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Abstract

Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of

certain shapes are randomly and sequentially placed into an empty space without overlap. In the

infinite-time limit, the density approaches a “saturation” limit. Although this limit has attracted

particular research interest, the majority of past studies could only probe this limit by extrapola-

tion. We have previously found an algorithm to reach this limit using finite computational time

for spherical particles, and could thus determine the saturation density of spheres with unprece-

dented accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings

of two-dimensional polygons. We also calculate the saturation density for regular polygons of three

to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.
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I. INTRODUCTION

Random sequential adsorption (RSA) [1], also called random sequential addition [2], is

a stochastic process widely used to model a variety of physical, chemical, and biological

phenomena, including structure of cement paste [3], ion implantation in semiconductors [4],

protein adsorption [5], particles in cell membranes [6], and settlement of animal territories

[7]. Starting from a large, empty region in d-dimensional Euclidean space, particles of

certain shapes are randomly and sequentially placed into the volume subject to a nonoverlap

constraint: new particles are kept only if they do not overlap with any existing particles,

and are discarded otherwise. One can stop this process at any time, obtaining configurations

with time-dependent densities. As time increases, the density approaches a “saturation” or

“jamming” limit, φs.

The RSA process of various particle shapes have been studied, including spheres in

one through eight dimensions [8–13], squares and rectangles [14–18], polygons [19], ellipses

[18, 20, 21], disk polymers [22], cubes [23], spheroids [24], superdisks [25], sphere polymers

[26, 27], and four-dimensional hypercubes [28]. For non-spherical shapes, particle orien-

tations may be random or fixed. Although previous researchers have studied a myriad of

combinations of space dimensions, shapes, and orientations, the determination of φs have

always been of particular interest. However, doing so is also particularly difficult since one

cannot afford infinite computational time to reach the saturation limit. To overcome this

problem, a very common strategy is to find out finite-time densities and then to extrapolate

to the infinite-time limit [9, 12, 14, 15, 18–24, 26, 27].

Instead of extrapolation, φs for some systems can be ascertained by other strategies. For

one-dimensional rods, analytical calculations found φs = 0.7475979202 . . . [8]. For disks,

spheres, and d-dimensional hyperspheres, we have previously found a numerical algorithm

to reach the saturation limit [13] with finite computational time. The algorithm takes

advantage of the fact that when generating RSA packings of spheres of radius R, the distance

between any two sphere centers cannot be smaller than 2R. The part of space that is not

within 2R distance to any existing sphere is called “available space,” since a new sphere will

be kept if and only if its center falls inside the available space. Thus, one can avoid insertion

attempts in the unavailable part of the space [10–13, 16]. Saturation can be achieved by

gradually increasing the resolution as additional spheres are inserted, eventually eliminating
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all available spaces [10, 13]. Specifically, our algorithm consists of the following steps:

1. Perform a certain number of trial insertions to generate a near-saturation configura-

tion.

2. Divide the simulation box into voxels (i.e., d-dimensional pixels) with side lengths

comparable to R. Some voxels are completely included in an existing sphere of radius

2R, and therefore cannot contain any available space. They are excluded from the

voxel list.

3. Perform a certain number of trial insertions inside the remaining voxels.

4. Divide each voxel into 2d sub-voxels by cutting it in half in each direction, and find

possibly available sub-voxels.

5. The process of trial insertions and voxel division is repeated until the number of

available voxels reaches zero, at which point we know that saturation is guaranteed

since we only discard voxels that cannot contain any available space.

Ref. 13 ended with a proposal to extend this algorithm to generate saturated RSA pack-

ings of non-spherical shapes with random orientations. In this case, whether an incoming

particle overlaps with existing ones depends on not only its location, but also its orienta-

tion. For a d-dimensional particle with df rotational degrees of freedom, one can construct

a (d+ df)-dimensional auxiliary space. Each point in this space would correspond to a trial

insertion at a particular location with a particular orientation. One could thus use voxels to

track the available parts of this higher-dimensional auxiliary space and generate saturated

RSA packings. However, Ref. 13 did not propose any method to test for voxel availability,

which is a nontrivial task.

In this paper, we use this idea to generate saturated RSA packings of 2D polygons with

random orientations. We present a way to test for voxel availability based on worst-case

error analysis in Sec. II B. We find that occasionally, the generalization of this algorithm

needs a special tweak, detailed in Sec. IIC. In Sec. III, we use this algorithm to find φs for

regular polygons, which generally increases as the number of sides increases and approaches

φs for disks.
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II. ALGORITHMIC DETAILS

In order to use the algorithm described in Ref. 13, one need to supplement two subrou-

tines: one to determine if two particles are overlapping and another to prove that certain

voxels that cannot contain any available space. Here we describe these two subroutines.

A. polygon overlap test

To test if two polygons overlap, we first perform simple tests using their inscribed circles

and circumscribed circles: If the inscribed circles overlap, then the two polygons must

overlap. If the circumscribed circles do not overlap, then the two polygons cannot overlap.

If these two simple tests fail to find a definitive answer, we then test if any two sides of the

two polygons intersect with the following theorem [29]:

Define O(r1, r2, r3) = (y2 − y1)(x3 − x2) − (x2 − x1)(y3 − y2), where ri = (xi, yi) is a

two-dimensional point, then two line segments (r1, r2) and (r3, r4) intersect if and only if

O(r1, r2, r3)O(r1, r2, r4) < 0, and (1)

O(r3, r4, r1)O(r3, r4, r2) < 0. (2)

B. voxel availability test

Our test for voxel availability is based on the aforementioned particle-overlapping test.

Since a two-dimensional polygon has 1 rotational degree of freedom, the voxels are three-

dimensional. Let (x, y) be the location of the center of a polygon and let θ be the angle

between the orientation of the polygon and some reference orientation. A point in the voxel

space can be represented by (x, y, θ), while a voxel centered at this point can be represented

as (x ± δx, y ± δy, θ ± δθ), where δx, δy, and δθ are a half of the side length of the voxel

in each direction. With this formulation, a voxel can be interpreted as a collection of trial

insertions near (x, y, θ) with some error bounds δx, δy, and δθ. To prove that a voxel cannot

contain any available space (i.e., to prove that such trial insertions always fail), we just need

to perform a rigorous worse-case error analysis to prove that no matter how x, y, and θ vary

in the ranges [x − δx, x + δx], [y − δy, y + δy], and [θ − δθ, θ + δθ], the upcoming particle

will always overlap with an existing one. Specifically, let (r1, r2) be a side of an existing
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polygon and let (r3, r4) be a side of an upcoming polygon inside the voxel, then r3 and r4

carry uncertainties while r1 and r2 do not. Let (l3, θ3) and (x3, y3) be the polar coordinates

and Cartesian coordinates of r3, we have x3 = x+ l3 cos(θ3), and the associated error bound

is

δx3 = [x± δx+ l3 cos(θ3 ± δθ)]− [x+ l3 cos(θ3)] (3)

≤ δx+ l3δθ. (4)

Similarly,

δy3 ≤ δy + l3δθ. (5)

For simplicity, we can require that a voxel always have an equal side lengths in x and y

directions, in this case δx = δy and δx3 = δy3. We define δ3 ≡ δx3 = δy3. The error bounds

for the Cartesian coordinates of vertex 4 are similar:

δx4 ≤ δx+ l4δθ ≡ δ4, (6)

δy4 ≤ δy + l4δθ = δ4, (7)

The associated worse-case error in the O functions used in Eqs. (1)-(2) are thus

δO(r1, r2, r3) = (y2 − y1)(x3 ± δ3 − x2)− (x2 − x1)(y3 ± δ3 − y2) (8)

− (y2 − y1)(x3 − x2)− (x2 − x1)(y3 − y2) (9)

≤ (|y2 − y1|+ |x2 − x1|)δ3, (10)

similarly

δO(r1, r2, r4) ≤ (|y2 − y1|+ |x2 − x1|)δ4, (11)

and

δO(r3, r4, r1) = (y4 ± δ4 − y3 ± δ3)(x1 − x4 ± δ4)− (y4 − y3)(x1 − x4) (12)

+ (x4 ± δ4 − x3 ± δ3)(y1 − y4 ± δ4)− (x4 − x3)(y1 − y4) (13)

≤ (δ3 + δ4)(|x1 − x4|+ |y1 − y4|+ 2δ4) + δ4(|y4 − y3|+ |x4 − x3|), (14)
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similarly

δO(r3, r4, r2) ≤ (δ3 + δ4)(|x2 − x4|+ |y2 − y4|+ 2δ4) + δ4(|y4 − y3|+ |x4 − x3|). (15)

These error bounds allow us to prove certain voxels’ unavailability: If Eqs. (1)-(2) hold, and

if each O function’s error bound is smaller than its absolute value, then we know these O

functions cannot change sign no matter how x, y, and θ vary within their respective limit,

and Eqs. (1)-(2) will always hold. We thus proved that the voxel cannot contain available

space.

It is noteworthy that the errors could be smaller than the worse-case bounds we derived.

Thus, a completely unavailable voxel could be miscategorized as an available one. This is

nevertheless not a problem for two reasons: First, such miscategorization can cause us to

retain unavailable voxels but can never cause us to discard available ones. Second, as we

repeatedly divide the voxels and drive all error bounds to zero, such miscategorization will

eventually disappear. The ending configuration is thus still guaranteed to be saturated.

C. an unexpected problem and its solution

With the aforementioned subroutines supplementing the split-voxel algorithm, we are

ready to generate saturated RSA configurations of 2D polygons. However, in doing so for

2D squares and regular hexagons, we found an unexpected problem: the number of voxels

occasionally grows to extremely large numbers (> 108) for moderately-sized systems (≈ 3000

particles). Sometimes the number of voxels suddenly drops to zero after becoming extremely

large, but sometimes our program crashes due to insufficient memory before the drop could

happen. This is in contrast with the situation for disks, equilateral triangles, and regular

pentagons, where the number of voxels always decays smoothly as they are split.

To understand its reason, we plotted 10 randomly selected voxel centers when the problem

happened in Fig. 1. Surprisingly, all of the selected voxels are concentrated in a very small

part of the configuration. In Fig. 1, the distance between points A and B is 0.999 992 times

the side length of a square. Therefore, inserting a new square at this place is impossible.

Nevertheless, the algorithm could not realize this impossibility until voxel-space resolution

becomes extremely fine. Figure 1 also indicates that this problem can only occur when the

polygon has at least one pair of parallel sides, and therefore explains why we only observed
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FIG. 1. Plot of 10 randomly selected voxel centers when the voxel-number-explosion problem

happened when generating a saturated RSA packing of squares. Note that a voxel center has

a three-dimensional coordinate (x, y, θ), and represents a trial insertion at location (x, y) and

orientation θ. Hence, we can use a black square to represent a voxel center. Blue squares are

adjacent existing particles. The distance between points A and B is 0.999 992 times the side length

of a square. Therefore, inserting a new square at the place indicated by these voxels is impossible.

this problem only for certain shapes.

Our solution to this problem is to run very deep tests of voxel availabilities. Specifically,

we define a level-0 test of voxel availability as our original test outlined in Sec. II B. We

define a level-n (n > 0) test of voxel availability as:

• If the voxel can be proved unavailable with the procedure outlined in Sec. II B, then

declare the voxel unavailable.

• Otherwise, if the voxel center represents an incoming particle that does not overlap

with existing particles, declare the voxel available.
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• Otherwise, divide the voxel into 23 subvoxels, run a level-(n−1) test of each subvoxel.

If any subvoxel is available, declare the original voxel available.

• Otherwise, declare the original voxel unavailable.

The deep test retains a desired property of the original voxel availability test: an unavailable

voxel may be misjudged as an available one if n is finite, but an available voxel will never

be misjudged as an unavailable one. Therefore, one can safely employ a deep test on voxels

and remove unavailable ones, without worrying about discarding any available space. If the

particle has a pair of parallel sides, we randomly sample 100 voxels each time a voxel list is

generated. If at least 50 of them are within a distance of Rins, the radius of the inscribed

circle of a particle, then this problem is suspected. We run a level-4 check on all voxels and

discard unavailable ones. If all of the sampled voxels are within a distance of Rins, then

this problem is strongly suspected, and we run a level-12 check on all voxels and discard

unavailable ones.

The deep test successfully solves this problem but can be very time consuming. To

illustrate this point, we show the histogram of the time taken to generate a saturated RSA

configuration of enneagons and decagons in Fig. 2. Only decagons are susceptible to this

problem. The time distribution for decagons resembles that for enneagons, except that the

former also exhibit a very long tail on the long-time side, corresponding to the extra time

needed for the deep test.

One could argue that as Fig. 1 shows, this problem only happens in saturated locations.

Thus, the simplest “solution” would be to just declare the configuration saturated whenever

the problem is detected. If a strict proof of saturation is not required, this simple “solution”

may be desirable, especially since deep testing voxel availability is very time-consuming.

However, we choose the deep-test solution since in this work, we want to rigorously guarantee

that each configuration is saturated.

III. RESULTS AND DISCUSSION

To demonstrate the correctness and usefulness of this algorithm, we generate saturated

RSA configurations of regular polygons, and compare φs with previous results. For each

particle shape, we generate 1000 configurations with system size Lparticle/Lbox = 0.01, 100
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FIG. 2. Histogram of the time taken to generate an RSA configuration of (left) enneagons and

(right) decagons of size Lparticle/Lbox = 0.01 on a computer with an Intel Xeon E5-2696 v3

central processing unit.

TABLE I. Saturation density φs for various particle shapes and system sizes. Here all error esti-

mates are calculated from σ =
√

(< φ2
s > − < φs >2)/(Nc − 1), where < · · · > indicates averaging

over all configurations, and Nc is the number of configurations.

Lparticle/Lbox

φs for

Equilateral triangles Squares Regular pentagons Regular hexagons

0.01 0.525892 ± 0.000064 0.527719 ± 0.000085 0.541319 ± 0.000087 0.539114 ± 0.000093

0.003 0.525993 ± 0.000058 0.527482 ± 0.000080 0.541241 ± 0.000088 0.539216 ± 0.000087

0.001 0.525820 ± 0.000066 0.527594 ± 0.000070 0.541344 ± 0.000072 0.539060 ± 0.000095

Lparticle/Lbox

φs for

Regular heptagons Regular octagons Regular enneagons Regular decagons

0.01 0.542143 ± 0.000093 0.542329 ± 0.000094 0.544055 ± 0.000092 0.544104 ± 0.000094

0.003 0.542197 ± 0.000093 0.542494 ± 0.000090 0.544044 ± 0.000098 0.544278 ± 0.000100

0.001 0.541959 ± 0.000124 0.542328 ± 0.000098 0.544059 ± 0.000089 0.544259 ± 0.000124

configurations with Lparticle/Lbox = 0.003, and 10 configurations with Lparticle/Lbox =

0.001. Here Lparticle is the distance between a particle’s center and its vertex, and Lbox

is the side length of the simulation box. The resulting saturation density is summarized in

Table I.

For all shapes, the difference in φs between different system sizes is comparable to the
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error estimate, suggesting negligible finite-size effect. Indeed, this is consistent with Ref. 30,

which found minimal finite-size effect for even smaller (Lparticle/Lbox ≈ 0.2) saturated

RSA configurations with periodic boundary configurations. This is also expected in light of

Ref. 31, which found that the pair correlation functions of RSA configurations decay super-

exponentially. With negligible finite-size effect, we think the best estimate of φs for each

shape can be obtained by simply averaging the results for different system sizes. This yields

φs = 0.525902±0.000036 for triangles, φs = 0.527598±0.000045 for squares, φs = 0.541301±

0.000047 for pentagons, φs = 0.539130±0.000053 for hexagons, φs = 0.542100±0.000060 for

heptagons, φs = 0.542383± 0.000054 for octagons, φs = 0.544053± 0.000054 for enneagons,

and φs = 0.544214± 0.000062 for decagons.

Previous researches by extrapolating finite-time RSA densities found the saturation den-

sity of squares to be 0.523 − 0.532 [14] and 0.530 ± 0.001 (reported in both [17] and [18]).

Our result is within the former range but slightly below the latter (by two and a half of

their error bar). Could this indicate a mistake, for example, one that leads to the gen-

eration of unsaturated configurations? One way to double-check is to calculate RSA sat-

uration densities of regular n-gons with large n, since as n increases, φs should approach

that for disks, 0.547067 · · · [30]. We thus calculated φs for 19-gons and 29-gons, and found

0.546210±0.000080 and 0.546701±0.000067, respectively. These densities indeed approach

φs for disks, and thus does not suggest the existence of such a mistake.

We plot φs versus the number of sides of the polygon in Fig. 3, which shows that φs

increases as the number of sides increases except that φs for hexagons is lower than that for

pentagons. More generally, φs tend to be slightly higher than the trend when the number

of sides is odd, and slightly lower otherwise. Overall, our results appear to be consistent

with Ref. 19, which plotted (but not listed) φs for regular polygons obtained by infinite-time

extrapolation.

IV. CONCLUSIONS

To summarize, we have developed in this paper a generalization of the split-voxel al-

gorithm described in Ref. 13, based on worst-case error analysis method. We support the

correctness of this method by finding the RSA saturation densities of 2D regular polygons

with three to ten sides, and verifying their consistency with previous results.
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FIG. 3. (red solid line) RSA saturation density for regular polygons, as a function of the number

of sides. Note that each data point is associated with an error bar that is barely visible. (black

dotted line) RSA saturation density for disks.

A program implementing this algorithm is available as supplementary material [32].
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