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The limited penetrable horizontal visibility graph algorithm was recently introduced to map time
series in complex networks. In this work, we extend this algorithm to create a directed limited
penetrable horizontal visibility graph and an image limited penetrable horizontal visibility graph.
We define two algorithms and provide theoretical results on the topological properties of these
graphs associated with different types of real-value series. We perform several numerical simulations
to check the accuracy of our theoretical results. Finally, we present an application of the directed
limited penetrable horizontal visibility graph to measure real-value time series irreversibility, and
an application of the image limited penetrable horizontal visibility graph that discriminates noise
from chaos. We also propose a new method to measure the systematic risk using the image limited
penetrable horizontal visibility graph and the empirical results show the effectiveness of our proposed
algorithms.

PACS numbers: 05.45. Tp, 89.75. Hc, 05.45.-a

I. INTRODUCTION

The complex network analysis of univariate or multi-
variate time series has recently attracted the attention
of researchers working in a wide range of fields. Over
the past decade several methodologies have been pro-
posed for mapping time series in complex networks [1-9].
These methods include constructing a complex network
from a pseudo-periodic time series [2], using a visibility
graph algorithm [3], a recurrence network method [4], a
stochastic method [5], a coarse geometry theory [6], a
nonlinear mutual information method [7], event synchro-
nization [8], and a phase-space coarse-graining method
[9]. These methods have been widely used to solve prob-
lems in a variety of research fields [10-20].
Among all of these time series analysis algorithms, vis-

ibility algorithms are the most efficient when construct-
ing a complex network from a time series. Visibility algo-
rithms are a family of rules for mapping a real-value time
series on graphs, which display different cases or scenar-
ios. In all cases each time series datum is assigned to a
node, but the connection criterion depend on the algo-
rithm used. For example, in the natural visibility graph
(NVG) two nodes i and j are connected if the geometrical
criterion x(tk) < x(ti) + [x(tj)− x(ti)]

tk−ti
tj−tk

, ∀tk ∈ (ti, tj)

is fulfilled within the time series [3]. In the paramet-
ric natural visibility graph (PNVG) case there are three
steps when using this algorithm to map a time series into
a complex network: (i) build a natural visibility graph
as described above; (ii) set the direction and the angle
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ηij = arctg
x(tj)−x(ti)

tj−ti
with i < j for every link of the nat-

ural visibility graph ; and (iii) use the parameter view
angle rule η, ηij < η to select links from the directed and
weighted graph [21]. In the horizontal visibility graph
(HVG) case, the algorithm is similar to the natural vis-
ibility graph but it has a modified mapping criterion.
In this algorithm, two nodes i and j are connected if
x(tk) < inf(x(ti), x(tj)), ∀tk ∈ (ti, tj) [22]. These visibil-
ity algorithms have been successfully implemented in a
variety of fields [23-25].
Recently a limited penetrable visibility graph (LPVG)

[26, 27] and a multiscale limited penetrable horizontal
visibility graph (MLPHVG) [28] were developed from the
visibility graph and the horizontal visibility graph to an-
alyze nonlinear time series. The limited penetrable visi-
bility graph and multiscale limited penetrable horizontal
visibility graph have been successfully used to analyze a
variety of real signals across different fields, e.g., experi-
mental flow signals and electroencephalogram signals [2,
27-30]. Research has shown that the limited penetrable
visibility graph and multiscale limited penetrable hori-
zontal visibility graph inherit the merits of the visibility
graph , but they are also more resistant to noise, which
makes them particularly useful when analyzing signals
polluted by unavoidable noise.
There are abundant empirical results that have been

obtained using the visibility graph algorithm and its ex-
tensions, e.g., the parametric natural visibility graph [21],
the horizontal visibility graph [22], the limited penetrable
visibility graph [26], and the multiscale limited penetra-
ble horizontal visibility graph [28]. Thus far there has
been little research focusing on rigorous theoretical re-
sults. Recently Lacasa et al. presented topological prop-
erties of the horizontal visibility graph associated with
random time series [22], periodic series [31], and other
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stochastic and chaotic processes [32]. They extended the
family of visibility algorithms to map scalar fields of an
arbitrary dimension onto graphs. They also provided an-
alytical results on the topological properties of the graphs
associated with different types of real-value matrices [33].
Wang et al. [34] focused on a class of general horizon-
tal visibility algorithms, the limited penetrable horizontal
visibility graph (LPHVG), and presented exact results on
the topological properties of this visibility graph associ-
ated with random series. Here we use previous works [2,
31-34] and focus our attention on the limited penetrable
horizontal visibility graph, where we present some of its
analytical properties.
This paper is organized as follows. In Section II we in-

troduce the limited penetrable horizontal visibility graph
family. In Section III we derive the analytical properties
of the different versions of associated limited penetra-
ble horizontal visibility graph for a generic random time
series (or a random matrix). We also present several
numerical simulations used to check their accuracy. In
Section IV we show some applications of the directed
limited penetrable horizontal visibility graph and of the
image limited penetrable horizontal visibility graph. In
Section V we present our conclusions.

II. LIMITED PENETRABLE HORIZONTAL
VISIBILITY GRAPH FAMILY

The LPHVG algorithm [28, 34] and its extensions are
called the LPHVG family. We here present three ver-
sions of the LPHVG algorithm with limited penetra-
ble distance ρ, the limited penetrable horizontal visibil-
ity graph, LPHVG(ρ), the directed limited penetrable
horizontal visibility graph, DLPHVG(ρ), and the image
limited penetrable horizontal visibility graph of order n,
ILPHVGn(ρ).

A. Limited Penetrable Horizontal Visibility Graph

The limited penetrable horizontal visibility graph
[LPHVG(ρ)] [34] is a geometrically simpler and analyti-
cally solvable version of the visibility graph [3], the lim-
ited penetrable visibility graph [26], and the multiscale
limited penetrable horizontal visibility graph [28]. To
define it, we let XN (t) be a time series of N real num-
bers x1, x2, x3, ..., xN . We set the limited penetrable dis-
tance to ρ, and LPHVG(ρ) maps the time series into a
graph with N nodes and adjacency matrix A. Nodes
xi and xj are connected through an undirected edge
(Aij = Aji = 1) if xi and xj have a limited penetrable
horizontal visibility (see Fig. 1), i.e., if ρ ≥ 0 intermediate
data xq follows

xq ≥ inf{xi, xj}, ∀q ∈ (i, j), ℵ(q) ≤ ρ, (1)

where ℵ(q) is the number of q. The graph spanned by this
mapping is the limited penetrable horizontal visibility

(a)

1 2 3 4 5 6 7 8 9 10 11

(b)

FIG. 1. Example of (a) a time series with 11 data values
and (b) its corresponding LPHVG(1), where every node cor-
responds to time series data in the same order. The horizontal
penetrable visibility lines between data points define the links
connecting nodes in the graph.

graph [LPHVG(ρ)]. When we set the limited penetrable
distance ρ to 0, then LPHVG(0) degenerates into an hor-
izontal visibility graph [22]. When ρ 6= 0 there are more
connections between any two LPHVG(ρ) nodes than in
horizontal visibility graph . Fig. 1(b) shows the new es-
tablished connections (dashed red lines) when we infer
the LPHVG(1) using horizontal visibility graph . Note
that the LPHVG(ρ) of a time series has all the properties
of its corresponding horizontal visibility graph , e.g., it is
connected and invariant under affine transformations of
series data [22].
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B. Directed Limited Penetrable Horizontal
Visibility Graph

The limited penetrable horizontal visibility graph
[LPHVG(ρ)] is undirected, because penetrable visibility
does not have a predefined temporal arrow. Direction-
ality can be added by using directed networks. Here we
address the directed version and define a directed lim-
ited penetrable horizontal visibility graph [DLPHVG(ρ)],
where the degree k(xt) of the node xt is split between an
ingoing degree kin(xt) and an outgoing degree kout(xt)
such that k(xt) = kin(xt) + kout(xt). We define the ingo-
ing degree kin(xt) to be the number of links of node xt

with past nodes associated with data in the series, i.e.,
nodes with t′ < t. Conversely, we define the outgoing de-
gree kout(xt) to be the number of links with future nodes,
i.e., nodes with t′′ > t. Thus DLPHVG(ρ) maps the time
series into a graph withN nodes and an adjacency matrix
A = Ain +Aout, where Ain is a lower triangular matrix
and Aout is a upper triangular matrix. Nodes xt′ and xt,
t′ < t (or xt and xt′′ , t < t′′) are connected through a
directed edge xt′ → xt, i.e., At′t = 1 (or xt → xt′′ , i.e.
Att′′ = 1) if it satisfies Eq. (1). Fig. 2 shows a graphical
representation of this algorithm.
For the degree distribution P (k), we use the ingoing

and outgoing degree distributions of a DLPHVG(ρ) to
define the probability distributions of kout and kin on the
graph, which are Pout(k) ≡ P (kout = k) and Pin(k) ≡
P (kin = k), respectively. We observe an asymmetry of
the resulting graph in a first approximation when we use
the invariance of the outgoing (or ingoing) degree series
under a time reversal.

C. Image Limited Penetrable Horizontal Visibility
Graph of Order n

One-dimensional versions of the limited penetrable
horizontal visibility graph [LPHVG(ρ)] and directed lim-
ited penetrable horizontal visibility graph [DLPHVG(ρ)]
are used to map landscapes (time series) on complex net-
works. As in the definition of image visibility graph of
order n (IVGn) [33], the definition of LPHVG(ρ) can also
be extended and applied to two-dimensional manifolds by
extending the LPHVG(ρ) criteria of Eq. (1) along one-
dimensional sections of the manifold. To define the image
limited penetrable horizontal visibility graph of order n
[ILPHVGn(ρ)] we let X be a N ×N matrix for an arbi-
trary entry (i, j) and partition the plane into n directions
such that direction p is at an angle with the row axis of
2π(p−1)/n, where p = 1, 2, ..., n. The image limited pen-
etrable visibility graph of order n, ILPHVGn(ρ), has N

2

nodes, each of which is labeled using a pair (i, j) associ-
ated with the entry indices xij , such that two nodes, xij

and xi′j′ , are linked when (i) xi′j′ belongs to one of the
n angular partition lines, and (ii) xij and xi′j′ are linked
in the LPHVG(ρ) defined over the ordered sequence that
includes (i, j) and (i′, j′). For example, in ILPHVG4(1)

(a)

1 2 3 4 5 6 7 8 9 10 11

(b)

FIG. 2. Graphical illustration of DLPHVG(1). (a) Plot of
a sample time series XN (t) for N = 11. Each datum in the
series is mapped to a node in the graph. Arrows link the
nodes and describe allowed directed penetrable visibility. (b)
Plot of the associated DLPHVG(1). In this graph, each node
has an ingoing degree kin, which accounts for the number of
links with past nodes, and an outgoing degree kout, which in
turn accounts for the number of links with future nodes.

the penetrable visibility between two points xij and xi′j′

is

i = i′, xiq ≥ inf{xij, xi′j′}, ∀q ∈ (j, j′),ℵ(q) ≤ ρ, (2)

or

j = j′, xqj ≥ inf{xij , xi′j′}, ∀q ∈ (i, i′),ℵ(q) ≤ ρ. (3)

Fig. 3(a) shows a sample matrix in which x1 is the
central entry, which shows the ILPHVG4(1) algorithm
evaluated along the vertical and horizontal directions.
Fig. 3(b) shows the connectivity pattern associated to
the entry x1 of the ILPHVG4(1) algorithm. Fig. 3(c)
shows the ILPHVG8(1) algorithm evaluated along the
vertical, horizontal, and diagonal directions. Fig. 3(d)



4

(a) (b)

(c) (d)

FIG. 3. Graphical illustration of ILPHVGn(ρ) for x1 = 2. In
Fig. 3(a) we depict a sample matrix when x1 is the central
entry, which shows the ILPHVG4(1) algorithm is evaluated
along the vertical and horizontal directions. In Fig. 3(b)
illustrates the connectivity pattern associated to x1 in the case
of ILPHVG4(1). Fig. 3(c) shows the ILPHVG8(1) algorithm
evaluated both along the vertical and horizontal directions
and along diagonal directions. In Fig. 3(d) we show the
connectivity pattern associated to x1.

shows the connectivity pattern associated to the entry
x1 of the ILPHVG8(1) algorithm.

III. THEORETICAL RESULTS ON THE
TOPOLOGICAL PROPERTIES

Theorem 1. [34] If we let X(t) be a bi-infinite sequence
of independent and identically distributed (i.i.d.) random
variable x with probability density f(x), then the degree
distribution of its associated LPHVG(ρ) is

P (k) =







1
2ρ+3

(

2ρ+2
2ρ+3

)k−2(ρ+1)

, k ≥ 2ρ+ 2.

0, otherwise.

The mean degree 〈k〉 is

〈k〉 = 4(ρ+ 1).

Reference [34] provides a lengthy proof of this theorem.
We here propose an alternative shorter proof.
Proof. We let x be an arbitrary datum of the i.i.d.

random time series where its limited penetrable horizon-
tal visibility is interrupted by two bounding data, one
datum xbl on its left and one xbr on its right. There
are 2ρ penetrable data that are larger than x between
the two bounding data, ρ penetrable data x1

pl, x
2
pl, ..., x

ρ
pl

on the left and ρ data x1
pr , x

2
pr, ..., x

ρ
pr on the right of x.

These 2ρ+ 2 data are independent of f(x), then

Φ2ρ+2 =

∫ ∞

−∞

∫ ∞

x

∫ ∞

x

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

...

∫ ∞

x

f(x)f(xbl)

f(xbr)f(x
1
pl)...f(x

ρ
pl)f(x

1
pr)...f(x

ρ
pr)dx

ρ
pr ...dx

1
prdx

ρ
pl...

...dx1
pldxbrdxbldx.

(4)
We define the cumulative probability distribution func-
tion F (x) of any probability distribution f(x) as

F (x) =
∫ x

−∞
f(t)dt. (5)

Then, we rewrite Eq. (4)

Φ2ρ+2 =
∫∞

−∞
f(x)[1 − F (x)]2ρ+2dx = 1

2ρ+3 . (6)

The probability P (k) that the datum penetrates no more
than ρ time seeing k data is

P (k) = Φ(k)Φ2ρ+2 = 1
2ρ+3Φ(k), (7)

where Φ(k) is the probability that datum x penetrates
no more than ρ time, seeing at least k data. We can
recurrently calculate Φ(k)

{

Φ(k) = Φ(k − 1)(1− Φ2ρ+2) =
2ρ+2
2ρ+3Φ(k − 1),

Φ(2ρ+ 2) = 1,
(8)

from which we deduce

Φ(k) =
(

2ρ+2
2ρ+3

)k−2(ρ+1)

Φ(2ρ+ 2) =
(

2ρ+2
2ρ+3

)k−2(ρ+1)

.

(9)
Thus, we finally obtain

P (k) =







Φ(k)Φ2ρ+2 = 1
2ρ+3

(

2ρ+2
2ρ+3

)k−2(ρ+1)

, k ≥ 2ρ+ 2.

0, otherwise.

(10)
Then the mean degree 〈k〉 of the limited penetrable hori-
zontal visibility graph associated to an uncorrelated ran-
dom process is

〈k〉 =
∞
∑

k=2ρ+2

kP (k) =
∞
∑

k=2ρ+2

k
2ρ+3

(

2ρ+2
2ρ+3

)k−2(ρ+1)

= 4(ρ+ 1).
(11)

Theorem 1 shows the exact degree distribution for
LPHVG(ρ), which indicates that the degree distribution
P (k) of LPHVG(ρ) associated to i.i.d. random time se-
ries has a unified exponential form, independent of the
probability distribution from which the series was gener-
ated.
Theorem 2. We let X(t) be a bi-infinite sequence of

i.i.d. random variable x with probability density f(x),
and consider a limited penetrable horizontal visibility
graph associated with X(t). We let 〈k(x)〉 be a mean



5

degree of the node associated with a datum of height x
and define it as

〈k(x)〉 = 2(ρ+1)−2(ρ+1)ln[1−F (x)], F (x) =

∫ x

−∞

f(t)dt.

Proof. We define P (k|x) to be the conditional proba-
bility that a given node has degree k when its height is x.
Using the constructive proof process of P (k) in Ref. [34],
we calculate P (k|x)

P (k|x) =
k−θ
∑

h=0

(2ρ+ 1)h
(−1)k−θ

h!(k − θ − h)!
[1− F (x)]θ{ln[1− F (x)]}k−θ

= [1− F (x)]θ{θln[1− F (x)]}k−θ (−1)k−θ

(k − θ)!
, θ = 2(ρ+ 1).

(12)
Then 〈k(x)〉 is

〈k(x)〉 =
∞
∑

k=2(ρ+1)

kP (k|x). (13)

We let k − 2(ρ + 1) = α, 2(ρ + 1)ln[1 − F (x)] = λ and
deduce

〈k(x)〉 = 2(ρ+ 1)[1− F (x)]2(ρ+1)
∞
∑

α=0

(−1)αλα

α!

+[1− F (x)]2(ρ+1)
∞
∑

α=1

(−1)αλα

(α−1)!

= 2(ρ+ 1)− λ = 2(ρ+ 1)− 2(ρ+ 1)ln[1− F (x)].
(14)

Theorem 2 shows the relation between data height x
and the mean degree of the nodes associated with the
data of height x. The result indicates that the 〈k(x)〉 is a
monotonically increasing function of x and we conclude
that the hubs of LPHVG(ρ) are the data with largest val-
ues. We checked the accuracy of the result within finite
series and Fig. 4(a) shows a plot of the numerical values
of 〈k(x)〉 of LPHVG(ρ), with ρ = 0, 2, 4 and 6 associated
to a random series of 1000 data extracted from a uniform
distribution for F (x) = x. The theoretical results (red
lines) show a good agreement with the data [Eq. (14)].
To investigate the finite size effect, Fig. 4(b) shows a
plot of the numerical values of 〈k(x)〉 of LPHVG(2) asso-
ciated with random series of 500, 1000, 1500, 2000 data.
We use root mean square error (RMSE) to measure the
agreement between the numerical and theoretical results.
We find that when the size N of the time series increases,
the RMSE between the numerical and theoretical results
decreases, improving its accuracy.
Theorem 3. We let X(t) be an infinite periodic se-

ries of period T with no repeated values within a period.
The normalized mean distance 〈〉 of LPHVG(ρ) associ-
ated with X(t) is

〈d〉 ∼ [4(ρ+ 1)− 〈k(T )〉],

where

〈k(T )〉 = 4(ρ+ 1)

(

1− 2ρ+ 1

2T

)

, ρ ≪ T.

 = 0

0 0.5 1
0

5

10  = 2

0 0.5 1
0

10

20

30

 = 4

0 0.5 1
0

20

40

60
 = 6

0 0.5 1
0

20

40

60

80

(a)

x

ák
(x

)ñ
ák

(x
)ñ

x

10

2000

20

 = 2

30

1

40

0.5

50

1000 0
-0.5

Numerical

Theoretical

0 1000 2000
0

1

2

R
M

S
E

(b)

x

ák
(x

)ñ

x

N

FIG. 4. (a) The relation between data height x and the node
degree 〈k(x)〉 under different penetrable distance ρ. (b) The
relation between data height x and the node degree 〈k(x)〉
under different time series size N .

Proof. To calculate 〈k(T )〉 we consider an
infinite periodic series of period T with no re-
peated values in a period and denote it X(t) =
{..., x0, x1, x2, ..., xT , x1, x2, ...}, x0 = xT . We let ρ ≪ T

for the subseries X̃(t) = {x0, x1, x2, ..., xT } and, with-
out loss of generality, we assume that x0 = xT cor-
responds to the largest value of the subseries X̃(t),
and x1, ..., xρ, xT−ρ, ...xT−1 corresponds to the 2nd to
(2ρ + 1)nd largest value of the subseries. Thus we con-

struct the LPHVG(ρ) associated with subseries X̃(t).
We assume that LPHVG(ρ) has E links and let xi be

the smallest datum of the subseries X̃(t). Because no

data repetitions are allowed in X̃(t), the degree of xi is
2(ρ+1) when the graph is constructed from LPHVG(ρ).
We now remove node xi and its 2(ρ + 1) links from
LPHVG(ρ). The resulting graph now has E − 2(ρ + 1)
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links and T nodes. We iterate this operation T − (2ρ+1)
times and the resulting graph has 2(ρ + 1) nodes, i.e.,
x0, x1, ..., xρ, xT−ρ, ...xT−1, xT . When these 2(ρ + 1)

nodes are connected by Er =
(

2ρ+2
2

)

links, the total num-
ber of deleted links are Ed = 2(ρ+1)[T − (2ρ+1)]. Thus
the mean degree of a limited penetrable horizontal visi-
bility graph associated with X(t) is

〈k(T )〉 =
2
Ed + Er

T
=

2{2(ρ+ 1)[T − (2ρ+ 1)] + (ρ+ 1)(2ρ+ 1)}
T

= 4(ρ+ 1)

(

1− 2ρ+ 1

2T

)

, ρ ≪ T.

(15)
We let 〈ℓ〉 be the mean distance of LPHVG(ρ), N be

the number of nodes, and the normalized mean distance

be 〈d〉 = 〈ℓ〉
N
. Note that 〈d〉 depends on T for horizontal

visibility graph associated with periodic orbits 〈d〉 ∼ T−1

for N → ∞ [31]. Thus, we deduce that 〈d〉 ∼ T−1 for
LPHVG(ρ). Using Eq. (15) we obtain T−1 ∼ [4(ρ+1)−
〈k(T )〉] and

〈d〉 ∼ [4(ρ+ 1)− 〈k(T )〉]. (16)

This result holds for every periodic or aperiodic series
(T → ∞), independent of the deterministic process that
generates them, because the only constraint in its deriva-
tion is that data within a period can not be repeated.
Note that one consequence of Eq. (15) is that each time
series has an associated LPHVG(ρ) with a maximum
mean degree (for a aperiodic series) of 〈k(∞)〉 = 4(ρ+1),
which agrees with the previous result in Eq. (11). In
Eq. (16) the limiting solution 〈k(T )〉 → 4(ρ+1), 〈d〉 → 0
holds for all aperiodic, chaotic, and random series. To
check the accuracy of the analytical result, we generate
four periodic time series (T = 50, 100, 200 and 250) with
2000 data points. The data in each period come from a
Logistic map with µ = 4 [34]. We construct the limited
penetrable horizontal visibility graphs with penetrable
distance ρ = 0, 1, 2, ..., 10 associated with this periodic
time series. Fig. 5(a) shows a plot of the mean degree
of the resulting LPHVG(ρ) values with different ρ val-
ues that indicate a good agreement with the theoretical
results in Eq. (15). Fig. 5(b) shows a calculation of the
normalized mean distance 〈d〉 of LPHVG(ρ) values with
ρ = 0, 1, and 2 associated with the period time series
of T = 100, 200, 300, ..., 1000. The numerical values of
the mean normalized distance 〈d〉 as a function of mean
degree 〈k(T )〉 agrees with the theoretical linear relation
of Eq. (16).
Theorem 4. [34] We letX(t) be a real value bi-infinite

time series of i.i.d. random variables x with probability
distribution f(x) and examine its associated LPHVG(ρ).
The local clustering coefficient distribution is then

P (Cmin) =

1
2ρ+3exp

{[

ϕ+
√

ϕ2−8Cmin(2ρ+1)

2Cmin
− 2(ρ+ 1)

]

ln
(

2ρ+2
2ρ+3

)

}

,
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FIG. 5. (a) Numerical results of Eq. (15) where we sim-
ulated a periodic time series for T = 50, 100, 200 and 250,
respectively, with 2000 data points. (b) Numerical results
of Eq. (16), where we simulated a periodic time series with
T = 100, 200, 300, ..., 1000. The data in each period comes
from the Logistic map with µ = 4.

and

P (Cmax) =

1
2ρ+3exp

{[

φ+
√

φ2−8Cmax(6ρ+1)

2Cmax
− 2(ρ+ 1)

]

ln
(

2ρ+2
2ρ+3

)

}

,

where ϕ = Cmin + 2(ρ+ 1) and φ = Cmax + 2(2ρ+ 1).
Theorem 5. [34] We let XN(t) be a bi-finite sequence

of i.i.d. random variables extracted from a continuous
probability density f(x). Then the probability Pρ(n)
that two data separated by n intermediate data are two
connected nodes in the LPHVG(ρ) is

Pρ(n) =
2ρ(ρ+1)+2
n(n+1) , ρ = 0, 1, 2, ...
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Theorem 4 shows the distribution characteristics of
the minimum and the maximum clustering coefficients
of the nodes in LPHVG(ρ). Theorem 5 indicates that
the limited penetrable visibility probability Pρ(n) =
2ρ(ρ+1)+2
n(n+1) introduces shortcuts in the LPHVG(ρ). With

these shortcuts the limited penetrable horizontal visibil-
ity graph reveals the presence of small-world phenomena
[34].
Theorem 6. We let X(t) be a bi-infinite sequence

of i.i.d. of random variable x with a probability density
f(x). Then both the in and out degree distribution of its
associated DLPHVG(ρ) is

Pin(k) = Pout(k) =







1
ρ+2

(

ρ+1
ρ+2

)k−(ρ+1)

, k ≥ ρ+ 1.

0, otherwise.

Proof. Let x be an arbitrary datum of the i.i.d. ran-
dom time series with x ≤ xbr , and Pout(k) be the prob-
ability that its limited penetrable horizontal visibility is
interrupted by one bounding datum on its right. There
are ρ penetrable data xp1, xp2, ..., xpρ ≥ x between x and
the bounding data xbr . These ρ+1 data are independent
of f(x). Then

Φρ+1
out =

∫ ∞

−∞

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

f(x)f(xp1)...f(xpρ)f(xbr)

dxbrdxpρ...dxp1dx =

∫ ∞

−∞

f(x)[1− F (x)]ρ+1dx =
1

ρ+ 2
.

(17)
The probability Pout(k) that datum x penetrates no more
than ρ times, seeing k data is

Pout(k) = Φout(k)Φ
ρ+1
out = 1

ρ+2Φout(k), (18)

where Φ(k) is the probability that x penetrates no more
than ρ times to the right, seeing at least k data. Then
Φ(k) can be recurrently calculated

Φ(k) = Φ(k − 1)(1− Φρ+1
out ) =

ρ+ 1

ρ+ 2
Φ(k − 1)

=

(

ρ+ 1

ρ+ 2

)k−(ρ+1)

Φ(ρ+ 1),
(19)

from which, with Φ(ρ+ 1) = 1, we deduce

Φ(k) =
(

ρ+1
ρ+2

)k−(ρ+1)

. (20)

Thus, we finally obtain

Pout(k) = Φout(k)Φ
ρ+1
out =







1
ρ+2

(

ρ+1
ρ+2

)k−(ρ+1)

.

0, otherwise.

(21)
To further check the accuracy of Eq. (21), we per-

form several numerical simulations. We generate ran-
dom series of 3000 data points from uniform, gaus-
sian, and power law distributions and their associated
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FIG. 6. (a) Plot of the in and out degree distributions of the
resulting graphs. (b) Semi-log plot of the in and out degree
distributions of the resulting graphs. The theoretical results
showed were calculated using Eq. (21).

DLPHVG(ρ). Fig. 6 show plots of the degree distribu-
tions with penetrable distances ρ = 0, 1 and 2. We find
that the theoretical results agree with the numerics, plac-
ing aside finite size effects. As in the degree distribution
of LPHVG(ρ) [34], the deviations between the tails of
the in and out degree distributions of DLPHVG(ρ) asso-
ciated with i.i.d. random series are caused solely by finite
size effects.
Theorem 7. We let X be a N×N matrix with entries

xij = ξ, where ξ is a random variable sampled from a
distribution f(x). Then when n > 0 and in the limitN →
∞, the degree distribution of the associated ILPHVGn(ρ)
converges to

P (k) =







1
[n(ρ+1)+1]

[

n(ρ+1)
n(ρ+1)+1

]k−n(ρ+1)

, k ≥ n(ρ+ 1).

0, otherwise.

Proof. To derive general results, we consider the
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two special cases n = 4 and n = 8. In the case
n = 4, we let x be an arbitrary datum in X, where
the probability of its image limited penetrable hori-
zontal visibility is interrupted by four bounding da-
tum, i.e., xbr on its right, xba above it, xbl on its
left, and xbb below it. There are 4ρ penetrable
data xpr1, ..., xprρ, xpa1, ..., xpaρ, xpl1, ..., xplρ, xpb1..., xpbρ

between x and the four bounding data. These 4ρ + 4
data are independent of f(x). Then

Φ[4(ρ+ 1)] =
∫ ∞

−∞

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

...

...

∫ ∞

x

∫ ∞

x

∫ ∞

x

∫ ∞

x

∫ ∞

x

f(x)f(xpr1)...f(xprρ)f(xpa1)...

...f(xpaρ)f(xpl1)...f(xplρ)f(xpb1)...f(xpbρ)f(xbr)f(xba)
f(xbl)f(xbb)dxbbdxbldxbadxbrdxpbρ...dxpb1dxplρ...
...dxpl1dxpaρ...dxpa1dxprρ...dxpr1dx

=

∫ ∞

−∞

f(x)[1− F (x)]4ρ+4dx =
1

4ρ+ 5
.

(22)
The probability that the node x has a penetrable visibil-
ity of exactly k nodes is

P (k) = {1− Φ[4(ρ+ 1)]}k−4(ρ+1)Φ[4(ρ+ 1)]

=
1

4ρ+ 5

(

4ρ+ 4

4ρ+ 5

)k−4(ρ+1)

, k ≥ 4(ρ+ 1).
(23)

Similarly, when n = 8 from Eq. (22), then

Φ[8(ρ+ 1)] =
∫∞

−∞ f(x)[1− F (x)]8ρ+8dx = 1
8ρ+9 .

(24)
Here the probability that node x has a penetrable visi-
bility of exactly k nodes is

P (k) = {1− Φ[8(ρ+ 1)]}k−8(ρ+1)Φ[8(ρ+ 1)]

=
1

8ρ+ 9

(

8ρ+ 8

8ρ+ 9

)k−8(ρ+1)

, k ≥ 8(ρ+ 1).
(25)

From Eqs. (23) and (25) we deduce for a generic n

P (k) = {1− Φ[n(ρ+ 1)]}k−n(ρ+1)Φ[n(ρ+ 1)]

=







1
[n(ρ+1)+1]

[

n(ρ+1)
n(ρ+1)+1

]k−n(ρ+1)

, k ≥ n(ρ+ 1).

0, otherwise.

(26)
Note that when n = 2 this result reduces to that in
Eq. (10). In order to check the accuracy of Eq. (26),
we estimate the degree distribution of ILPHVGn(ρ) as-
sociated with N ×N random matrices whose entries are
i.i.d. uniform random variables between 0 and 1. To illus-
trate the finite size effects, we also define the cutoff value
k0. When k > k0, all the degree distributions of the nu-
merical results are smaller than the theoretical result in
Eq. (26). Figs. 7(a-c) and 7(e-g) show semi-log plots of
the finite size degree distributions of ILPHVG4(ρ) and
ILPHVG8(ρ) with N = 200. Note that the distributions
agree with Eq. (26) when k ≤ k0. To assess the con-
vergence speed of Eq. (26) for finite N , we estimate the
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FIG. 7. (a) Semi-log plot of the degree distribution of
ILPHVG4(ρ) associated to N × N random matrices. The
solid line is the theoretical value of P (k) given by Eq. (26).
In every case we find an good agreement with this equation
for k ≤ k0, where k0 is a cutoff value that denotes the onset of
finite size effects. (b) Plot of the cutoff k0 as a function of dif-
ferent size N for n = 4, suggesting a logarithmic scaling. (c)
Semi-log plot of the degree distribution of ILPHVG8(ρ) asso-
ciated to N ×N random matrices and the theoretical value of
P (k). (d) Plot of the cutoff k0 as a function of different size
N for n = 8, also suggesting a logarithmic scaling.

cutoff value k0 for different finite N sizes [see Figs. 7(d)
and 7(h)]. Note that the location of the cutoff value k0
scales logarithmically with the system size N , i.e., finite
size effects only affect the tail of the distribution, which
quickly converges with N .

In addition to the above proof method for degree distri-



9

butions of LPHVG(ρ) (Theorem 1), DLPHVG(ρ) (The-
orem 6) and ILPHVGn(ρ) (Theorem 7), we can also
prove them from the construction process of LPHVG(ρ),
DLPHVG(ρ) and ILPHVGn(ρ). We here give the proof
for ILPHVGn(ρ), and the proofs for LPHVG(ρ) and
DLPHVG(ρ) follow analogously. Generating a panel data
of size N × N is equivalent to putting N × N numbers
into N × N positions. In the first step, we randomly
choose a position and put the largest number on it. In
the second step, we choose a position from the remaining
N2−1 positions and put the second largest number on it.
In step l, we randomly choose a position from N2 − l+1
remaining positions and put the largest number l on it.
To derive the general results of a ILPHVGn(ρ) using

iterative construction process, we first examine the two
special cases n = 4 and n = 8. When n = 4, we construct
the ILPHVGn(ρ) from a matrix with l2 − 1 numbers in
step l2. We define LI(k, l

2 − 1) the number of nodes
with degree k. When we add largest number l2 into the
ILPHVG4(ρ), only 4(ρ+ 1) new edges are generated, as
shown in Fig. 8(a) with ρ = 0, in Fig. 8(b) with ρ = 2,
where the green node is the largest number l2 node and
the 4(ρ+1) new edges link to the 4(ρ+1) nodes adjacent
to node l2. The degree of each 4(ρ+1) node increases by
1. Because the new node is placed randomly, l2−1 nodes
have the same probability 4(ρ + 1)/(l2 − 1) of changing
their degrees. With a probability 1−4(ρ+1)/(l2−1) the
other nodes degrees remain the same. So the number of
nodes with degree k in the new ILPHVG4(ρ) containing
l2 nodes is

L4(k, l
2) =

[

1− 4(ρ+ 1)

l2 − 1

]

L4(k, l
2 − 1)+

4(ρ+ 1)

l2 − 1
L4(k − 1, l2 − 1) + δk,4(ρ+1).

(27)

where

δk,4(ρ+1) =

{

1, k = 4ρ+ 4,

0, otherwise,

because the degree of each new node is k = 4(ρ+1). The
probability that nodes with degree k in the ILHVG4(ρ)
containing l2 nodes is calculated by

P4(k, l
2) = L4(k, l

2)/l2. (28)

Thus, we rewrite Eq. (28) to be

P4(k, l
2) ≈

(

1− 4ρ+ 5

l2

)

P4(k, l
2 − 1)

+
4(ρ+ 1)

l2
P4(k − 1, l2 − 1),

(29)

in which δk,2(ρ+1)/l
2 = 0 for large l2. When l2 → ∞, we

have
{

P4(k − 1, l2) = P4(k − 1, l2 − 1) = P4(k − 1),

P4(k, l
2) = P4(k, l

2 − 1) = P4(k).

(30)

Combining Eqs. (29) and (30) we obtain

P4(k) =
4ρ+4
4ρ+5P4(k − 1). (31)

By applying
∞
∑

k=4(ρ+1)

P4(k) = 1, we obtain the solution

to Eq. (31)

P4(k) =
(4ρ+5)4ρ+3

(4ρ+4)4ρ+4

(

4ρ+4
4ρ+5

)k

. (32)

Similarly, when n = 8 we add the largest number l2 into
the ILPHVG8(ρ), and 8(ρ + 1) new edges are generated
shown in Fig. 8(c) with ρ = 0, Fig. 8(d) with ρ = 2, the
green node is the largest number l2 node, and 8(ρ + 1)
new edges link to 8(ρ+1) nodes adjacent to node l2. We
then change Eq. (27) to

L8(k, l
2) =

[

1− 8(ρ+ 1)

l2 − 1

]

L8(k, l
2 − 1)

+
8(ρ+ 1)

l2 − 1
L8(k − 1, l2 − 1) + δk,8(ρ+1).

(33)

Thus

P8(k, l
2) ≈

(

1− 8ρ+ 9

l2

)

P8(k, l
2 − 1)

+
8(ρ+ 1)

l2
P8(k − 1, l2 − 1),

(34)

When l2 → ∞, we have

P8(k) =
8ρ+8
8ρ+9P8(k − 1). (35)

By applying
∞
∑

k=8(ρ+1)

PI8(k) = 1 we obtain the solution

to Eq. (35)

P8(k) =
(8ρ+9)8ρ+7

(8ρ+8)8ρ+8

(

8ρ+8
8ρ+9

)k

. (36)

From Eq.(32) and (36), we deduce the probability for a
generic n

Pn(k) =
[n(ρ+1)+1)n(ρ+1)−1

[n(ρ+1)]n(ρ+1)

[

n(ρ+1)
n(ρ+1)+1

]k

. (37)

This result is consistent with the analytical expression
Eq.(26).

IV. APPLICATION OF DLPHVG(ρ) AND
ILPHVGn(ρ))

We use the analytical results of LPHVG(ρ) to describe
the global evolution of crude oil futures and to distinguish
between random and chaotic signals [34]. We also discuss
some applications of DLPHVG(ρ) and ILPHVGn(ρ).
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(a) (b)

(c) (d)

FIG. 8. Graphical illustration of the new edges generated of
ILPHVG4(ρ) and ILPHVG8(ρ) with ρ = 0 and 1 when we add
the l2-th largest number (the green node) into ILPHVG4(ρ)
and ILPHVG8(ρ).

A. Measure real-valued time series irreversibility
by DLPHVG(ρ)

Time series irreversibility is an important topic in ba-
sic and applied science [35]. Over the past decade sev-
eral methods of measuring time irreversibility have been
proposed [36-38]. A recent proposal uses the directed
horizontal visibility algorithm [39]. Here the Kullback-
Leibler divergence between the out- and in-degree distri-
butions is defined by

DKL[Pout(k)||Pin(k)] =
∑

k

Pout(k)log
Pout(k)
Pin(k)

. (38)

Eq. (38) measures the irreversibility of real-value station-
ary stochastic series, and here we explore the applicabil-
ity of DLPHVG(ρ). We first select an appropriate pa-
rameter ρ, then we map a time series to a directed lim-
ited penetrable horizontal visibility graph, and we use
Eq. (38) to estimate the degree of irreversibility of the
series. Using Theorem 6 and Eq. (38) we find that the
Kullback-Leibler divergence between the in and out de-
gree distributions associated with an i.i.d. random infi-
nite series is equal to zero. Using finite size analysis, we
find that this quantity tends asymptotically to zero for fi-
nite series of size N . We set ρ = 0, 1 and 2, and calculate
the numerical value of the Kullback-Leibler divergence of
the random series of 3000 data from uniform, Gaussian,
and power-law distributions (see the upper section of Ta-
ble 1). All numerical values for DKL are approximately
0, which suggests that the i.i.d. time series is reversible.
We next examine the chaotic Logistic (µ = 4) and

Hénon (a = 1.4, b = 0.3) map series. Figures 9(a) and
9(b) show plots of the in and out degree distributions of
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FIG. 9. Plot of the in and out degree distributions of
DLPHVG(ρ), ρ = 0, 1 and 2 associated to (a) the chaotic
Logistic map at (µ = 4) of 3000 data points and to the (b)
Hénon map for (a = 1.4, b = 0.3) of 3000 data points, which
different from the uncorrelated cases. Values of the Kullback-
Leibler divergence DKL associated to (c) the Logistic map
with series size N and (d) the Hénon map with series size N ,
which converge asymptotically to a nonzero value.

TABLE I. Values of the irreversibility measure associated to
the degree distribution DKL[Pout(k)||Pin(k)] for DLPHVG(ρ)
associated to series of 3000 data generated from reversible and
irreversible processes.

Series description ρ = 0 ρ = 1 ρ = 2
Uniform distribution 0.000950 0.007106 0.007269
Gaussian distribution 0.002633 0.007106 0.005507
Power law distribution 0.000226 0.004257 0.005267
Logistic map (µ = 4) 0.342985 0.090773 0.081985
Hénon map (a = 1.4, b = 0.3) 0.158358 0.125637 0.140270

DLPHVG(ρ), ρ = 0, 1 and 2 associated with the Logistic
map at µ = 4 and the Hénon map for a = 1.4 and b = 0.3
of 3000 data points. Note that in each case there is a clear
distinction between the in and out degree distributions,
and this differs from the i.i.d. series case [see Fig. 6(b)].
We calculate the values of the Kullback-Leibler diver-
gence for each case (bottom section of Table 1) and we
find that these values are positive and much larger than
those of the i.i.d. series. Figs. 9(c) and 9(d) show a finite
size analysis for chaotic maps. Note that the DKL values
associated with the chaos maps converges asymptotically
to a nonzero value for a series of size N , which indicates
that chaos maps are irreversible. Thus by selecting an
appropriate parameter for ρ, the DKL[Pout(k)||Pin(k)] of
DLPHVG(ρ) captures the irreversibility of the time se-
ries.
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B. Discriminating between noise and chaos using
ILPHVGn(ρ)

Although chaotic processes display an irregular and
unpredictable behavior that is frequently perceived to be
random, chaos is a deterministic process that often hides
patterns that can be extracted using appropriate tech-
niques. In recent decades, some research efforts to dis-
tinguish between noise and chaos have been widespread,
and applications have been developed in all scientific
disciplines involving complex, irregular empirical signals
[40-42]. Lacasa et al. [33] used visibility graphs to dis-
tinguish spatiotemporal chaos from simple randomness.
We also examine spatially extended structures and ex-
plore whether ILPHVGn(ρ) can distinguish spatiotem-
poral chaos from simple randomness.
We define X(t) to be a two-dimensional square lat-

tice of N2 diffusively-coupled chaotic maps that evolve
in time [33]. In each vertex of this coupled map lattice
(CML) we allocate a fully chaotic logistic map xt+1 =
Q(xt), with Q(x) = 4x(1 − x), and the system is then
spatially coupled,

xij(t+ 1) = (1− ǫ)Q[xij(t)] +
ǫ
4

∑

i′,j′
Q[xi′j′(t)], (39)

where the sum extends to the Von Neumann neighbor-
hood of ij (four adjacent neighbors). We use periodic
boundary conditions with coupling strength ǫ ∈ [0, 1].
Fig. 10(a) shows a semi-log plot for N = 200 of the de-
gree distribution of ILPHVG8(ρ), ρ = 0, 1 and 2 associ-
ated with a two-dimensional uncorrelated random field of
uniform random variables (stars), and a two-dimensional
coupled map lattice of diffusively coupled fully chaotic
logistic maps for ǫ = 0 (squares) and ǫ = 0.1 (diamonds).
Figure 10(b) shows a plot of the degree distribution of
ILPHVG8(ρ), ρ = 0, 1 and 2 associated with the two-
dimensional coupled map lattices of diffusively coupled
chaotic logistic maps for ǫ = 0.7. Eq. (26) shows ρ = 0
(dashed red line), ρ = 1 (solid blue line) and ρ = 2 (dot-
ted green line).
Figs. 10(a) and 10(b) show that the degree distribu-

tion of ILPHVG8(ρ), ρ = 0, 1 and 2 associated with the
uncoupled (ǫ = 0) and weakly coupled (ǫ = 0.1) cases is
indistinguishable from the degree distribution associated
with the i.i.d. random field. Fig. 10(b) shows that the
degree distribution deviates from the theoretical result in
Eq. (26) only in the strongly coupled case (ǫ = 0.7). Note
that the coupled map lattices from Eq. (39) when ǫ > 0
the degree distributions of ILPHVG8(ρ) are statistically
different from the theoretical result in Eq. (26). Never-
theless, the degree distribution of ILPHVG8(ρ), ρ = 0, 1
and 2, associated with the i.i.d. random field, uncou-
pled case (ǫ = 0), and weakly coupled case (ǫ = 0.1) are
well approximated by Eq. (26). There are deviations for
k > k0 (k0 = 19 for ρ = 0, k0 = 36 for ρ = 1, and
k0 = 51 for ρ = 2) but they are caused by finite size
effects (see Fig. 7). To quantify potential deviations of
the uncoupled and weakly coupled cases from Eq. (26),
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FIG. 10. (a) Semi-log plot of the degree distribution
of ILPHVG8(ρ), ρ = 0, 1 and 2 associated to a two-
dimensional uncorrelated random field of uniform random
variables (stars), and two-dimensional coupled map lattices
of diffusively coupled fully chaotic logistic maps, for coupling
constant ǫ = 0 (squares) and ǫ = 0.1 (diamonds). The dashed
red, solid blue and dotted green lines are the results of Eq.
(26) for ρ = 0, ρ = 1, and ρ = 2, respectively. (b) Semi-
log plot of the degree distribution of ILPHVG8(ρ), ρ = 0, 1
and 2 associated to two-dimensional coupled map lattices of
diffusively coupled fully chaotic logistic maps, for coupling
constant ǫ = 0.7 (black dots). (c) The χ2 statistic in two
dimensions phase space (time delay τ = 2). (d) Scalar pa-
rameter D as a function of the coupling constant ǫ, computed
from the degree distribution of ILPHVG8(ρ), ρ = 0, 1 and 2
associated to 100 × 100 CMLs of chaotic logistic maps.

we compute χ2 that measures the deviation between the
empirical degree distribution and the theoretical result

χ2 = N2
∑

k

[Pnum(k)−Ptheo(k)]
2

Ptheo(k)
, (40)

where Pnum(k) is the degree distribution of the numerical
result and Ptheo(k) is the theoretical result from Eq. (26).
Here we consider 30 realizations of the i.i.d. random field
and for the uncoupled (ǫ = 0) and the weakly coupled
map lattices (ǫ = 0.1), we use 8 ≤ k ≤ 44 for ρ = 0,
16 ≤ k ≤ 77 for ρ = 1, and 24 ≤ k ≤ 99 for ρ = 2
to compute the χ2 statistic. Fig. 10(c) shows the cal-
culated results in a two-dimensional phase space with a
time delay τ = 2. Note that there are clear distinctions
between the uncorrelated i.i.d. random field, the uncou-
pled map lattices (ǫ = 0), and the weakly coupled map
lattices (ǫ = 0.1) for ρ = 0 and ρ = 1, but when ρ = 2
the distinction is no longer clear. We thus select an ap-
propriate parameter ρ and use the degree distribution of
ILPHVG(ρ) to distinguish noise from chaos.
Note that when we increase the coupling constant ǫ

the spatiotemporal dynamics of the coupled map lattice
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shows a rich phase diagram. Using the degree distribu-
tion of ILPHVG8(ρ), we show this spatiotemporal dy-
namic process. For each ǫ we compute the degree distri-
bution of the associated ILPHVG8(ρ) and then we com-
pute the distance D between the degree distribution at ǫ
and the corresponding result for ǫ = 0 in Eq. (26),

D =
∑

k

|Pρ(k)− 1
8ρ+9

(

8ρ+8
8ρ+9

)k−8(ρ+1)

|, (41)

where Pρ(k) is the degree distribution of ILPHVGn(ρ),
and D is a scalar order parameter that describes the spa-
tial configuration of the CML. Figure 10(d) shows that
when ρ = 0, 1 and 2, the evolution of D with ǫ changes
from 0 to 1, indicating sharp changes in the different
phases—fully developed turbulence with weak spatial
correlations (I), periodic structure (II), spatially coher-
ent structure (III), and mixed structure (IV)—between
periodic and spatially-coherent structures [33]. Thus the
degree distribution of the ILPHVG8(ρ) can capture the
special spatial structure.

C. Measure the systematic risk using ILPHVGn(ρ)

Estimation of systematic risk has always been a hot
issue in research of system science [43-50]. Over the past
decade several methods of measuring systematic risk have
been proposed, such as the absorption ratio [44], the β
coefficient[45], the network methods [47-49], multivari-
ate autoregressive conditional heteroscedasticity method
[50]. Here, we propose a new method to measure the sys-
tematic risk using ILPHVGn(ρ). There are four steps in
the proposed method, i.e., construct sliding window, map
the panel data into ILPHVGn(ρ)s, calculate the correla-
tion index matrix, and calculate the risk index.
Step 1. Construct sliding window. To

characterize the evolution process of the panel data
XN×T = {xij}, i = 1, 2, ..., N and j = 1, 2, ..., T us-
ing ILPHVGn(ρ), we divide the entire scale of the panel
data into equal small-scale segments (or windows) and
assume that the length of the sliding window is L. From
the definition of ILPHVGn(ρ), we let L = N . We define
l as the step length between sliding time windows and
to ensure that small-scale segments of the time series are
continuous, we require that l < L. This allows us to ob-
tain T ′ = [(T − L)/l + 1] for small-scale time windows,
where [...] denotes the rounding function.
Step 2. Map the panel data into ILPHVGn(ρ)s.

In this step, we first need to determine the value of pa-
rameter ρ and we compute the absolute distance function
∆(ρ),

∆(ρ) = |χ2
Real − χ2

Rand|, (42)

where χ2
Real and χ2

Rand are χ2 values for real and random
panel data, respectively. The larger ∆ means a better
distinction between the real panel data and the random

panel data. Thus, we can determine the value of parame-
ter ρ using Eq.(42). In general, we set n = 4 or n = 8 and
then, for every small-scale time window t, we transform
the panel data into the a ILPHVGn(ρ) of time t. The
topological structure of ILPHVGn(ρ) changes with time
t, therefore, we write ILPHVGn(ρ, t), t = 1, 2, ..., T ′.
Step 3. Calculate the correlation index matrix.

We use the Euclidean distance to measure the relation-
ship between ILPHVGn(ρ)s. We define the Euclidean
distance between ILPHVGn(ρ, tm) and ILPHVGn(ρ, tn)
to be

dtm,tn =

√

L
∑

i=1

L
∑

j=1

[aij(tm)− aij(tn)], (43)

where aij(tm) ∈ A(tm) and aij(tn) ∈ A(tn), where A is
the adjacency matrix. We then determine the distance
matrix

DT ′×T ′ = {dtm,tn}; tm = 1, 2, ..., T ′; tn = 1, 2, ..., T ′,
(44)

and assign a threshold value to ν

ν = min{drandtm,tn
}tm 6=tn , drandtm,tn

∈ Drand
T ′×T ′ , (45)

here Drand
T ′×T ′ is the distance matrix associated with i.i.d.

random panel data. From Eq. (45), we can see that ν can
be obtained from the distance matrix of ILPHVGn(ρ)s
associated with the i.i.d. panel data, which is the criti-
cal value to measure the correlation between the data in
different time periods. Using the threshold ν, we define
the correlation index γ,

γ(tm, tn) =

{

0, dtm,tn ≥ ν,

1− dtm,tn/ν, dtm,tn < ν,
(46)

here γ(tm, tn) is the correlation index of ILPHVGn(ρ) at
time tm and at time tn and γ(tm, tn) can be visualized
using a recursive graph G, constructed using the formula

G(tm, tn) = Θ(ν − dtm,tn), (47)

where Θ(x) is the Heaviside function. We use this for-
mula to plot the dependence between ILPHVGn(ρ, tm)
and ILPHVGn(ρ, tn) in two-dimensional coordinates, in
which both the abscissa and the ordinate are the time
t. In the recursive graph, when the Euclidean distance
between ILPHVGn(ρ, tm) and ILPHVGn(ρ, tn) is suf-
ficiently close, i.e., when G(tm, tn) = 1, we plot a dot at
(tm, tn) and (tn, tm). Note that at (tm, tm) and (tn, tn),
i.e., the dots remain in the main diagonal, and we can use
this result to characterize the global dynamic changes
in correlation γ. Using Eq.(46), we can obtain the de-
gree correlation index matrix {γd(i, t)} and the cluster-
ing coefficient correlation index matrix {γc(i, t)} with i
and t = 1, 2, ..., T ′.
Step 4. Measure the systematic risk. According

to the information entropy, we develop a novel degree
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FIG. 11. Detailed procedure of the proposed method for sys-
tematic risk measuring.

correlation index entropy, denoted as Sd and the cluster-
ing coefficient correlation index entropy, denoted as Sc,
which is calculated by:

Sd(t) = −
T ′

∑

i=1

Pd(i, t)log[Pd(i, t)], Pd(i, t) =
γd(i,t)

T ′∑

i=1

T ′∑

t=1
γd(i,t)

,

(48)

Sc(t) = −
T ′

∑

i=1

Pc(i, t)log[Pc(i, t)], Pc(i, t) =
γc(i,t)

T ′∑

i=1

T ′∑

t=1
γc(i,t)

,

(49)
then, the risk measurement formula R can be obtained

R(t) = ω1S̄d(t) + ω2S̄c(t), (50)

where ωi is the weight, S̄d(t) and S̄c(t) are the normalized
vector of Sd(t) and Sc(t), respectively. The procedure of
the proposed method for systematic risk measuring is
illustrated in Fig. 11.
We choose the crude oil import values (unit: US Dollar

thousand) of 38 crude-oil-import-dependent countries as
the sample data, i.e., N = 38. The data cover the pe-
riod from January 2005 to December 2014 and consist
of 120 monthly observations, i.e., T = 120. All the data
were obtained from the US Energy Information Admin-
istration . We use the Z-score standardizing processing
method for data processing and the standardized data is
obtained as shown in Fig. 12(a). From step 1, we set
the length of sliding window L = N = 38 because this
is the number of crude-oil-import-dependent countries .
To ensure that there are enough sliding windows, we set
the step length between the time windows equal to 1, i.e.,
l = 1. Therefore, we obtain T ′ = (M − L)/l + 1 = 83
small-scale time windows. We use Eqs.(40) and (42) to
calculate the values of χ2 and ∆(ρ) with ρ changing from
0 to 9. Fig. 12(b) plots the values of χ2 of the real data
and the random data. Fig. 12(c) show how the val-
ues of ∆(ρ) changes with ρ. We find that when ρ = 3,
the value of ∆ reaches the maximum, thus we choose

ρ = 3 to build ILPHVGn(ρ)s. We set n = 8 and by using
Eqs.(43-45), we perform 100 simulations of the random
matrix to obtain 9031 and 334 for the threshold values of
degree and clustering coefficient, respectively. Then, us-
ing Eqs. (46-47), we obtain the degree correlation index
matrix {γd(i, j)} and the clustering coefficient correlation
index matrix {γc(i, j)} of the system for crude-oil-import-
dependent countries . The results are shown in Figs.
12(d) and (e) where we can clear see that the crude-oil-
import-dependent countries system has both short-range
and long-range correlations. Fig. 12(f) plots the evolu-
tion of the systematic risk, where the red cycle line is
our result, and the blue diamond line is the result using
the absorption rate in literature which is also a measure-
ment of systematic risk [44]. Fig. 12(f) indicates that
the period of the evolution of the risk in crude oil supply
was divided into three different periods. Before Novem-
ber 2009, the risk in crude oil supply showed a upward
trend due to the financial crisis. Then the risk showed a
trend of shock between December 2009 to February 2012,
and after February 2012 the risk shocked in a downward
trend, and down to the minimum on June 2014. Our
method can better reflect the evolutionary process of the
risk than the absorption rate, this is because this quan-
tity is just the sum of eigenvalues. The idea of absorp-
tion rate is to measure systemic risk using the volatility of
eigenvalues but this method ignores the influence of other
effects on the systematic risk. Our proposed calculation
formula (Eqs.48-50) can be used to solve the problem of
quantitative measures of the risk because it comprehen-
sively considers effects of several factors on system risk.
Integrating the volatility and the real market informa-
tion, our calculation formula decrypts system risk into a
more reasonable final result.

V. DISCUSSIONS

We have introduced a directed limited penetrable hor-
izontal visibility graph DLPHVG(ρ) and an image lim-
ited penetrable horizontal visibility graph [ILPHVGn(ρ)],
both inspired by the limited penetrable horizontal visi-
bility graph LPHVG(ρ) [34]. These two algorithms are
expansions of the limited penetrable horizontal visibil-
ity algorithm. We first derive theoretical results on
the topological properties of LPHVG(ρ), including de-
gree distribution P (k), mean degree 〈k〉, the relation be-
tween the datum height x and the mean degree 〈k(x)〉
of the nodes associated to data with a height equal to
x, the normalized mean distance 〈d〉, the local cluster-
ing coefficient distribution P (Cmin) and P (Cmax), and
the probability of long distance visibility Pρ(n). We then
deduce the in and out degree distributions Pin(k) and
Pout(k) of DLPHVG(ρ), and the degree distribution of
ILPHVGn(ρ). We perform several numerical simulations
to check the accuracy of our analytical results. Further-
more, we propose a novel method for deriving degree dis-
tributions of LPHVG(ρ), DLPHVG(ρ) and ILPHVGn(ρ)
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FIG. 12. (a) The selected sample of real data for crude oil
import values. (b) χ2 for the real data and for random data,
respectively. (c) φ(ρ) dependence on ρ. (d) The recursive
graph of degree correlation index matrix, (e) recursive graph
of clustering coefficient correlation index matrix, (f) the evo-
lution of the systematic risk.

by using an iterative construction process of LPHVG(ρ),
DLPHVG(ρ) and ILPHVGn(ρ). In particular, we take
ILPHVGn(ρ) for example and give a detailed proof pro-
cess. The proposed iterative construction approach for
deriving degree distributions is simple to calculate and
can be applied for more complicated time series, such as
Logistic maps and fractional Brownian motions.
We then present applications of the directed limited

penetrable horizontal visibility graph and the image
limited penetrable horizontal visibility graph, including
measuring the irreversibility of a real-value time series
and discriminating between noise and chaos. Empirical
results consistent with the results in references [33, 39].
In order to further demonstrate the practicality of our
method, we propose a new method to measure the sys-

tematic risk using ILPHVGn(ρ), and empirical results
testify the efficiency of our methods.
Our theoretical results on topological properties are an

extension of previous findings [22, 32-34]. In the struc-
ture of the limited penetrable horizontal visibility graph
family, the limited penetrable parameter ρ is important
and affects the structure of the associated graphs. Us-
ing certain ρ values, the exact results of the associated
graphs reveals the essential characteristics of the system,
e.g., when ρ = 0 and ρ = 1, using the degree distribution
of ILPHVG8(ρ), we can distinguish between uncorrelated
and weakly coupled systems. But when ρ = 2, the dis-
tinction is no longer clear [see Fig. 10 (c)]. Although
we have given a method to determine ρ in this paper,
how to use real data to select an optimal limited pene-
trable parameter ρ is still a interesting problem. As we
know, extracting the underlying dynamic processes is an
important topic in the analysis of time-series of complex
dynamical systems. Recently, Scholz et al. [41] proposed
a direct method to obtain the deterministic and stochas-
tic contribution of the sum of two independent stochas-
tic processes. Rinn et al. [42] presented an R package
for stochastic data analysis that is able to extract the
stochastic evolution equations of physical properties from
sets of their measurements. How to use the framework
of limited penetrable horizontal visibility graphs to dis-
tinguish between additive and multiplicative stochastic
contributions in superposed time series? How to use this
framework uncover dynamical features of its (chaotic or
not) deterministic part? We will introduce the concept
of subgraphs of limited penetrable horizontal visibility
graphs, and try to address these questions by using the
distribution of subgraphs in our further research.
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Buldú, H. E. Stanley. J. Royal Soc. Interface., 12(112):
20150770, (2015).

[48] X. Zhang, B. Podobnik, D. Y. Kenett, and H. E. Stanley.
Physica A, 415: 43-53 , (2014).

[49] X. Zhang, L. Feng, Y. Berman, N. Hu, and H. E. Stanley.
EPL, 116: 18001, (2016).

[50] G. Girardi, A. T. Ergün. J. Bank. Finance, 37(8): 3169-
3180, (2013).


