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The Dzyaloshinskii-Moriya(DM) interaction in magnetic models is the result of a combination of
superexchange and spin-orbital coupling, and it can give rise to rich phase transition behavior. In
this paper we study ferromagnetic XY-models with DM interaction on two-dimensional L×L square
lattices using a hybrid Monte Carlo algorithm. In order to match the incommensurability between
the resultant spin structure and the lattice due to the DM interaction, a fluctuating boundary
condition is adopted. We also define a new kind of order parameter and use finite-size scaling to
study the critical properties of this system. We find that a Kosterlitz-Thouless-like phase transition
appears in this system and that the phase transition temperature shifts towards higher temperature
with increasing DM interaction strength.
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I. INTRODUCTION

The XY-model in two dimensions is a prototype model
for magnetic spin systems which exhibit continuous sym-
metry and topological excitations. This model can de-
scribe superfluid films [1] and Josephson junction ar-
rays [2] in two dimensions and undergoes a Kosterlitz-
Thouless (KT) transition characterized by an exponen-
tially divergent correlation length and in-plane suscepti-
bility [3, 4]. The Kosterlitz-Thouless (KT) transition is
driven by the unbinding of pairs of vortices with opposite
vorticity at a temperature TKT .

The Dzyaloshinskii-Moriya (DM) interaction was first
proposed by Dzyaloshinskii for explaining weak ferro-
magnetism in antiferromagnetic compounds [5], and the
microscopic basis for this theory was later given by
Moriya [6] who extended Anderson’s superexchange the-
ory [7] to include the spin-orbit interactions. Arising
from the impurities in the system, this interaction is very
important in low symmetry crystals while it vanishes in
high symmetry crystals. The DM interaction exists in
many materials and can lead to some special phenom-
ena. In the superconductor LaCu2O4 , this interaction
induces a slight spin canting out of the CuO2 plane [8].
It has been reported that the DM interaction can induce
helical spin order in FexCo1−xSi alloys [9] and the helix
period is determined by the ratio of the DM interaction
to the spin exchange interaction. In Mn monolayers the
adjacent spins are not perfectly antiferromagnetic, but
slightly canted, resulting in a spin spiral structure (with
chiral order [10]) due to the DM interaction. This non-
colinear, or spin spiral, order can be observed by using
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spin-polarized scanning tunnelling microscopy and ab

initio calculations identify that this spin spiral order is
stabilized by DM interaction [11]. Using the polarized
neutron diffraction method, a non-zero average chirality
was obtained in Dy/Y multilayer films [12], which indi-
cates that DM interaction exists in this material. The
chirality is due to the lack of the symmetry inversion on
the interface. Since the DM interaction plays a key role
in these materials, especially these helical magnetic sys-
tems, we simulate the 2D XY-model with DM interaction
in order to understand the effects of their inclusion. We
found that a kind of KT-type phase transition exists in
this system when the DM interaction is small [13]. Monte
Carlo (MC) simulations [14] provide us with a powerful
tool for the study of such complicated systems. While
the Metropolis “single spin-flip” algorithm [15] is used
widely, there have been many high-resolution MC algo-
rithms developed to improve upon and to speed up the
original Metropolis algorithm, e.g. the Swendsen-Wang
(SW) algorithm [16].

In this paper we study the two dimensional ferromag-
netic XY-model with DM interaction. This model has
been recently treated in three dimensions by MC simu-
lations using the standard single spin-flip Metropolis al-
gorithm [17]. It has been shown that the second-order
transition continuously transforms to a first-order tran-
sition by increasing the value of the DM interaction. This
model has also been recently studied in two dimensions
through a duality transformation and posterior RG anal-
ysis [18]. The system was mapped, in the low temper-
ature limit, into a two-dimensional Coulomb gas model
of magnetic vortices with the DM interaction playing the
role of an effective electric field. By applying RG analy-
sis, it was claimed that the effective electric field affects
the vortex-antivortex pairs and destroys the Kosterlitz-
Thouless transition. In this work we treat the same two-
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dimensional model by using a hybrid Monte Carlo al-
gorithm which combines the Metropolis algorithm and
the Swendsen-Wang algorithm. The uniform magnetiza-
tion, which is regularly regarded as the order parame-
ter in the 2D XY model [19, 20], disappears in the low
temperature region because of the symmetric, undulat-
ing arrangement of the spin vectors induced by the DM
interaction (see e.g. Fig. 1). In order to describe this
system in the low temperature region, we define a new
kind of order parameter and use a fluctuating bound-
ary condition (FBC) [21] to match the incommensurabil-
ity between the spin structure and the lattice size due
to the DM interaction. By using finite-size scaling and
the Binder (4th-order) cumulant of the order parameter,
we can determine the phase transition temperature and,
contrary to results by Proskurin et al. [18], we do find
a Kosterlitz-Thouless transition as the DM interaction is
varied.

This paper is organized as follows. In Sec.II the two-
dimensional XY ferromagnetic model with DM interac-
tion is introduced and the hybrid Monte Carlo algorithm
is presented. We also introduce the fluctuating boundary
condition briefly. In Sec.III, we first illustrate the incom-
mensurability between the spin structure and the lattice
due to DM interaction, and use the fluctuating bound-
ary condition to match this incommensurability. Then,
a new order parameter is defined and we use scaling of
this order parameter with lattice size, and the crossing
of Binder cumulants to estimate the transition tempera-
ture. Sec.IV concludes the paper with a summary of our
results.

II. MODEL AND METHOD

The XY ferromagnetic model with DM interaction on
the two-dimensional L× L square lattice can be written
as

H = −J
∑

〈i,j〉

~Si · ~Sj − ~D ·
∑

〈ij〉

(~Si × ~Sj) (1a)

= −J
√

1 + d2
∑

〈i,j〉

cos(θi − θj − φ), (1b)

where ~Si is a two-component classical vector of unit
length (also known as the planar rotator model), while

the DM vector ~D is taken to be along to the z-axis. The
constants J and D are positive and denote the strengths
of the nearest-neighbor ferromagnetic coupling and DM
interaction, respectively. The angle brackets 〈i, j〉 mean
that the corresponding sum is over the distinct nearest-
neighbor pairs of the lattice.

In going from Eq. (1a) to Eq. (1b) one expands the
spin dot product in the first sum, the cross product of the
spin variables in the second sum and, after taking the
scalar product with the DM interaction, an additional

canonical transformation is performed, namely

Sx
i = Sx′

i cosϕi − Sy′

i sinϕi,

Sy
i = Sx′

i sinϕi + Sy′

i cosϕi, (2)

where ϕi is the rotational angle of the primed reference at
the i−th spin around the z(= z′)-axis. The XY format of
the Hamiltonian (1b) is eventually recovered by choosing
the nearest-neighbor rotational angle difference ϕi − ϕj

the value ϕi − ϕj = φ = arcsin(d/
√
1 + d2), with d =

D/J (a similar approach has been used in reference [22]
in treating the quantum version of the system). In this

case we have a rescaled exchange interaction J
√
1 + d2.

Note that here θi and θj in (1b) are, respectively, the spin
angles of the ith and jth sites relative to the original x-
axis direction.
In order to prepare for the simulations, a new trans-

formation can be introduced, namely

θi = θ0i −
π

2
(1 + σi), (3)

where σi takes the values ±1 and θ0i denotes a trial angle
at the site i. If σi = −1, θi just keeps the same value;
if σi = 1, it means that θi is rotated by an angle of π.
Combining Eqs. (1) and (2) we can obtain an Ising-type
Hamiltonian

H = −
∑

〈ij〉

Jijσiσj , (4)

where Jij = J
√
1 + d2 cos(θ0i −θ0j −φ) is an effective non-

uniform Ising coupling between spins. This transforma-
tion will be very useful for implementing the Swendsen-
Wang algorithm to the model.
We use a hybrid Monte Carlo algorithm which

combines the standard Metropolis algorithm and the
Swendsen-Wang algorithm to update the spins. At each
site a new random orientation for the spin is chosen.
The interaction energy between this spin and its near-
est neighbors is calculated. If it is lower than the energy
of the old state, the new state is accepted; otherwise,
it is accepted only with a probability according to the
standard Metropolis algorithm. In order to reduce the
critical slowing down of simulation the Swendsen-Wang
(SW) cluster algorithm is used here. In an initial spin
configuration we chose σi = 1 for all the sites. If Jij > 0,
we put a bond between ith and jth sites with a probabil-
ity P (Jij) = 1− exp(−2Jij/kBT ) , otherwise no bond is
set up. After clusters are constructed by putting bonds
between spins, every cluster has the same possibility to
rotate an angle of π or just to keep the same value. One
SW sweep related to Eq.(3) is followed after one Metropo-
lis sweep related to Eq.(1).
In order to match the incommensurability due to the

DM interaction, we adopt a fluctuating boundary con-
dition [21]. It is described as following: suppose there
is a phase shift ∆ across the boundary at the same row
and column: ∆ = θ0,y − θL,y and ∆ = θx,0 − θx,L, for
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FIG. 1: (color online) Typical spin configuration at T = 0.1
and d = 1 for L=32 with periodic boundary conditions. The
arrows represent the spin orientations.

0 ≤ x ≤ L and 0 ≤ y ≤ L. After a compound Monte
Carlo sweep to update the spins described above while
fixing ∆, we use the standard Metropolis to update ∆
while fixing all the spins.
We perform Monte Carlo simulations on L×L lattices,

with total sites N = L2, to obtain the critical properties
of the system. Typically, 104 − 105 hybrid MC steps
are discarded for equilibration and 107 − 108 hybrid MC
sweeps are then retained for averages. The sampling in-
tervals for measuring system properties varied from 20
to 500 hybrid MC sweeps for different sizes. Multiple in-
dependent runs were used to compute statistical errors.
Where not shown in the figures, error bars are smaller
than the size of the symbols.

III. RESULTS

As we know, the DM interaction would result in non-
zero chirality[12]. According to Eq.(1), there is an angu-
lar difference θi − θj = φ between the nearest-neighbor
spins in the ground state, and φ is determined by the
ratio of the DM interaction to the spin nearest-neighbor
exchange coupling. The nearest-neighbor spins prefer to
be parallel to each other in the ground state if there is
only exchange coupling, while the DM interaction drives
the nearest-neighbor spins to be perpendicular to each
other in the ground state. So this angular difference φ
results in the competition between the DM interaction
and the spin exchange coupling. In order to recognize
the new order of this system at low temperatures we pick
up a random spin configuration when d = 1 at the low

temperature T = 0.1 as Fig. 1 shows (the temperature
here is measured in units of J/kB , where kB is the Boltz-
mann constant). It is obvious that this angular differ-
ence, whose value is close to φ, exists between the nearest
neighbor spins θi and θj both in x- and in y-directions.
So the nearest neighbor spins in the ground state would
not be parallel to each other, as in the ground state of XY
model, but rotate through an angle φ per site both in x-
and in y-directions if the spins are on the xy plane just as
Fig. 1 shows. Moreover, the spin arrangement is periodic
from the left bottom to the right top and the period is
determined by the relative strength of DM interaction d.
This periodic spin arrangement leads to the magnetiza-
tion being very small at low temperatures, even smaller
than at high temperatures.

Moreover, this angular difference φ would lead to in-
commensurability of the system. After L sites there is a
phase shift ∆ = L · φ across the boundary in the same
row or column. If ∆ = 2nπ, where n is an integer, it
means that this phase shift is an integer multiple of 2π,
the structure is commensurate with the lattice and the
periodic boundary condition is reasonable for this sys-
tem; otherwise the structure is incommensurate with the
lattice. In the latter case a periodic boundary condition
(PBC) would introduce frustration and increase the en-
ergy of the system, or even result in choosing the wrong
phase when the system is incommensurate. Thus, we
consider a fluctuating boundary condition [21] to match
the incommensurability.

How do we confirm the incommensurability of the sys-
tem? As mentioned above, whether the system is incom-
mensurate or not is dependent upon the lattice size L
and the DM interaction d. For instance, when d = 1,
φ = π/4, and if L is a positive integral multiple of 8,
e.g. 8, 16, 32, etc., the phase shift across the boundary
∆ is also a integral multiple of 2π, so the structure is
commensurate with the lattice and the period boundary
condition is suitable. But when d = 0.5, φ = 0.463648,
and even if L is also a positive integer multiple of 8, the
system turns out to be incommensurate.

In order to make some sense of the incommensurability
of the spin system, we first look at the spin configurations
of the incommensurate system. Fig. 2 (top and bottom)
shows spin configurations of an incommensurate system
for which L = 8, d = 0.5 and T = 0.1, resulting from
the use of a fluctuating boundary condition (FBC) and
a periodic boundary condition (PBC), respectively.

In fact, in Fig. 2(top) the spin-variation wavelength is
larger than the lattice size L but is allowed by the fluctu-
ating boundary condition, and the system just chooses a
phase shift across the boundary according to the balance
between the spin structure and the lattice size. When
using the periodic boundary condition, we force the spin

wavelength to be an integer multiple of the lattice size L.
For example, in Fig. 2(bottom) the wavelength is forced
to be equal to L, and ∆ must then be equal to zero.
So the periodic boundary condition would increase the
energy of the incommensurate system. Fig. 3 shows this
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FIG. 2: (color online) Typical spin configurations at T =
0.1 and d = 0.5 for L=8 with: (top) fluctuating boundary
conditions and (bottom) periodic boundary conditions. The
arrows represent the spin orientations.

in a plot of the energies versus temperature for different
DM interaction and with different boundary conditions
for L = 8. If d = 0.5, the system is incommensurate, the
energy for PBC is larger than that found using FBC at
low temperature. Consequently, FBC is better than PBC
when the system is incommensurate. While the system
is commensurate, such as L = 8 and d = 1, PBC and
FBC give almost the same answer at low temperature
and PBC is suitable in order to reduce the fluctuation
and save computing time. Thus, we use the periodic
boundary condition if the system is commensurate, and
use the fluctuating boundary condition to simulate the
incommensurate system.

We thus perform Monte Carlo simulations on L×L lat-
tices with L ranging from L = 8 to L = 96. Fig. 4 shows
the specific heat versus temperature for d = 1 with PBC
by using the dissipation fluctuation theorem. The val-
ues of specific heat are independent of lattice size and
approach 1/2 when the temperature T approaches zero.
This is, in fact, expected on general grounds (equiparti-
tion theorem), since there is only a single degree of free-
dom for each spin in our 2D XY model. Moreover, a
specific heat peak appears near T = 1.5, while the corre-
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E
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PBC
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d = 0.5
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FIG. 3: (color online) Energy E/N , where E = 〈H〉 and the
brackets mean thermal average, versus temperature T for dif-
ferent DM interactions when L = 8 by using different bound-
ary conditions. The errors are smaller than the symbol sizes.
The lines are just guide to the eyes.
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FIG. 4: (color online) Specific heat CV /N versus temperature
T for different lattice sizes when d = 1 by using periodic
boundary conditions. The lines are just guide to the eyes.

sponding transition temperature is near T = 1.02 in the
2D XY model [23]. (It is known that the specific heat
peak is above the transition temperature in the 2D-XY
model, and we shall see that the same holds true here.)
This means that inclusion of the DM interaction drives
the transition towards a higher temperature.
The peaks of the specific heat shown in Fig. 4 do not

approach a constant value monotonically. After a given
value of the lattice size it starts decreasing. In fact, Fig.
5 shows the behavior of the maximum of the specific heat
for larger values of the lattice size. The inset in this figure
gives a finite-size approach of the form Cv(max) = C∞

v −
A/L, where C∞

v = 1.426(8), comparable to the values
obtained for the XY model through a fit Cv(max) =
C∞

v − A/Lα with C∞
v = 1.44 and α = 1.07 [24]. A

similar behavior of the specific heat peak as a function of
the lattice size has been recently obtained in the study of
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the two-dimensional XY vectorial Blume-Emery-Griffiths
model [25].
Since the spins rotate along both the x- and y-

directions at low temperature if the strength of DM in-
teraction is not very small, the magnetization, which is
the regular order parameter in the 2D XY model [19, 20],

does not play the role of order parameter in the system.
This is because of the periodic, oscillating spin arrange-
ment that results when the DM interaction is included.
According to the spin arrangement in the ground state,
we define the order parameter as follows

m =
1

L2

√

√

√

√(

L2

∑

i=1

cos[θi − (xi + yi)φ])2 + (

L2

∑

i=1

sin[θi − (xi + yi)φ])2, (5)
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FIG. 5: (color online) Peaks of the specific heat as a function
of temperature for larger lattice sizes when d = 1 by using
periodic boundary conditions. The full line in the inset shows
a corresponding fit of the data, as discussed in the text.

where (xi, yi) is the coordinate of the ith spin and xi, yi ∈
[0, L− 1].

According to finite size scaling theory [26, 27] we can
analyze the properties of finite systems near the critical
temperature of the corresponding infinite system. Us-
ing the definition of the order parameter given above, we
show plots of the order parameter versus the size L when
d = 0.5 and d = 1 at different temperatures in Fig. 6
and Fig. 7. Both plots show power-law scaling behavior
as m ∝ L−x at T ≤ TC with temperature dependent
exponent x, and there is no power-law behavior when
T > TC , in agreement with the behavior of an Kosterlitz-
Thouless-type phase transition. In addition, the slopes
of these straight lines at the “transition temperatures”
are −0.125 in both plots. Exactly at the transition tem-
perature T = TC the exponent x is equal to η/2 [27],
where η = 1/4 is the critical exponent. In Fig. 6, when
T ≤ 1.285, all the plots are straight lines whose slopes
are less than −0.125, while the plots are not straight lines
when T > 1.285. It is clear that both of the phase tran-
sitions are Kosterlitz-Thouless-type and x = 0.125, and
TC = 1.014± 0.001 for d = 0.5 and TC = 1.284± 0.001

10 100

0.5

0.55

0.6

0.65

0.7

 

 

m

L

 T=0.98    T=0.99
 T=1.00    T=1.01
 T=1.013   T=1.015
 T=1.02    T=1.03
 T=1.04

FIG. 6: (color online) Log-log plot of the order parameter m
versus lattice size L for various temperatures near TC when
d=0.5 using FBC. The lines are just guide to the eyes. The
longer curve corresponds to a straight line with slope −0.125.

for d = 1, respectively.
Examining the fourth order cumulant of the order pa-

rameter, originally suggested by Binder to analyze Ising
model critical properties [28], is an effective way to lo-
cate the critical temperature . The Binder cumulant of
the order parameter is

U4 = 1− 〈m4〉/3〈m2〉2, (6)

where the angle brackets denote a thermal average. As
the system size L approaches infinity, U4 → 0 for T > TC

and U4 → 2/3 for T < TC . According to the renormal-
ization group theory there is a “fixed point” in the U4

curves that is independent on the system size L, and the
location of the “fixed point” is the critical point. So,
the Binder cumulants are scale independent at the crit-
ical point, for large enough lattices, and we can use cu-
mulant crossings for different system sizes to determine



6

10 100

0.6

0.7

 

 
m

L

 T=1.24    T=1.25
 T=1.26    T=1.27
 T=1.28    T=1.283
 T=1.285   T=1.29
 T=1.30    T=1.31

FIG. 7: (color online) Log-log plot of the order parameter m
versus lattice size L for various temperatures near TC when
d=1 using PBC. The lines are just guide to the eyes. The
longer curve corresponds to a straight line with slope −0.125.

the phase transition temperature TC . Fig. 8 and Fig. 9
show the temperature dependence of Binder cumulants
for different lattice sizes for d = 1 and d = 0.5, respec-
tively. It is obvious that at low temperature the values
of U4 for different sizes of the system rapidly approach
the same value. As the temperature increases, however,
the curves separate distinctly, especially for larger lattice
sizes. Such behavior also coincides with the behavior of
a Kosterlitz-Thouless-type phase transition.

One can also note in Figs. 8 and 9 that despite there
being a scattering of the cumulant crossings, they are not
simply random, with a clear tendency to move to lower
temperatures, mainly for smaller systems. This means
that the scaling behavior regime for U4 should be valid
for still larger lattices. However, an extrapolation scheme
can be used to obtain the critical temperature, in the
thermodynamic limit, by resorting to a fit of the data as
a function of 1/L for smaller lattices, as was proposed in
Binder original paper for the spin-1/2 Ising model [28].
Using this convergence criterium for the temperatures of
different lattices, in a similar way as proposed in reference
[28], we estimate that TC = 1.013±0.006 for d = 0.5 and
TC = 1.293 ± 0.006 for d = 1. These values agree with
the results obtained by the power-law scaling of the order
parameter with lattice size.

However, instead of the fits as a function of 1/L, one
can also use the scaling relation for the critical temper-
ature itself (see, for instance, reference [29] for the two-
dimensional Ising model). As an example, Fig. 10 shows
the crossings with the smaller lattice size L = 8 and the
second smallest L = 16, as a function of the system size,
for d = 1 and d = 0.5. In this case of the Kosterlitz-
Thouless transition, the corresponding finite-size-scaling

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
T

0.6

0.61

0.62

0.63

0.64

0.65

0.66

U
4

  L =   8
  L = 16
  L = 24
  L = 32
  L = 48
  L = 64
  L = 96

FIG. 8: (color online) Binder cumulant U4 of the order pa-
rameter versus temperature T for different lattice sizes when
d = 0.5 using FBC. The data symbols, with the corresponding
error bars, have been ommited for clarity, exept for T=1.07,
in order to give an idea of the error as a function of system
size.

1.24 1.26 1.28 1.3 1.32 1.34
T

0.652
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0.656

0.658

0.66
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4
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  L = 24
  L = 32
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  L = 64
  L = 96

FIG. 9: (color online) The Binder cumulant U4 of the or-
der parameter versus temperature T for different lattice sizes
when d=1 using PBC. The data symbols, with the corre-
sponding error bars, have been ommited for clarity, exept for
T=1.34, in order to give an idea of the error as a function of
system size.

of the temperature crossings should behave as [30]

Tcross = TC +B/(lnL)2, (7)

where TC is the transition temperature in the thermody-
namic limit and B is a non-universal constant. The above
relation comes from the fact that the correlation length in
the infinite system behaves as ξ = exp(π/c(T − TC)

1/2),
where c is a non-universal constant, and at T = Tcross

one has ξ ≃ L. Fits of the data in Fig. 10 give, for
d = 1, TC = 1.297(4), when the smallest lattice size is
L = 8, and TC = 1.294(2) when L = 16. For d = 0.5,
we have TC = 1.022(9) with L = 8 and TC = 1.009(9)
with L = 16. All the above values are in good agreement
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FIG. 10: (color online) Temperature of the crossings of the
Binder cumulant of the order parameter as a function of dif-
ferent lattice sizes when d = 1 using PBC (a) and d = 0.5
using FBC (b). The data correspond to considering L = 8
and L = 16 as the smallest lattice. The dashed lines are a
fit with Eq. (7). The error bars are smaller than the symbol
sizes.

with the previous ones. We can thus overall estimate
TC = 1.292(6) for d = 1 and TC = 1.013(4) for d = 0.5.

IV. SUMMARY

Using Monte Carlo simulations we have studied the
thermodynamics and critical properties of a 2D XY
model with DM and exchange interactions. Since the
DM interaction drives the nearest-neighbor spins to be
perpendicular to each other, the spins rotate with respect
to each other at low temperature. Hence, the magneti-
zation does not play the role of order parameter in the

2D XY model with DM interaction. The spin rotation in
the low temperature regime induces incommensurability
between the spin structure and the lattice. Therefore,
a fluctuating boundary condition is adopted to match
this kind of incommensurability, and a new kind of or-
der parameter is defined to describe the phase transition.
We use the power-law behavior of the order parameter
with the lattice size and the crossing of the Binder cu-
mulant to estimate the critical temperature. We have de-
termined that there is a Kosterlitz-Thouless-type phase
transition in the 2D XY model with DM interaction, and
the DM interaction can induce an increase the Kosterlitz-
Thouless transition temperature, contrary to what has
been recently obtained by mapping the model to a two-
dimensional Coulomb gas and by applying RG analysis
[18]. We have not considered here the corresponding or-
der parameter susceptibility because the size dependence
of the susceptibility should really be the same as the size
dependence of the order parameter, since they are com-
puted from the same quantity.
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