ,σ](x) (see

Appendix A), all of which lack a finite variance30. The
parameter α ∈ (0, 2) determines the tail behaviour of the
distribution, that scales as L(x) ∼ |x|−(1+α) for large
values of the argument. Since α < 2, all Lévy pdfs
do lack a finite variance as stated (in fact, for α ≤ 1,
they also lack a finite mean!). Next, λ ∈ [−1, 1], is a
symmetry parameter, with the Lévy law being symmet-
ric (i.e., L(−x) = L(x), ∀x) only for λ = 0. σ, on
the other hand, is a shape parameter that measures the
width of the distribution in the sense that its finite mo-
ments (p < α),

〈|x|p〉 :=

∫ ∞
−∞

dxL[α,λ,σ](x)|x|p = cpα,λ(p)σp, (11)

are proportional to powers of σ. The definition of the con-
stant cα,λ(p) can be found elsewhere30. For symmetric
Lévy pdfs (i.e., those with λ = 0), one can even define an
effective width w by means of the expression wp := 〈|x|p〉.

In many applications22, the microscopic transport pro-
cess is unbiased and symmetric in space, that leads to the
natural choice of p(∆x) = Lα,0,σ(∆x) as the jump size
distribution, for some appropriate values of α < 2 and
σ > 0 that must be determined. On the other hand,
waiting-times can only be positive and must therefore
lack a finite mean if a characteristic scale does not ex-
ist. It is thus convenient to choose ψ(∆t) = Lβ,1,τ (∆t)
as waiting-time pdf, for appropriate β < 1 and τ > 0.
Distributions with β = 1 are part of a subfamily known
as extremal Lévy distributions (see Appendix A), that
have the nice property of being defined only for ∆t > 0.
Extremal Lévy pdfs also lack a finite mean since they
scale as ψ(∆t) ∼ ∆t−(1+β) for large ∆t.

In the case of the running sandpile automaton, how-
ever, sand can only travel in one direction: down the
slope. Thus, a symmetric Levy pdf would be an inappro-
priate choice for the jump pdf. Instead, we will choose
another extremal distribution, p(∆x) = Lα,1,σ(∆x), with
0 < α < 1 and σ > 0. This fully asymmetric choice will
however lead to a transport equation that is rather dif-
ferent from what is often used in other applications, as
it will become apparent very soon. In particular, it is
worth to differentiate from other non-symmetric choices
sometimes found in the literature, such as the considera-
tion of CTRWs with a drift31, that are not adequate for
the sandpile case examined here.

To proceed with the derivation of the effective trans-
port model, we will need to use two well-known properties
of all extremal Levy distributions30. Namely, that their
Laplace transform behaves as,

L̃[β,1,τ ](s) ∼ 1− τβsβ

cos(πβ/2)
, s→ 0, (12)

and that its Fourier transform behaves, for k → 0, as
(i =

√
−1),

L̂[α,1,σ](k) ∼ 1− σα|k|α
(

1− ik

|k|
tan

(πα
2

))
. (13)

Inserting these asymptotic behaviours in the CTRW
propagator (Eq. 5), one obtains (s→ 0, k → 0):

Ḡ(k, s) ∼ sβ−1

sβ + cos
(
πβ
2

)
σα

τβ |k|α
(

1− ik
|k| tan

(
πα
2

)) . (14)

The Laplace-Fourier transform of the CTRW general so-
lution (Eq. 3) then becomes, after some straightforward
reordering,

sn̄(k, s)− n̂(k, 0) ' S̄(k, s)−

− sβ−1
[
Dα,β |k|α

(
1− i k

|k|
tan

(πα
2

))]
n̄(k, s),

(15)
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where we have defined a fractional transport coefficient
Dα,β := cos(πβ/2)σα/τβ . This equation can be Fourier-
Laplace inverted to yield,

∂n

∂t
= 0D

1−β
t

[
Dα,β

∂α,1n

∂|x|α,1

]
+ S(x, t), (16)

by introducing a Rieman-Liouville fractional derivative
(see Appendix B) in time and a Riesz-Feller fractional
derivative (see Appendix C) in space. In particular,

0D
1−β
t is a Rieman-Liouville fractional derivative of or-

der 1 − β and start point at t = 0. On the other hand,
∂α,1/∂|x|α,1 is a completely asymmetrical (and left-sided)
Riesz-Feller fractional derivative of order α.

It is at this point where the most meaningful differ-
ence with systems in which unbiased, symmetric trans-
port takes place at the microscopic level. In the unbiased
case, one usually picks p(∆x) = Lα,0,σ(∆x) as the jump
size distribution, which leads to the transport equation28,

∂n

∂t
= 0D

1−β
t

[
Dα,β

∂αn

∂|x|α

]
+ S(x, t), (17)

that contains the symmetric Reisz operator (Appendix
C). As a result, changes in n(x, t) at location x is cal-
culated by collecting the contributions from all locations
x′ < x and x′ > x. In contrast, Eq. 16 contains the
asymmetrical (left-sided) Reisz-Feller derivative, that is
defined as:

∂α,1n

∂|x|α,1
∝ dk

dxk

[∫ x

−∞

n(x′)dx′

(x− x′)α−k+1

]
, (18)

with k defined as the integer satisfying k − 1 < α < k.
Here, only points x′ < x contribute to the integral, a
reflection of the fact that net transport can only come
from the left (i.e., down the slope, in the running sand-
pile), and not from the right.

Furthermore, these distinctions imply that some usual
associations made in the context of Eq. 17 are no longer
true. For instance, it is traditional to define a transport
exponent H = β/α, that quantifies how the finite mo-
ments of the propagator of Eq. 17 grow with time:

〈|x− x0|pGEq. 17(x, t|x0, 0)〉 ∝ tpH , (19)

being x0 the initial position. For unbiased, symmetric
motion, H > 1/2 is often referred to as superdiffusive be-
haviour, whilst H < 1/2 is subdiffusive behaviour. These
names reflect the fact that the propagator spreads faster
or slower than their diffusive counterpart (i.e., β = 1,
α = 2). For biased motion, on the other hand, an expo-
nent H = β/α could still be defined, but it would make
no sense to interpret it in a similar way, since the prop-
agator is now fully asymmetric. Therefore, Eq. 19 no
longer characterize how the propagator spreads around
its “center of mass”, since they will be strongly affected
by how fast the “center of mass” itself moves down the
slope (which, for symmetric motion, it does not!).

IV. FRACTIONAL EXPONENTS FOR THE
RUNNING SANDPILE

In order to use Eq. 16 as a mean field model for trans-
port in the sandpile, we need to estimate first the frac-
tional exponents α and β. There are several ways to do
this. One of the simplest ones is to take advantage of
the asymptotic behavior of the propagator of the trans-
port equation defined in Eq. 14. In particular, it can be
shown that, for fixed tc, it satisfies that32:

G(x, tc|x0) ∼ (x− x0)−(1+α), x− x0 � D
1/β
α,β t

β/α
c . (20)

On the other hand, for fixed xc > x0, it satisfies that,

G(xc, t|x0, 0) ∼ tβ , t� D
1/β
α,βx

α/β
c , (21)

and,

G(xc, t|x0, 0) ∼ t−β , t� D
1/β
α,βx

α/β
c . (22)

Therefore, one can estimate α and β by constructing
the propagator of transport in the running sandpile and
quantifying how it changes at fixed position and time.
How can one estimate this propagator, though? In our
case, we do it by introducing tracers in the sandpile.

A. Advancing tracers in the running sandpile

The propagator of the CTRW gave the probability of
finding a walker at position x and time t after having
been at x0 at time t0. The propagator of the transport
equation, on the other hand, gives the temporal evolution
of the initial condition n(x, 0) = δ(x − x0). Therefore,
one can in principle estimate it by following the motion
of a sufficiently large number of marked grains of sand
(or tracers) that are initially localized very close to each
other. In order to do this, we need to consider however
a different population of sand grains that, although ad-
vanced together with the normal sand, are inert in the
sense that they are not considered when a cell is checked
for instability. Or, in other words, none of these tracers
are considered when updating the local sandpile height
or gradient.

Following Ref. 28, we will focus on a narrow strip of
width Nf at the sandpile surface, which is the active layer
where motion takes place. We will consider N marked
grains of sand that will be initially located close to the
center of the sandpile. The temporal evolution of the
marked population, as it is transported down the pile,
will be used to build the propagator we are looking for.
The m-th marked grain will be positioned, at some initial
time, tm0 , at an arbitrary cell im, chosen randomly from
within a reduced number of cells near the top of the pile.
The initial position of the m-th grain is then xm(0) =
im; its depth in the im column, as measured from its
top, will be initially set to dm(0) = uNf , where u is a
random number uniformly distributed in [0, 1]. As the
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sandpile is iterated, the position, xm, and depth dm of
the marked grain of sand will change. Their values, at
the k-th iteration, will be updated after finding out which
of the following rules applies33:

1. the current cell is stable and no grains of sand have
been dropped on it in the previous driving phase;
then dm(k) = dm(k − 1); xm(k) = xm(k − 1);

2. the current cell is stable, but Nb grains of sand have
fallen on it in the previous driving phase;
then dm(k) = dm(k− 1) +Nb; x

m(k) = xm(k− 1);

3. the current cell is stable, but the previous one is
unstable and moves Nf grains over to the current
cell;
then dm(k) = dm(k− 1) +Nf ; xm(k) = xm(k− 1);

4. the current cell is stable, the previous one is unsta-
ble and, in the driving phase, Nb grains have fallen
on the current cell;
then dm(k) = dm(k − 1) + Nf + Nb; xm(k) =
xm(k − 1);

5. the current cell is unstable and Nf grains are thus
moved to the following cell; no grains of sand have
been dropped on the current cell in the driving
phase;
then, if dm(k − 1) ≤ Nf −→ dm(k) = uNf ;
xm(k) = xm(k − 1) + 1;
if dm(k − 1) > Nf −→ dm(k) = dm(k)−Nf ;
xm(k) = xm(k − 1);

6. the current cell is unstable and Nf grains are thus
moved to the following cell; at the previous driving
phase, Nb grains of rain have fallen on the current
cell;
then, if dm(k − 1) ≤ Nf −Nb −→ dm(k) = uNf ;
xm(k) = xm(k − 1) + 1;
if dm(k − 1) > Nf − Nb −→ dm(k) = dm(k) −
Nf +Nb;
xm(k) = xm(k − 1);

The majority of these rules are rather self-explanatory.
Basically, they state that, when it is time to move Nf
particles to the next cell, our marked grain will be trans-
ported together with that bunch only if its depth in the
cell is at most Nf . In that case, the marked grain of
sand will reset its depth at the new cell to a new value,
randomly chosen between 0 and Nf since u is a random
number uniformly distributed in [0, 1]. If the marked
grain is however deeper than Nf , it remains at the cur-
rent cell. In the (relatively rare) case that sand has been
dropped during the previous driving phase on the same
cell where the marked grain sits, the depth of the marked
grain is increased by Nb.

Fig. 4 shows the motion across the sandpile (size L =
10000, critical slope Zc = 200, toppling size Nf = 30,
rain probability p0 = 10−4 and rain size Nb = 1) of ten
marked grains of sand for the first 106 iterations. As

can be appreciated, the grains alternate radial displace-
ments when carried by a passing avalanche −that appear
as nearly horizontal segments (in fact, they are not ex-
actly horizontal since particles advance one position per
iteration. However, the scale of the temporal axis used
in the figure makes them look so)−, with periods of rest
at the same cell, while the grain remains trapped there
−that appear as vertical segments.

B. Propagator estimation in the running sandpile

The recorded positions of the marked grains of sand
can be used to build a discrete version of the sandpile
propagator. All that is needed is to calculate, at each
iteration, the pdf of the particle displacements with re-
spect to their respective initial locations, p(∆x; k). By
using relative displacements (from each initial location),
we can seed many more marked grains than the Nf that
would fit within the active narrow layer at a single lo-
cation. We can now initialize up to Nf of them at as
many cells as desired, which greatly improves the statis-
tics. It must be said, though, that by doing so we have
implicitly assumed that all these cells have similar dy-
namics. This is, to a great extent, the case for the run-
ning sandpile due to the uniformly spread random drive.
Each marked grain will contribute with the displacement
value ∆xm(k) = xm(k) − xm(0) (m = 1, · · · , N) at it-
eration k. Since p(∆x; k) thus gives the probability of a
particle having been displaced a distance ∆x in a time
k, averaged over its initial location, we can write that,

p(∆x; k) ' 〈G(x0 + ∆x, k|x0, 0)〉x0
, (23)

FIG. 4: (Color online) Motion across the sandpile of size
L = 10000 of ten selected particles, with initial locations ran-
domly chosen within the central half of the pile. The vertical
parts of the trajectories correspond to periods in which the
particle is at rest on some cell; the (almost) horizontal parts,
to periods of time in which the particle is transported radially,
carried away by passing avalanches.
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FIG. 5: (Color online) (a) Sandpile propagator for times cor-
responding to (0.8, 1.0, 1.2, 1.4 and 1.6) × 106 iterations us-
ing 10000 tracer particles for the L = 10000 sandpile with
Zc = 200, Nf = 30, Nb = 1 and P0 = 10−4. In (b), the
same propagators have been shifted to better appreciate the
power-law regions scaling as P (∆x) ∼ ∆x−1.8. The algebraic
scaling ∆x−2 is also shown (in black) to guide the eye.

which is the estimate of the propagator of the running
sandpile we are looking for.

There are some limitations that must be however con-
sidered while estimating the propagator in this way.
They are due to the unavoidable fact that each marked
grain does eventually reach the end of the sandpile.
Therefore, Eq. 23 should not be used beyond the typical
number of iterations required for the closest marked par-
ticles to reach the pile edge. In addition, one also needs
to consider that, since marked grains have been initial-
ized at different locations in order to improve statistics,
each one travels a different distance to reach the edge of
the sandpile. To avoid possible distortions, contributions
to Eq. 23 from any ∆x larger than the minimum of these
distances should also be disregarded.

Fig. 5(a) shows snapshots of the sandpile propa-
gator obtained at different times using N = 10000
marked grains, that were uniformly initialized at cells
with xm(0) ≤ xmax = L/10 = 1000 for any tracer
m ∈ [1, N ] (note that L = 10000 for all these simula-

FIG. 6: (Color online) Estimate of the evolution of the sand-
pile propagator at fixed positions, ∆x = 250, ∆x = 500 and
∆x = 750, as a function of time using 10000 tracer particles
for the L = 10000 sandpile with Zc = 200, Nf = 30, Nb = 1
and P0 = 10−4. As expected, the local value first grows and
then decays algebraically as P (∆t) ∼ ∆t±0.5.

tions). In Fig. 5(b) the same propagators have been
shifted up (magenta and cyan) and down (red and green)
to better appreciate the power-law regions where the cor-
responding fits have been performed. The propagators
exhibit power law regions beyond certain displacement
values, that are eventually replaced by exponential cut-
offs due to finite-size effects. In particular, power-law
scalings close to p (∆x) ∼ ∆x−1.8 are apparent that be-
come distorted at times of the order of 106 iterations and
above. This number is of the order of the number of iter-
ations required for a sizable amount of marked particles
to have reached the sandpile edge. By using Eq. 20, we
can thus infer a value α ∼ 0.8 for the spatial fractional
exponent of the effective fractional transport model (Eq.
16) for the running sandpile.

We estimate next the temporal fractional exponent by
quantifying the initial growth (Eq. 21) and later de-
cay (Eq. 22) of the propagator at a fixed location. In
Fig. 6, its temporal evolution is shown at three differ-
ent fixed displacement values, ∆x = 250, ∆x = 500 and
∆x = 750. For the smallest displacement, the propa-
gator grows as p (∆t) ∼ ∆t0.5 for ∆t < 4 × 105, and
then decreases as p (∆t) ∼ ∆t−0.5 for ∆t > 4× 105. For
∆x = 500, the propagator grows as p (∆t) ∼ ∆t0.5 but
for time lapses lasting double, ∆t < 8 × 105. Then de-
creases also as p (∆t) ∼ ∆t−0.5 for ∆t > 8×105. Finally,
for the largest displacement, the decay phase is however
not seen within the 106 iterations considered. In fact, it
would take approximately 1.6 × 106 iterations to appre-
ciate the beginning of this phase for this displacement.
Therefore, from Eqs. 21 and 22 we can infer a value
β ∼ 0.5 for the temporal exponent of the effective frac-
tional transport model (Eq. 5) for the running sandpile.
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FIG. 7: (Color online) Probability density functions for the
jump sizes (left) and waiting times (right) of marked grains
of sand moving across a running sandpile L = 10000 sandpile
with Zc = 200, Nf = 30, Nb = 1 and P0 = 10−4.

In order to increase our confidence in these exponent
values, we have also estimated the pdfs of waiting-times
and jump sizes of the marked grains directly. To do it,
we have considered the (almost) horizontal marker dis-
placements in Fig. 4 as the instantaneous jumps, and
the vertical segments as waiting times. Their pdfs are
shown in Fig. 7. As can be seen, p(∆x) ∼ ∆x−1.8

over sufficiently large values, before the appearance of
the unavoidable exponential cutoff at the largest scales;
on the other hand, ψ (∆t) ∼ ∆t−1.5 over the mesorange
scales. Therefore, these pdfs are consistent with the val-
ues α ∼ 0.8 and β ∼ 0.5 that were obtained from the
propagator analysis.

V. DISCUSSION

In the previous section, we have found that the long-
range, large-scale features of transport across the run-
ning sandpile seem to be well modelled by Eq. 16
with α ∼ 0.8 and β ∼ 0.5. The range of lengthscales
over which the exponent α is well defined is, roughly,
∆x ∈

[
102 − 103

]
, well separated from the minimum

(1) and maximum (10000) sizes allowed in the sandpile
(L = 10000), where finite size effects are expected. The
range of timescales over which β is well defined is longer,
roughly ∆t ∈

[
104 − 106

]
. That is, much longer than the

maximum duration avalanches can have in the sandpile,
which is of the order of L. This suggests that the fact
that exponent β is significantly smaller than 1 is needed
to capture the long-term persistence that is associated
to the evolution of the roughness of the sandpile height
profile. Or, in other words, to the influence of the foot-
prints left behind by previous avalanches on the future
transport across the sandpile.

Another interesting point regards the aforementioned
transport exponent, H = β/α. As we mentioned pre-

viously, this transport exponent is often used when dis-
cussing symmetric transport15,28. Indeed, H = 0.5 is
usually called a diffusive scaling, whilst H > 0.5 is re-
ferred to as superdiffusion, and H < 0.5, as subdiffusion.
In the running sandpile, however, this interpretation is
meaningless since the propagator for Eq. 16 is not only
asymmetric, but fully biased towards the down-the-slope
direction. Therefore, although one could still estimate
this transport exponent to be H ∼ 0.62, its value cannot
be interpreted as indicative of superdiffusive transport
taking place across the running sandpile. Indeed, H no
longer quantifies how the propagator spreads with respect
to its “center of mass” (as it does for symmetric motion),
but how fast the “center of mass” moves down the slope
(which, in a symmetric case, it does not!).

Finally, we would like to make some comments regard-
ing the practical use of Eq. 16 as an effective model
for the running sandpile. The first comment is that the
starting point of the spatial integral in Eq. 16 must be
replaced by 0, the innermost sandpile position (or one
could assume that n(x, t) = 0, ∀x < 0, at all times). Sec-
ondly, the kernel of the Riesz-Feller integral might then
need to be regularized to avoid a possible divergence of
the fractional derivative at its starting point, x = 0, that
might appear when imposing initial/boundary conditions
expressed in terms of usual (i.e., integer) derivatives34, as
often happens in physical systems (see Appendix B). The
regularization of fractional derivatives is a relatively stan-
dard practice in most applications of fractional transport
equations. Many details about these procedures can be
found in the literature23.

VI. CONCLUSIONS

In this work, we have constructed an effective model for
transport across the running sandpile cellular automaton
based on fractional derivatives. The resulting transport
equation (Eq. 16) must be written in terms of fully asym-
metric fractional derivatives both in space and time, due
to the fully biased nature of sand motion in the sandpile,
that only takes place down the slope. This is in contrast
with more common applications of fractional transport
equations, that often describe systems in which unbi-
ased, symmetric motion takes place, resulting in the use
of symmetric fractional derivatives in space. This dif-
ference forces us to revise the interpretation of some of
the exponents that characterize the model. We have also
estimated the fractional exponents required to complete
the effective model by using marked grains of sand as a
diagnostic tool. We expect that this exercise might serve
as a guide to address similar problems in more compli-
cated systems such as, for example, the construction of
reliable effective transport models for the radial transport
of energy and particles out of fusion plasmas confined in
tokamaks in near-marginal regimes15.
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Appendix A: stable Lévy distributions

The Lévy family of pdfs comprises all the limit dis-
tributions that are strictly stable with respect to the
sum of N independent and identically distributed ran-
dom variables30. They can be defined in closed form only
via their characteristic function (or Fourier transform):

L[α,λ,σ](k) = exp

{
−σα|k|α

[
1− iλk

|k|
tan

(πα
2

)]}
,

(24)
with the parameters varying in α ∈ (0, 2], |λ| ≤ 1 and
σ > 0. Here, i =

√
−1.

Meaning of parameters.- Each parameter has a
very different meaning. First, |λ| ≤ 1 measures the asym-
metry of the distribution since30,

L[α,λ,σ](y) = L[α,−λ,σ](−y). (25)

If λ = 0, the pdf is symmetric (and, for α = 1, 2, it is the
only possible value). Secondly, α characterizes the tail
behaviour of the pdf. For α 6= 1, it happens that30,

L[α,λ,σ](y) ∼
{
Cα
(
1−λ
2

)
σα|y|−(1+α), y → −∞

Cα
(
1+λ
2

)
σα|y|−(1+α), y → +∞ , (26)

with the constant given by:

Cα =
α(α− 1)

Γ(2− α) cos (πα/2)
, (27)

being Γ(x) the usual Gamma function. In the special
case α = 1, the Lévy pdf (known as a Cauchy pdf) de-
cays as L[1,0,σ](y) ∼ (σ/π) |y|−2. Finally, σ is the scale

parameter because30,

L[α,λ,σ](ay) = L[α,sgn(a)λ,|a|σ](y). (28)

Extremal Lévy distributions.- A Lévy distribution
is called extremal if λ = ±1 [This can only happen for
α 6= 1, 2.]. According to Eq. 26, the power-law decay
is only observed for one of the two tails (for positive or
negative y’s) depending on the sign of λ, with the other
tail decaying exponentially fast. Indeed, for 1 < α < 2,
λ = ±1 forces the tail for y → ∓∞ to decay exponen-
tially. For 0 < α < 1 the extremal distribution becomes
one-sided30. That is, they are defined only for y > 0 if
λ = +1, and for y < 0 if λ = −1. In that case, the expo-
nential tail is found in the limit y → 0± for λ → ∓1. A
useful property of extremal Lévy distributions is that its
Laplace transform is given by:

L̃[α,1,σ](s) = exp

(
− σα

cos (πα/2)
sα
)
. (29)

Appendix B: Riemann-Liouville fractional
derivatives

Riemann-Lioville (RL) fractional derivatives are
integro-differential operators that provide interpolants
between derivatives of integer order34.

Riemann-Liouville fractional derivatives.- The
left-sided RL fractional derivative of order p > 0 of a
function f(t) is defined as34:

aD
p
t f(t) ≡ 1

Γ(k − p)
dk

dtk

∫ t

a

(t− τ)
k−p−1

f(τ)dτ, (30)

where the integer k satisfies that k − 1 ≤ p < k. For
p = n, the RL fractional derivative reduces to the stan-
dard derivative of order n. Right-sided RL fractional
derivatives can also be defined:

bDp
t f(t) ≡ 1

Γ(k − p)
dk

dtk

∫ b

t

(τ − t)k−p−1 f(τ)dτ. (31)

Their properties are analogous to the left-sided counter-
part.

RL fractional derivatives have interesting, but some-
what not intuitive properties. The most striking prop-
erty is probably that the fractional derivative of a con-
stant function is not zero. Indeed, using the fact that
the derivative of a power law can be calculated to be30

(p > 0, ν > −1, t > 0):

aD
p
t · (t− a)ν =

Γ(1 + ν)

Γ(1 + ν − p)
(t− a)

ν−p
, (32)

it is clear that choosing ν = 0 does not yield a constant,
but (t− a)−p/Γ(1− p).

RL fractional derivatives can be combined with other
derivatives (fractional or integer). But the combinations
are not always simple. For instance, the action of normal
derivatives on RL fractional derivatives is:

dm

dtm
· aDp

t f(t) = aD
p+m
t f(t). (33)
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For the right side RL derivatives, this property becomes:

(−1)m
dm

dtm
· bDp

t f(t) = bDp+m
t f(t). (34)

However, the action of the RL fractional derivative on a
normal derivative is much more complicated30.

Relatively simple expressions exist for the Laplace
transform of the left-sided RL fractional derivative of or-
der p, if the starting point is a = 0:

L [ 0D
p
t · f(t)] = spf̃(s)−

k−1∑
j=0

sj
[

0D
p−j−1
t · f(t)

]
t=0

.

(35)
This expression is very reminiscent of the one for nor-
mal derivatives. Similarly, the Fourier transform of the
left-sided RL fractional derivative satisfies a very simple
relation when the starting point is a = −∞:

F [ −∞D
p
t · f(t)] = (iω)

p
f̂(ω). (36)

For the right-sided fractional integral with ending point
b =∞, the Fourier transform satisfies:

F [ ∞Dp
t · f(t)] = (−iω)

p
f̂(ω). (37)

Finally, it is worth mentioning that the left[right]-sided
fractional derivative of a function f(x) may exhibit a di-
vergence at their start[end] point when one prescribes
the values of this function or its integer derivatives at
the start[end] point (as it is often done in many appli-
cations, where initial value or boundary value problems
often appear). This can be made apparent, for instance,
by calculating the fractional derivative of a regular func-
tion by means of its Taylor expansion. In the case in
which 0 < α < 1, it becomes23:

aD
α
t f(x) =

1

Γ(1− a)

f(a)

(x− a)α
+ (38)

+

∞∑
k=0

f (k+1)(a)

Γ(k + 2− α)
(x− a)k+1−α

This expression is clearly divergent at x = a if f(a) 6= 0.
A similar expression can be obtained for 1 < α < 2. In
that case,

aD
α
t f(x) =

1

Γ(1− a)

f(a)

(x− a)α
+ (39)

+
1

Γ(2− a)

f ′(a)

(x− a)α−1
+

+

∞∑
k=0

f (k+2)(a)

Γ(k + 3− α)
(x− a)k+2−α

that is divergent at x = a if either f(a) 6= 0 or f ′(a) 6= 0.
These divergences can be avoided if one prescribes the
values of fractional derivatives of the function at the

start[end] point instead. However, this is usually diffi-
cult to justify physically in most situations34. For that
reason, regularization techniques are often used to avoid
these divergences in practical applications, as it has been
widely described in the literature23 .

Appendix C: The Riesz-Feller fractional
derivatives

The Riesz fractional derivative of order α is defined by
the integral:

∂αf

∂|x|α
:= − 1

2Γ(α) cos (απ/2)

∫ ∞
−∞

dx′
f(x′)

|x− x′|α+1
. (40)

The most remarkable property of this derivative has to
do with its Fourier transform, that satisfies35:

F

[
∂αf

∂|x|α

]
= −|k|αf̂(k). (41)

Using now the complex identity (i =
√
−1),

(ik)α + (−ik)α = 2 cos
(πα

2

)
|k|α, (42)

it is very easy to prove that the Riesz derivative can also
be expressed as a symmetric sum of two RL fractional
derivatives (one left-sided, one right-sided) of order α30,

∂αf

∂|x|α
= − 1

2Γ(α) cos (απ/2)
[−∞D

α
x + ∞Dα

x ] . (43)

An asymmetric version of the Riesz-Feller derivative
also exists36. It is often referred to as the Riesz-Feller
fractional derivative of order α with asymmetry param-
eter |λ| ≤ 1. It is more easily defined through its Fourier
transform, that is:

F

[
∂α,λf

∂|x|α,λ

]
= −|k|α

[
1− iλ |k|

k
tan

(απ
2

)]
f̂(k). (44)

For λ = 0, the standard symmetric Riesz derivative is re-
covered. The asymmetric Riesz-Feller derivative can also
be expressed as an asymmetric sum of two RL fractional
derivatives of order α37:

∂α,λf

∂|x|α,λ
=− 1

2Γ(α) cos (απ/2)
·

· [c−(α, λ)−∞D
α
xf + c+(α, λ)∞Dα

xf ] ,

(45)

with the c± coefficients being defined as:

c±(α, λ) :=
1∓ λ

1 + λ cos
(
απ
2

) . (46)

Thus, in the limit of λ = 1, only the left-sided RL deriva-
tive −∞D

α
x remains, whilst for λ = −1, only the right-

side RL derivative ∞Dα
x does.
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