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The evolutionary transition to multicellularity transformed life on earth, heralding the evolu-
tion of large, complex organisms. Recent experiments demonstrated that lab-evolved multicellular
‘snowflake yeast’ readily overcome the physical barriers that limit cluster size by modifying cellular
geometry [Jacobeen, et al., Nature Physics, 14 (286-290) 2018]. However, it is unclear why this
route to large size is observed, rather than an evolved increase in intercellular bond strength. Here,
we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of
increasing size by modifying geometry and bond strength. We find that changing geometry is a far
more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing
cellular aspect ratio is on average ∼ 13 times more effective than increasing bond strength at increas-
ing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric
arrangement of mother and daughter cells, also had larger effects on cluster size than increasing
bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases
rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as
cells become more elongated, cellular packing density within the cluster decreases, which substan-
tially decreases the rate of internal stress accumulation. This suggests that geometrically-imposed
physical constraints may have been a key early selective force guiding the emergence of multicellular
complexity.

I. INTRODUCTION

The evolution of multicellular organisms from single-
celled ancestors set the stage for unprecedented increases
in complexity, especially in plants and animals [1, 2].
In nascent multicellular organisms, size and complexity
are strongly related [1, 3]; recent work has highlighted
the potential for a size-complexity evolutionary feedback
loop [2]. However, it is unclear how early, simple mul-
ticellular organisms evolved to be larger. Newly mul-
ticellular organisms lack genetically-regulated develop-
ment, growing instead through the stochastic replication
of physically-attached individual cells. At high cell den-
sities, stochastic growth can result in large intercellular
forces [4], fragmenting groups and limiting multicellular
size [5]. Thus, mitigating internal mechanical stress is
one of the first evolutionary challenges faced by nascent
multicellular organisms. Though the transition to multi-
cellularity occurred independently in at least 25 separate
lineages [6, 7], we know little about the physical prop-
erties of early multicellular lineages due to their ancient
origins and limitations of the fossil record.

Nonetheless, there are two clear routes to increased
size in nascent multicellular clusters of cells whose size is
limited by the accumulation of internal stress: an organ-
ism could evolve to withstand larger intercellular stresses,
or, it could evolve to accumulate intercellular stresses
at a slower rate during growth. The former strategy
would likely involve evolving stronger intercellular bonds,
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while the later would involve changes to structural ge-
ometry. Geometrically-imposed physical constraints play
key roles in the organization of numerous microbial sys-
tems, including growing biofilms and swarming or swim-
ming communities [8–11]. Separating geometric effects
from biological processes is nontrivial [12], however, and
little is known about how simple multicellular systems
respond to selection for increased size.

Recently, model systems of simple multicellularity have
allowed the early steps of this transition to be studied in
the lab with unprecedented precision [13–16]. In the case
of ‘snowflake yeast’ [13], simple multicellular clusters of
Saccharomyces cerevisiae are subjected to daily selection
for large size; they rapidly evolve to double their maxi-
mum number of cells per cluster in just seven weeks [5].
Snowflake yeast cluster size is limited by the fracturing
of intercellular bonds under growth-induced stresses (Fig-
ure 1a). Larger size at fracture is accomplished primarily
by a simple change to cluster geometry: over ∼ 291 gen-
erations, snowflake yeast evolved to have more elongated
cells. This increase in cellular aspect ratio decreases the
cellular packing fraction, slowing the accumulation of in-
ternal stress and delaying fracture [5] (Figure 1b). Cellu-
lar elongation is a parallel evolutionary trait, evolving in-
dependently in replicate populations [5, 17]. However, it
remains unclear why this evolutionary route to large size
is repeatedly observed: do snowflake yeast clusters mod-
ify geometry because it is more effective than increasing
the strength of cell-cell bonds, or for proximate reasons
relating to the model system (e.g., it may be easier to
modify geometry than bond strength)?

To investigate the roles of geometry and bond strength
in the evolution of nascent multicellularity, we employ
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a geometric model of experimentally-evolved snowflake
yeast [13, 17, 18], introduced and experimentally vali-
dated in Jacobeen et. al., 2018 [5]. We find that mod-
ifying packing geometry, and thus slowing the accumu-
lation of internal stresses, is a far more efficient route
to large size than increasing intercellular bond strength.
This result is likely general, as cells are capable of impart-
ing tremendous forces during growth [4], and the result-
ing cell-cell forces increase rapidly in jammed aggregates.
Thus, evolving physical robustness by modifying multi-
cellular geometry may have been a key early selective
force guiding the emergence of multicellular complexity.

II. BACKGROUND

We simulate the growth of snowflake yeast clusters
with a simple, three-dimensional geometric model [5]
based on their fractal-like growth pattern [13]. The
model is purely structural, i.e., it lacks dynamics, yet
it accurately reproduces many relevant experimentally-
measured structural properties of snowflake yeast [5] (for
more details on experimental validation of the model,
please see the Supplemental Information).

A. Model

Snowflake yeast cells reproduce via budding [13];
daughter cells remain attached to their mothers, creating
a biologically and physically tractable multicellular clus-
ter (Fig. 1a). In our simulation, cells are modeled as pro-
late spheroids (ellipsoids in which two ‘equatorial’ radii
are equal and less than the polar radius), with major-
minor axis aspect ratio α. Each generation, all cells in
the cluster attempt to reproduce by adding a daughter
cell of identical volume on their surface. Daughter cells
are placed at a specified angle from the polar axis, called
the angle of attachment, θ, where θ is the acute angle
between the parent cell’s major axis and a vector that
originates at the geometric center of the cell and passes
through the point on its surface at which the daughter
cell attaches (Fig. 1c). Thus, daughter cells are randomly
placed along a ‘budding ring’ on their parent’s surface
(Fig. 1d). Additionally, cells other than the basal cell
have an 80% chance of spawning at the pole opposite
their parent (that is, with θ = 0) on their initial repro-
duction attempt. Cellular bodies may overlap (Fig. 1e),
but the center-to-center separation may not be less than
50% of their small diameter; this constraint is analogous
to disallowing the overlap of bud scars (i.e., attachment
sites). If the randomly selected attachment site would
cause too much (>50%) overlap, the daughter cell is not
created and the parent cell misses their chance to repro-
duce that generation.

Varying θ and α facilitate changes to cluster geometry.
To vary bond strength, we first calculate the deformation
energy (u) between the bodies of neighboring cells. That
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FIG. 1. (a) 2D schematic of snowflake yeast growth morphol-
ogy, showing fracture due to cellular crowding. Inset: 3D con-
focal image of a snowflake yeast cluster. (b) Changes over 7
weeks of experimental evolution in mean values of snowflake
yeast cluster size, cellular aspect ratio, and cluster volume
fraction. (c-e) describe the geometric simulation of cluster
growth; (c) new cells are added on the surface of their parent
at an attachment site (yellow star) defined by the polar angle
θ from the major axis of the cell; this angle is referred to as
the ’angle of attachment’. (d) Rotating θ around the major
axis of the cell defines a ring on its surface along which daugh-
ter cells may be randomly placed (dashed line); this ring is
termed the ’budding ring’. (e) The length of the double line
illustrates the linear overlap between two cells.
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is

uij = (d− ri − rj)2 (1)

where d is the center-to-center distance between overlap-
ping cells, and ri and rj are the equatorial radii of two
neighboring cells. uij = 0 for non-overlapping cells, and
the total ‘deformation energy’ (U) in a cluster is the sum
of individual uij :

U =

N∑
i=1

N∑
j 6=i

uij (2)

where N is the number of cells in the cluster. In a real
cluster, cells would bend at their cell-cell bonds rather
than overlap, so linear overlap acts as a proxy for de-
formation and squared overlap is a proxy for deforma-
tion energy, or internal stress within the cluster (using a
Hertzian, rather than a harmonic model for deformation
energy does not qualitatively change the results of this
simulation [5]). As clusters fracture due to an asymmet-
ric accumulation of internal stress concentrated in the
core of the cluster [5] (Fig S1d), we use a U threshold
(Uc) to limit cluster size. Snowflake clusters fracture
when their internal stress exceeds the ultimate strength
of the cell-cell bonds; thus, changing Uc is analogous to
changing bond strength.

As previously reported in Jacobeen et. al., 2018
[5], this geometric model recapitulates many key struc-
tural features observed in experiments. Experimentally
evolved isolates were modeled by randomly picking each
new cell’s α from experimentally measured distributions.
These simulations revealed that as mean cellular α in-
creases, cluster volume fraction decreases. In fact, simu-
lations closely replicate experimental observations: simu-
lated and experimentally measured packing fractions are
within 5% of each other for all four genotypes studied
(the validation of the model via comparison with experi-
mental results is detailed in [5] and in the Supplemental
Information here). As internal stress limits cluster size
by fracturing intercellular bonds, the decrease in volume
fraction due to cellular geometry modification likely plays
a large role in the evolved increase in cluster volume over
seven weeks [5] (Figure 1b).

III. RESULTS

To directly compare the efficiency of increasing
cluster size via cellular elongation and increased bond
strength, we first simulated clusters with a wide range
of α and Uc values (we set θ = 54◦, as cluster size is
maximized for this value). We varied α and Uc between
1.0 and 2.0 in steps of 0.1, and simulated 100 clusters for
each pair of parameters (Fig. 2a). The mean number of
cells per cluster increases rapidly with increasing α for
any value of Uc (Fig. 2a and b). In contrast, the mean

number of cells increases much more slowly with increas-
ing Uc (Figure 2a and c). Thus increasing α is a more
efficient path to large size than increasing Uc.

While increasing α always increases cluster size more
then increasing Uc, the size of this disparity varies. For
example, the smaller α is, the more beneficial it is to in-
crease α than Uc. In fact, for clusters of spherical cells
(α = 1.0), it is on average ∼ 59 times more effective to
increase α than to increase Uc (i.e., for small α, there
is almost no discernible gradient along the Uc axis (Fig.
2a)). Thus, there is an especially large incentive to in-
crease aspect ratio at least a little above 1.0. Further,
increasing Uc always enlarges the incentive for increas-
ing α; this is visible in Fig. 2a as the strength of the
vertical gradient increases with Uc. Though the relative
superiority of increasing α over Uc varies over the studied
range of parameters – generally decreasing significantly
with increasing α and increasing with Uc – it is always
at least 2.5 times more effective to increase α, and on
average ∼ 13 times more cells are added for an increase
of .1 in α than for an increase of the same magnitude in
Uc.

Why is increasing aspect ratio a more efficient route
to large size than increasing bond strength? To investi-
gate, we measured the deformation energy in simulated
clusters as a function of the mean number of cells. U
increases ∼quadratically with N for any value of α (Fig-
ure 3a). Thus, increasing Uc yields sub-linear returns
(N ∼

√
Uc). However, increasing α causes U to increase

at a slower rate, allowing more cells to be added before
Uc is reached. The linear relationship between N and α
(Fig. 2c) further demonstrates the superior returns on
increasing α rather than Uc.

To understand how cellular aspect ratio affects inter-
nal stress accumulation, we calculated the linear packing
fraction (i.e., the occupied fraction of the budding ring)
of 5 non-overlapping daughter cells on a parent cell for
θ = 54◦ (5 cells was chosen because it is the maximum
number that can be placed at θ = 54◦ for all values of α
between 1 and 2) (Figure 3b). Considering that daugh-
ter cells maximize their available space when they are
oriented perpendicular to the long axis of their parent,
linear packing fraction φ, is

φ =
n · 2 · rmin

2 · π · (rθ + α · rmin)
(3)

where n is the number of daughter cells, rmin is the minor
radius, and rθ is the radius at θ. Larger α daughter cells
have smaller widths; smaller widths make it less likely
for any two cells to overlap. Thus, more cells must be
added to clusters with large α to obtain the same packing
fraction - and U - as clusters with small α.

We also investigated other geometric parameters, to
determine if the effects of α represented an isolated case.
We varied θ between 30◦ and 90◦ in increments of 12◦

and again varied Uc from 1.0 to 2.0 in steps of 0.1. For
each pair of parameters, 100 independent simulations
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FIG. 2. (a) Interpolated heat map of the mean number of cells in a cluster as a function of cellular aspect ratio (α) and
deformation energy threshold (Uc). (b) Mean number of cells per cluster versus α for Uc (dark orange, bottom), 1.5Uc (medium
orange, middle), and 2Uc (light orange, top). (c) Mean number of cells per cluster versus Uc for α = 1.0 (dark gray, bottom),
α = 1.5 (medium gray, middle), and α = 2.0 (light gray, top). Each data point is the average of 100 independent simulations.
Error bars indicate standard deviation.
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FIG. 3. (a) As a cluster grows, total deformation energy,
U ,increases as well. This increase is rapid when α = 1 (dark
gray, left), moderate for α = 1.5 (medium gray, middle), and
slowest for α = 2 (light gray, right). Each overlapping data
point is the average of 100 independent simulations. (b) Lin-
ear packing fraction for 5 daughter cells on a single mother
cell as a function of aspect ratio for θ = 54◦.

were conducted with α = 1.5, and the resulting mean

values are shown in the interpolated heat map in figure
4a. As previously mentioned, cluster size is maximized
when θ = 54◦ for all values of Uc (note, θ = 54◦ is within
the experimentally observed range [5]). This is due to a
trade-off between local and global packing effects. The
number of cells that can pack on a single parent increases
with θ–up to θ = 90◦–because the circumference around
which daughters are packed is largest at θ = 90◦. How-
ever, branches within a cluster interfere with each other
less for smaller values of θ; 54◦ is the angle where the
trade-off between these competing affects is maximized.
Additionally, changing θ (moving it closer to θ = 54◦)
is generally a more efficient route to increase cluster size
than increasing Uc, especially if θ is far from θ = 54◦.
However, since an optimal value of θ exists (unlike with
α), when θ is close to 54◦, increasing Uc is more benefi-
cial. Note, the optimum angle is near the so-called ’magic
angle’, θ = 54.7◦[19], suggesting that the snowflake yeast
structure is analogous to packing cells in cones (see SI
for more details).

Finally, we investigated the effect of heterogeneity in
geometric parameters. Along with providing another ge-
ometric parameter to check, monodisperse values of α
and θ are biologically unrealistic, as real snowflake yeast
clusters feature polydispersity in both parameters [5].
First, a single pair of α and θ parameters was chosen; we
selected α = 1.5 because it is in the center of the range of
values studied and is within the experimentally observed
range, and θ = 54◦ because it is the optimum value of
θ. Variance is introduced in the form of a truncated
Gaussian distribution centered on each selected parame-
ter. For every cell added, the value of each parameter is
chosen from a self-centered Gaussian distribution; how-
ever, if the value selected lies outside the relevant range
(1.0 - 2.0 for α, 30◦ to 90◦ for θ), another value is ran-
domly selected. We simulated 100 independent clusters
for Gaussians with standard deviations of 0.05, 0.10, and
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0.20 of the mean θ or α.

We find that variance in both α and θ has little effect
on cluster size when it is relatively small (standard devi-
ation / mean ≤ 0.1); larger variances, however, (> 0.1)
decrease cluster size (Figure 4b). The inverse relationship
between size and large variance is expected for θ; any de-
viation from the optimal value naturally leads to smaller
clusters. However, the relationship between N and alpha
is highly linear (figure 2b), meaning that the detriments
of smaller aspect ratio cells must outweigh the benefits of
longer aspect ratio cells within these disordered clusters.
If the standard deviation in alpha decreases from 0.2 to
0.1, the resulting increase in cluster size is the same as
that caused by an increase in α of ∼ .04 or and increase
in Uc of ∼ .26, again supporting the idea that modifying
geometry provides a larger return to the cluster size than
modifying bond strength.
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FIG. 4. (a) Interpolated heat map of the mean number of cells
in a cluster as a function of angle of attachment (θ) and de-
formation energy threshold (Uc). (b) Effect of variance in the
angle of attachment(θ) and cellular aspect ratio(α) on cluster
size. The number of cells in a cluster versus the standard
deviation of the truncated Gaussian distribution for θ (blue,
upper) and α (orange, lower). Each data point is the average
of 100 independent simulations. Error bars indicate standard
deviation.

IV. DISCUSSION

Evolutionary benefits stemming from size are thought
to be a key driver of early multicellularity [2, 6], affording
protection from common threats to microbial life (e.g.,
predation and toxin exposure [20–22]). However, how
large physical size could be achieved by newly multicel-
lular organisms has remained poorly understood. Re-
cent work revealed that snowflake yeast evolve increased
size via modifications to cellular geometry[5]; here, we
offer evidence for why this route was observed. Geo-
metric modeling reveals that modifying geometry – via
three different parameters – is a significantly more effec-
tive means to achieve larger cluster size than increasing
bond strength. Internal stress increases rapidly with cel-
lular reproduction, so investing in bond strength pro-
duces diminishing returns. Conversely, modifying cell
shape, budding angle, or the variance of these quanti-
ties changes how cells pack, slowing the accumulation of
internal stress.

Our results highlight the absolute limit of spatial con-
straints. Two cells cannot overlap, so at high cell density
the addition of new cells rapidly increases internal stress.
The optimal strategy is not to increase bond strength in
the face of vanishing free space, but to pack more effi-
ciently so free space remains available longer. The rapid
increase in internal stress with increasing cell number is
reminiscent of the jamming transition of athermal grains,
for which pressure increases with increasing packing frac-
tion [23, 24]. Previously reported experiments on unicel-
lular yeast demonstrated that reproduction in dense cel-
lular packings can exert pressures on the order of 1 MPa
[25]. Thus, a ∼ 3µm diameter bud scar may experience
forces on the order of 10 µN. This is orders of magnitude
larger than the ∼ 100 pN force necessary to break mam-
malian intercellular bonds [26, 27] or tear bacteria from
a biofilm [28]. Thus, resisting forces from growth at high
cell density would require major innovations on known
intercellular adhesion mechanisms.

While snowflake yeast is a lab-evolved model sys-
tem, it possesses a number of features generally agreed
to be common to naturally occurring nascent multicel-
lular organisms. Snowflakes develop clonally, growing
through mother-daughter cell adhesion with regular ge-
netic bottlenecks[13, 18]. This facilitates multicellular
adaptation, as it limits the potential for within-organism
genetic conflict and promotes the emergence of novel, her-
itable multicellular traits [29]. Snowflake yeast readily
adapt as multicellular individuals, evolving to be more
complex by gaining novel multicellular traits [13, 17, 30].
Indeed, complex multicelluarity (i.e., metazoans, land
plants, red algae, brown algae and fungi) has only evolved
in organisms that develop clonally[31]. Our geometric ar-
guments are easily generalized to other organisms with
fixed-geometry morphology. Interestingly, this appears



6

to be the dominant path to complexity: all independent
transitions to complex multicellularity, with the excep-
tion of animals, grow with rigidly connected cells in a

fixed-geometry body plan. Taken together, our results
demonstrate that biophysical interactions play a critical
role in the evolutionary transition to multicellularity.
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