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A quantum error correcting protocol can be substantially improved by taking into account features
of the physical noise process. We present an efficient decoder for the surface code which can account
for general noise features, including coherences and correlations. We demonstrate that the decoder
significantly outperforms the conventional matching algorithm on a variety of noise models, including
non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation
of the logical channel using a tensor-network description of the noisy state.

Introduction. — The surface code represents a promising
route towards universal quantum computing. It achieves
high performance with a simple, two-dimensional phys-
ical layout and it is therefore the focus many current
experimental efforts [1, 2]. While the emphasis is of-
ten placed on making greater distance surface codes with
more physical qubits, in this Letter we demonstrate that
the error-correcting power of the surface code may be
substantially improved merely by upgrading the classi-
cal control software, without expending any additional
hardware resources.

The control software operates a decoding algorithm,
which selects a correction given the error syndrome. The
original decoder for the surface code is minimum-weight
perfect matching (MWPM), which selects the correction
with the smallest weight compatible with the syndrome.
[3] While MWPM’s simplicity is appealing, it does not
consider the underlying noise process and, as a result,
will generally perform suboptimally.

Some simple noise properties ignored by matching in-
clude error degeneracy (i.e. the fact that distinct errors
have the same effect on the code) and correlations be-
tween single-qubit errors in conjugate basis (Pauli X and
Z errors). Improved decoders have been devised which
account for these properties. For instance, [4] accounts
for degeneracy with an exact decoder built on match-
gate circuits and X-Z correlations using an approximate
mapping to a one-dimensional quantum chain.

Real noise has many additional features which may
be used to further improve decoding. For instance, us-
ing inefficient brute-force calculations, it has been shown
that a non-negligible improvement can be obtained over
MWPM by accounting for spatial noise correlations [5].
Even when restricted to local noise, other noise features
can greatly impact a code’s performance [6, 7].

A number of other decoders have been developed with
advantages over MWPM in terms of speed or accuracy
[8–21]. However, the noise processes considered in those
works was always assumed to be uncorrelated Pauli noise,
with the exception of [22] which is tailored to a specific
form of correlated Pauli noise.

In this Letter, we present a decoding algorithm for

the surface code which can account for general noise, in-
cluding non-Pauli noise and spatially correlated noise. A
general noise model is specified by an n-qubit completely-
positive trace-preserving (CPTP) map N . Our decoder
is tailored to any CPTP map representable by a two-
dimensional tensor network, which includes arbitrary lo-
cal noise, as well as quite general spatially correlated
noise. In essence, such noise models describe any noise
process where spatial correlations are mediated by short
range interactions directly between qubits or indirectly
through localized environmental degrees of freedom.

Our decoder performs an approximate calculation of
the logical channel that has affected the encoded data,
and chooses the correction which best inverts it so that
the overall action on the encoded data is as close as pos-
sible to the identity. This calculation relies on the pro-
jected entangled pair operator (PEPO) description of the
noisy state, which is guaranteed by the above assumption
about the noise.

We apply our decoder to examples of non-Pauli and
spatially correlated noise and observe orders of magni-
tude improvement over MWPM. For the local noise mod-
els tested the decoder appears to perform near optimally.
The cost of the decoder is O(ND3χ3), where N is the
number of physical qubits, D is the bond dimension of
the noise CPTP map (D = 1 for uncorrelated noise) and
χ is the bond dimension used in the approximate ten-
sor network contraction. In the noise models studied, a
small constant value of χ of about 8 appears sufficient to
substantially outperform matching.

Our paper is structured as follows. We first intro-
duce basic concepts and outline the decoding algorithm.
We then present numerical results, and discuss future re-
search directions.

Surface code. — The surface code, for our purposes, con-
sists of an square lattice of N qubits with open boundary
conditions on which a set of commuting check operators
is defined. The layout of check operators follows that of
[23] and is illustrated in Fig. 1 . On every white face f , an
x-check operator is defined as Af =

∏
i∈f Xi, where the

product is taken over all vertices surrounding the face.
Likewise, on every orange face f a z-check operator is
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FIG. 1. Layout of the surface code where qubits are located
at vertices. Orange faces represent Af checks and white faces
represent Bf checks. The logical Z operator is a product of Z
along the dashed blue and the logical X operator is a product
of X along the dashed red line.

defined as Bf =
∏
i∈f Zi. There are N − 1 checks, all of

which commute, and the group generated by all check op-
erators is called the stabilizer of the code. The codespace
is defined as the simultaneous +1 eigenspace of all check
operators. By definition, any operator in the stabilizer
acts as the identity operator on the codespace. With the
specified check layout, the codespace is two dimensional,
in other words, the surface code encodes a single qubit.
The logical Z operator is given as a string of Pauli Z oper-
ators along the left boundary of the code. This operator
commutes with the every check, and therefore preserves
the codespace. However, it is not contained in the stabi-
lizer of the code, and its action on the codespace is not
the identity. The encoded qubit states |0〉L and |1〉L can
be defined as the +1 and −1 eigenstates respectively of Z
in the code space. Therefore Z acts as Pauli Z on the en-
coded qubit. Likewise, a logical X operator, which acts
as Pauli X on the encoded qubit, is given as a product
of Pauli X operators along the bottom boundary of the
code.

During a round of error correction, every check is mea-
sured. When physical qubits are affected by noise, −1
measurement outcomes will occur with nonzero proba-
bility and the set of measurement outcomes s is called
the syndrome. Using the syndrome one then applies fur-
ther operations to the code qubits to return the state to
the code space, and undo any undesired transformation
to the encoded information that may have occurred. The
decoding problem is to determine the best correction op-
eration to apply, based on this syndrome and knowledge
of the noise model. We make this more precise in the
following section.

Decoding. — Here we define the decoding problem,
which we express in a general form that is not restricted
to stochastic Pauli noise. For concreteness, we decom-
pose the physical evolution of the system during error
correction into three distinct operators: noise N , re-
covery Rs and decoder correction Ds,N . The latter
two stages are dependent on the observed syndrome s,
and the decoder correction can also depend on the noise
model.

The noise operation consists of application of the
CPTP map N to the physical qubits of the surface code.
After noise application, the code is no longer in the
codespace.

The recovery map is then the operation that returns
the noisy state to the code space. This consists of the
syndrome measurement, which yields syndrome s with
probability p(s) and which projects the state into an
eigenspace of every check operator, followed by a Pauli
operator that returns the state to the +1 eigenspace of
every check operator. Note that this recovery simply re-
turns the state to the code space, without attempting
to minimise the probability of a logical error. Given a
syndrome s, we take this Pauli operator to be a product
of strings of Z operators that connect every flipped x-
check to the top boundary and a product of strings of X
operators that connect every flipped z-check to the left
boundary. The combined effect of the noise and recovery
Es,N := Rs◦N is thus a map from the code space to itself,
so it is a single-qubit CPTP map. However, depending
on the measured syndrome and the noise model, this Es,N
may act on the encoded qubit in a non-trivial way. The
goal of error correction is to preserve the state of the log-
ical qubit, i.e. to make the overall transformation of the
logical qubit as close to the identity as possible. For this,
the final decoding step is necessary.

In the final decoding step, a classical algorithm takes
the measured syndrome and some description of the noise
process and outputs a logical Pauli operator Ds,N ∈
{I,X, Y , Z}. The target output of the decoding algo-
rithm is the Ds,N that best inverts Es,N , i.e. to min-
imises the logical error ε = ||Ds,N ◦ Es,N − I||. The norm
defining ε can be taken to be any operator norm.

The computed decoder correction can be thought of
as being applied to the code after recovery, however we
remark that the Pauli operators involved in the recov-
ery and decoding steps need not actually be applied in
practice: keeping track of them is sufficient.

The problem of finding a Ds,N given s and N that
exactly minimises the error appears hard. With the ex-
ception of some specific noise models, most decoders will
only yield an approximation, so that for a non-zero frac-
tion of the syndromes s, the selected Ds,N does not min-
imise ||Ds,N ◦Es,N−I|| . We can quantify the performance
of the decoder by the averaged logical error rate over all
possible syndromes

∑
s p(s)||Ds,N ◦ Es,N − I||.

Decoding algorithm. — Here we describe our surface-
code decoding algorithm. The essential idea is to com-
pute an approximation Ẽs,N of the logical channel Es,N
given the syndrome s and a CPTP map N of the noise.
Once Ẽs,N is known, the approximate logical error rate

ε̃ := ||L◦Ẽs,N−I|| is calculated for each L ∈ {I,X, Y , Z}.
The decoder correction Ds,N is then chosen to be the
Pauli operator that minimises ε̃. 1

1 Note that in principle, this decoding algorithm could select a
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The non-trivial part of the algorithm is calculating a
sufficiently accurate approximation of the logical channel
Ẽs,N . For this, we draw on a simulation algorithm that
we developed in [25]. The key idea is that Es,N can be
exactly expressed as a square-lattice tensor network.

We start with a projected entangled pair operator
(PEPO) description of the code-space projector ΠC and
from this we compute a PEPO description of the noisy
state N (ΠC) 2. This is possible if the noise N is an
operator that maps PEPOs to PEPOs, so naturally any
noise model N that can itself be represented by a two-
dimensional tensor network will do. This is the only as-
sumption we make about the noise. The recovery map,
consisting of check measurements and a Pauli operator,
can also be represented by a two-dimensional tensor net-
work because it is built from a finite-depth local circuit.
Thus, the output Es,N (Π0) = Rs ◦N (Π0) of the recovery
is also a PEPO, which is simple to calculate.

The map Es,N if fully characterised by its correspond-
ing Choi matrix Cij = tr(LiEs,N (LjΠC)) describing the
action of the channel on the Pauli basis, where Li =
(I,X, Y , Z) are logical Pauli operators. The operator
LiEs,N (Lj) is representable as a PEPO, and can be ob-
tained for each i, j by inserting tensors appropriately into
the PEPO describing Es,N (ΠC). Full details of how these
tensors are inserted are provided in [25] and accompany-
ing material. Given LiEs,N (Lj), the target Cij can then
be calculated by taking the trace of each pair of phys-
ical indices then contracting all indices in the resulting
square-lattice tensor network.

Contracting a square-lattice tensor network is, in gen-
eral, #P-complete [26], and therefore no efficient algo-
rithm is believed to exist. However several algorithms
exist that can output an approximate contraction in poly-
nomial time [27–32]. We use an approximate algorithm
for the contraction which involves treating the left-hand
boundary of the tensor network as a one-dimensional
spin chain, and approximately tracking its evolution as
columns are applied to it [33]. This contraction algorithm
was also used in the context of surface-code error correc-
tion in other work [4, 25]. It has a time complexity of
O(Nχ3) where χ is the bond dimension that controls the
accuracy of the approximate contraction. Exact contrac-
tion requires that χ grows exponentially with N , however
as we will show we have found that fixing χ to a small
constant yields very accurate results.

Noise models. — We now describe the noise models that
we have used to benchmark our decoder. We focus on two
models to highlight noise features not considered in pre-
vious work. One feature is our decoder’s ability to fully

correction among all allowed logical operations of the code [6, 24],
however we restrict to Pauli corrections to be on the same footing
as MWPM.

2 Note that in [25] we started with a PEPO description of a half-
encoded Bell state, rather than the code projector. However,
these two descriptions are ultimately equivalent.

incorporate non-Pauli noise. To illustrate the perfor-
mance of the decoder on non-Pauli noise we consider the
amplitude-damping (AD) channel EAD(ρ) =

∑
iKiρK

†
i ,

which has two Kraus operators,

K0 = |0〉〈0|+
√

1− γ|1〉〈1| , K1 =
√
γ|0〉〈1| , (1)

where γ ∈ [0, 1] is the damping parameter. The full noise
model is the N -fold tensor product of this single-qubit
amplitude damping channel NAD = E⊗NAD .

Another feature of our decoder is that it can incorpo-
rate quite general spatial noise correlations. To demon-
strate the performance of the decoder on spatially corre-
lated noise, we define a correlated bitflip noise model as
follows.

We specify an error on the surface code with a con-
figuration of N binary variables σ = σ1σ2 . . . σN where
σi = 1 means that the qubit i is unaffected while σi = −1
means that qubit i is flipped. For this noise model, an
error σ occurs on the surface code with Boltzmann prob-
ability p(σ) = e−βE(σ)/Z, where Z =

∑
σ′ e−βE(σ′) is

the partition function, β is the inverse temperature pa-
rameter, and the energy E(σ) is given by

E(σ) = −h
∑
i

σi − J1
∑
〈i,j〉

σiσj − J2
∑
f

∏
i∈f

σi

 . (2)

The first sum is over all sites, the second sum is over
all pairs of neighboring sites, and the final sum is taken
over all white faces. The probability distribution p(σ)
therefore depends on three parameters h, J1 and J2 and
the inverse temperature β is an overall scaling parame-
ter. The h parameter influences the number of bitflips,
with larger positive h favouring configurations with fewer
flipped spins. The J1 parameter influences correlations
between neighboring bitflips: if J1 > 0 then the prob-
ability that a bitflip will occur at a site increases with
the number of neighbours that are also flipped. Finally,
the J2 parameter influences the number of checks with−1
outcomes: larger J2 favours configurations corresponding
to syndromes with fewer flipped checks. Equivalently,
increasing J2 decreases the number of detectable error
strings.

This correlated bit-flip (CBF) noise model can be ex-
pressed as the non-local CPTP map

NCBF(ρ) =
∑
σ

p(σ)U(σ)ρU(σ)† , (3)

where U(σ) is the unitary map that applies an X bit-
flip to sites i with σi = −1, and the identity to every
other site. Because any Boltzmann distribution of a local
Hamiltonian is a local tensor-network [34], it is straight-
forward to show that NCBF can be expressed as a two-
dimensional tensor network.

We remark that, while the J2 term affects p(σ), it does
not affect decoding since, once the syndrome s is fixed,
the probability of any error σ consistent with the syn-
drome s is independent of J2. Hence the noise model
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input to the decoder NCBF can be replaced with one
with J2 = 0, which simplifies the corresponding tensor
network. The bond dimension of the noise tensor net-
work is D = 2.

Results. — We tested our decoder on the above noise
models at both high and low noise rates. While our de-
coding algorithm is efficient and can handle large lattices,
verifying the quality of the decoder requires a full quan-
tum mechanical simulation. Amplitude damping and
correlated bitflip noise cannot be simulated in the same
way and therefore require different benchmarking meth-
ods.

In general, it is not possible to efficiently simulate non-
Pauli noise, like amplitude damping. Therefore we have
performed simulations on small system sizes where sim-
ulation is possible. We have used the exact (albeit in-
efficient) simulation algorithm described in [25] which is
essentially the same as the present decoding algorithm
except that the logical channel is calculated exactly using
an exact contraction of the tensor network, rather than
an approximate contraction. With this algorithm, bench-
mark simulations could be performed on system sizes of
up to 9× 17. Since the simulation algorithm outputs the
exact logical channel, it is possible to compare our de-
coder with an optimal decoder, in which the correction
is chosen using the exact logical channel, rather than an
approximate one.

For correlated bitflip noise, it is possible to efficiently
simulate the noise by sampling errors σ from the proba-
bility distribution p(σ) = e−βE(σ)/Z. Sampling from the
distribution p(σ) can be done efficiently using standard
Markov chain Monte Carlo algorithms. For any sampled
error, the syndrome is unambiguous and the correction
can be calculated using the decoding algorithm. The
logical error is determined by calculating the resulting
homology of the error combined with the recovery and
decoding correction. If the resulting homology is trivial
no logical error occurred, otherwise an undesired logical
X error was applied to the encoded qubit.

In all of the following calculations the accuracy in
the approximate algorithm χ = 8 was fixed. Between
1.2 × 104 and 1.2 × 105 samples were taken for each
data point. In Fig. 2 (a) and (b) we present results
for high and low-strength amplitude damping. In the
low-strength case, the performance of our TN decoder
was indistinguishable from that of the optimal decoder,
and corresponds to an improvement of several orders of
magnitude over MWPM. In the high noise case, for the
largest system size tested, the difference in error rate (as
measured by the diamond distance from the identity) be-
tween the TN decoder and optimal decoder was less than
0.01, compared to around 0.6 for MWPM.

In Fig. 2(c) we show results for correlated bitflip noise.
We fixed J1 = 1, J2 = −1.5, B = 0.01 and controlled
the noise strength by varying the inverse temperature β.
Noise strength was varied from high (above an appar-
ent threshold) to low (where logical errors became unde-
tectable). We observed a substantial improvement over
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FIG. 2. Decoder performance under high-strength amplitude
damping (a), low-strength amplitude damping (b) and cor-
related bitflip noise (c). For amplitude damping, the logical
error rate is expressed in terms of the diamond distance of the
logical channel from the identity, which we have computed us-
ing our surface-code simulation algorithm [25]. In (a), error
rates are close to optimal threshold (γ = 39±1%) [25], and γ
is varied. In (b), a low error rate γ = 9% is fixed, and the lat-
tice width W is varied. In both cases, an asymmetric lattice
with length 2W − 1 (i.e. longer logical X) was used because
amplitude damping has a greater tendency to flip z-checks
than x-checks. For correlated bitflip noise (c), the y-axis is
the probability of a logical error, which is estimated by sam-
pling over physical error configurations. For the TN decoder,
no logical errors were observed for 1/β ≤ 0.7, implying logical
error rates of less than 3 × 10−5.

matching for the entire range of noise strengths.

Conclusion. — We have presented a new decoder for the
surface code which achieves high performance by exploit-
ing information about the noise process. The decoder can
account for a wide variety of noise properties, including
spatial correlations and coherences. We have tested the
decoder on spatially correlated bitflip noise and ampli-
tude damping, and have observed a large improvement
over MWPM.

Since our algorithm essentially maps the general de-
coding problem to the problem of contracting a tensor
network, a wide range of tensor-network techniques may
be employed to further improve the algorithm. For in-
stance, the tensor contraction could be parallelised us-
ing a renormalisation strategy to contract the network
[31, 32]. This would reduce the runtime scaling in N
from O(N) to O(logN). Furthermore, generalisation of
our decoder to other local stabilizer codes is straightfor-
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ward and depends only on whether there exists an effi-
cient contraction algorithm for the tensor network repre-
senting the code’s codespace.

We have assumed that syndrome measurements are
performed noiselessly. To generalise the decoding algo-
rithm to imperfect measurements, the syndrome needs to
be observed over time. For our decoder, this effectively
requires the contraction of a three-dimensional, rather

than a two-dimensional, tensor network. Algorithms for
such calculations have been developed in the context of
condensed-matter physics, [35–40] and could potentially
be applied here.
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