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Abstract

Diffusion-induced phase transitions typically change the lattice symmetry of the host mate-

rial. In battery electrodes, for example, Li-ions (diffusing species) are inserted between layers

in a crystalline electrode material (host). This diffusion induces lattice distortions and defect

formations in the electrode. The structural changes to the lattice symmetry affect the host ma-

terial’s properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard

(CH) model, which describes the composition field of a diffusing species, with a phase field

crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two

continuum models via coordinate transformation coefficients. We introduce the transformation

coefficients in the PFC method, to describe affine lattice deformations. These transformation

coefficients are modeled as functions of the composition field. Using this coupled approach,

we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced

phase transition process. In this paper, we demonstrate the working of the CH-PFC model

through three representative examples: First, we describe base cases with hexagonal and square

symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates

lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of
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diffusion and model the accompanying changes to lattice symmetry during a phase transition

process.

2



Introduction

Phase transitions in materials are typically accompanied by structural changes to the lattice sym-

metry [1–3]. In battery electrodes, for example, Li-ions diffuse into an electrode material and induce

phase transitions [3, 4]. This intercalation1 of Li-ions (diffusing species) structurally transforms the

electrode materials (host) lattice symmetry [5]. The structural changes include lattice distortions

[1, 3], defect formations [6] and grain boundary migration [2] in the host material. In this paper,

we introduce a modeling approach that couples the lattice symmetry of the host material with the

composition field of the diffusing species. We combine two continuum methods, namely a Cahn-

Hilliard model and a phase field crystal model, to describe a diffusion-induced phase transition

process.

During phase transition, individual lattices distort and defects evolve in materials. These structural

changes influence the microstructures that form in a material [6, 7] and affects its physical proper-

ties. In a battery electrode [4, 8–10], for example, the lattice deformation during phase transition

alters Li-ion kinetics [8] and causes anisotropic expansion of electrodes [4]. In hydrogen-palladium

systems, hydrogen diffusion heals crystallographic imperfections in palladium nanoparticles [11].

During the paraelectric to ferroelectric phase transition, lattices transform from centrosymmet-

ric to other point groups lacking an inversion center. This transformation introduces stress-free

spontaneous strains and electric polarization in unit cells [1, 12].

At present, theoretical models like phase field methods describe the complex microstructures in

electrode/ferroelectric systems as a function of a macroscopic order parameter field (Li-ion con-

centration, temperature or polarization) [13–19]. The Kobayashi-Warren-Carter phase field model

1to insert Li-ions between layers in a crystalline material
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[10] further accounts for crystallographic misorientation at grain boundaries during a phase transi-

tion process. While these modeling approaches provide insights on the position of phase and grain

boundaries, they only account for grain orientations as an empirical parameter [10]. The current

phase field approaches do not allow for lattices to distort independently. Consequently, the local

strain fields arising from individual lattice distortions and the presence of defects in a material

system are not explored.

Alternatively, a phase field crystal (PFC) method proposed by Elder and Grant [20, 21] describes

atomistic details of material systems with periodic solutions. This technique models coarse-grained

lattice-symmetry of a periodic system [22, 23], and is computed at faster time scales than the

molecular dynamics simulations [24]. The PFC model has been applied to explore lattice defects

in graphene [25] and nucleation problems in colloidal systems [26]. The PFC approach is a useful

tool for multiscale modeling to describe the lattice symmetry of a material system [27].

Researchers have extended the PFC formalism to describe binary alloys [28–29] and to model

structural transformation between lattice symmetries [30, 31]. The binary PFC model (BPFC) and

the structural PFC model (XPFC) [32] are widely applied to stabilize microstructures that result

from solidification [33], crystallization [27, 34] and phase segregation processes [35, 36]. Both the

BPFC and the XPFC models introduce two order parameters that are associated with the structural

and concentration fields of a standard phase-field model. These order parameters are formulations

of the density fields of two or more atomic species, which typically describe a substitutional alloy.

However, in chemo-mechanical systems (lithium battery) the density and composition fields differ

from the order parameters used in the BPFC and XPFC models. For example, the density field

corresponds to the lattice symmetry of the host material (electrode) and comprises a single type
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of atomic species. The composition field is a measure of the diffusing species (Li-ions) that occupy

interstitial sites in the host lattice. Furthermore, in chemo-mechanical systems, the composition

field is coupled to the density field and determines the degree of lattice symmetry of the host

material.

In the current work, we combine the phase field crystal methods with a Cahn-Hilliard model in a

2D theoretical framework to model phase transitions in chemo-mechanical systems. This modeling

approach couples two field parameters, namely the composition field of the diffusing species with

the lattice-symmetry of the host material. The Cahn-Hilliard equation describes microstructures

with a composition order-parameter field. The phase field crystal equation models a coarse-grained

representation of lattice symmetry with peak density field as its order parameter. In the PFC

equation, we introduce coordinate transformation coefficients to relate lattice symmetries in 2D

point groups via affine transformations. These transformation coefficients are coupled with the

composition field and influence the underlying lattice symmetry of a host material system. As the

composition field evolves following the Cahn-Hilliard equation, the transformation coefficients are

updated in the PFC model. The PFC model computes the equilibrium lattice arrangements of the

material system during composition evolution. Here, an assumption is that the dynamics of the PFC

model is fast relative to the composition field dynamics. Using this coupled approach, we model

the structural evolution of lattice distortions and defects during a phase transition process.

In this paper, we investigate the nature of the coupled CH-PFC methods by modeling three rep-

resentative examples. First, we consider base cases to understand how transformation coefficients

affect the coarse-grained lattice symmetries of the host material system. Here, we stabilize hexag-

onal and square symmetries as representative lattice structures corresponding to two composition-

field values. Second, we extend these base cases to investigate lattice distortions across a diffuse
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composition phase boundary. We model a representative binary alloy with hexagonal and square

symmetry phases. Finally, we model the composition field in the binary alloy to follow a Cahn-

Hilliard type of diffusion and study the accompanying equilibrium lattice arrangements described

by the peak density field. The simulations show lattice distortions at coherent interfaces and

demonstrate structural evolution of lattice arrangements during a phase transition.

Coupled Cahn-Hilliard – phase-field crystal model

The aim is to couple the Cahn-Hilliard (CH) and the phase field crystal (PFC) methods, to explore

structural changes to lattice symmetry during diffusion induced phase transition. In this section,

we first introduce the two continuum models and explain how these methods are coupled in a 2D

theoretical framework. Next, we describe the evolution of the two order parameters, namely the

composition field and the peak density field. Finally, we discuss the numerical procedure followed

to compute the coupled CH-PFC methods.

The first model is a Cahn-Hilliard method that describes the composition field of a diffusing species

(Li-ions). This method utilizes a double-well free-energy function in terms of a composition field, c,

which is its order parameter. The second model is a phase field crystal (PFC) method that describes

the coarse-grained lattice symmetry of the host material (electrode). The PFC model statistically

illustrates lattice orientation, distortion and defect density of the material system. This approach

describes a free energy functional that is minimized by a spatially-periodic order parameter, φ.

In the current work, we couple the two models by using the composition field to influence the

underlying lattice symmetry of the host model system. The composition is not coupled to the

peak density field φ via a homogeneous free energy, but rather as the coordinate transformation
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coefficients of the composition-dependent Laplacian ∇2
c , relative to a Cartesian basis. That is, each

of the 5 Bravais lattices in the 2-dimensional space are stabilized by computing the Laplace operator

in a transformed space on a coordinate plane. The transformation coefficients which control lattice

deformations are described as functions of the composition field. These coefficients are updated

during the evolution of the composition field.

The total free energy functional for the CH-PFC model is given by:

F =

ˆ
[g(c) + κ|∇c|2 + f(φ) +

φ

2
G(∇2

c)φ]d~r

=

ˆ
[

F0

(ca − cb)4
(c− ca)2(c− cb)2 + κ|∇c|2 + a∆T

φ2

2
+ u

φ4

2
+
φ

2
(λ(q2

0 +∇2
c)

2) φ]d~r (1)

Here, g(c) and f(φ) describe the homogeneous energy contributions from the Cahn-Hilliard and PFC

equations respectively. The composition gradient-energy coefficient is given by κ. The operator

G(∇2
c) controls the coarse-grained lattice symmetry described by the particle density field. This

operator is modeled as a function of the composition field and is discussed in detail later on in

this section. The coefficients, F0 and (ca, cb), correspond to the energy barrier height and to the

local equilibrium states of g(c) respectively. The parameter a∆T , controls the second-order phase

transition of the PFC model. In this paper, we model a∆T as a constant to always describe a

crystalline-solid state. The parameters λ, q0, u, relate the PFC equation to the first-order peak in

an experimental structure factor. Further details on these coefficients are explained in the work by

Elder and Grant [21].
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Before proceeding with the model description, we first normalize the free energy functional:

F =
F

F0
=

ˆ
{c2(c− 1)2 + |∇c|2 + γ[

ψ

2
(r + (1 +∇2

c)
2)ψ +

ψ4

4
]}d~x. (2)

The composition field, c is normalized as c = ca−c
ca−cb , with local equilibrium states at c = 0 and

c = 1. The dimensionless peak density field, ψ is given by ψ = φ
√

u
λq40

. We set, r = a∆T
λq40

= −0.2,

and for later use we introduce ψ̄ = 0.2, which is the average density-field value. The values

of (r, ψ̄) = (−0.2, 0.2) are constant in the CH-PFC simulations, and Eq. (2) describes a stable

crystalline-solid phase for the peak density field [21]. With c = 0, the peak density field in Eq. (2)

describes a hexagonal symmetry with a periodic spacing of 4πξ

q0
√

3
at equilibrium. Note, 1

q0
is the

length scale of the PFC model and ~x = q0~r. The gradient energy coefficient κ = F0
(ca−cb)2

(
16πξ

q0
√

3

)2
,

is numerically calibrated such that the width of the diffuse composition interface spans over ∼ 4

peaks described by the peak density field, ψ. The scale factor ξ is a ratio of the peak separation to

the atomic-spacing. It is introduced in the Laplace operator ∇2
c to describe a coarse-grained lattice

unit. Further details on the coarse-graining is discussed in Appendix A.3. While, the interface

width is dependent on (ca − cb), F0, ξ and κ, in the current work only κ is numerically calibrated.

We introduce a constant, γ =
λ2q50
uF0

that relates the free energy normalizations of the Cahn-Hilliard

and the PFC model. For simulations in this paper, we set γ = 1 and ξ = 1.

The composition-dependent Laplacian ∇2
c in Eq. (1), introduces the composition-lattice symme-

try coupling. Here, the composition terms enter the Laplacian via its coordinate transformation

coefficients. The Laplace operator is written in terms of its second partial derivatives:
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∇2
c = ξ2((A2

11 + A2
12)

∂2

∂x2
+ A2

22

∂2

∂y2
+ 2A12A22

∂2

∂x∂y
), (3)

where Akl are the coordinate transformation coefficients. The transformation coefficients Akl con-

trol the degree of lattice symmetry and the scale factor ξ coarse-grains the lattice units.2 The

transformation coefficients are described as functions of the dimensionless composition field c and

correspond to the elements of a 2× 2 transformation matrix:

A(c) =

 α(c) 2α(c)√
3

cos[θ(c)]− α(c)√
3

0 2β(c)√
3

sin[θ(c)]

 . (4)

The matrix A(c), describes affine lattice transformations using hexagonal symmetry as the reference

structure [37, 38]. The derivation of the transformation matrix is given in the Appendix A.1. With

c = 0, the transformation matrix is an identity matrix and Eq. (2) describes a hexagonal symmetry

in 2D [21]. In the current work, we choose the hexagonal and square symmetries to represent

phases with compositions c = 0 and c = 1 respectively. These symmetries are chosen to illustrate

exaggerated symmetry deformations during phase transition. The transformation coefficients in

Eq. (4), (X = α, β, θ), are modeled as linear functions of the dimensionless composition field,

X(c) = X0 + c∆X. We define X0 to be the transformation coefficients corresponding to the

hexagonal lattice (α0 = β0 = 1, θ0 = π
3 ), and ∆X is the deformation required to transform the

lattice with a hexagonal symmetry to a square symmetry (∆α = ∆β = 0,∆θ = π
6 ). Note, in both

the hexagonal and square lattice symmetries, the transformation matrix encourages a periodic

2In the present work ξ = 1.
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(a)

(b)

Figure 1: (Color online) Schematic representations of the Cahn-Hilliard – phase field crystal (CH-
PFC) method. (a) The reference blue-hexagonal symmetry deforms to a red-square symmetry under
the transformation matrix described by Eq. (4), with composition field c = 1. (b) A continuous
change of the lattice symmetry from a square to a hexagon as a function of the composition field.
The dashed quadrilaterals across the diffuse phase-boundary illustrate the intermediate lattice
symmetries.

lattice-symmetry spacing of 4π
q0
√

3
.

Fig. 1(a-b) shows a schematic illustration of the Cahn-Hilliard – phase field crystal concept. In

Fig. 1(a), the transformation matrix describes lattice symmetry as a function of the composition

field. For c = 0, the transformation matrix A(c = 0) is an identity matrix, which describes the

composition-dependent Laplacian ∇2
c (in Eq. (3)) in an isotropic coordinate space. With A(c = 0)

the CH-PFC model stabilizes a hexagonal lattice symmetry at equilibrium, see blue hexagon in

Fig. 1(a). However, for a system with c = 1, the transformation matrix A(c = 1) introduces

anisotropy in the transformation coefficients (in Eq. (3)), which models the composition-dependent

Laplacian in a transformed coordinate space. With A(c = 1) the CH-PFC model results in a square

symmetry at equilibrium, see the red square in Fig. 1(a). Next, Fig. 1(b) schematically illustrates

10



how the CH-PFC model interpolates the lattice symmetry across a diffuse phase boundary. Here,

the transformation matrix is locally defined in space as a function of the composition field. For

0 < c < 1, the transformation matrix A(0 < c < 1) interpolates the peak density field to describe

intermediate lattice symmetries between the square and the hexagonal, see the dashed quadrilaterals

in Fig. 1(b).

Next, we describe the evolution of the two order parameters during phase transition. Here, we

assume that the elastic relaxation of the dimensionless peak density field, ψ, is achieved instanta-

neously in comparison to the evolution of the composition field. Consequently, we model δF
δψ ≈ 0

to be maintained throughout the phase transition process.

The composition field evolves using a generalized Cahn-Hilliard equation:

∂c

∂τ
= ∇2 δF

δc

= ∇2(γ
ψ

2

∂(∇4
c + 2∇2

c)ψ

∂c
+ 4c3 − 5c2 + 2c−∇2c). (5)

Here, γ = 1 and τ is the dimensionless time variable τ = t D
L2 . D is the isotropic diffusion coef-

ficient in Eq. (5) and L is the size of the simulation grid. The variational derivative in Eq. (5),

produces coupled terms connecting the peak density field and the composition field. In Eq. (5),

it is of interest to note the two types of Laplace operators, ∇2 and∇2
c , respectively. The Laplace

operator ∇2 is ∂2

∂x2
+ ∂2

∂y2
. This Laplacian computes the Cahn-Hilliard diffusion isotropically. The

composition-dependent Laplacian ∇2
c describes its partial derivatives in a transformed-coordinate
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space, see Eq. (3). The transformation coefficients are influenced by the local composition field

values and ∇2
c computes the derivatives of ψ in a transformed-coordinate space. The propagation

of the composition diffusion front given by Eq. (5) is affected by both the coarse-grained lattice

arrangements and the local-composition of the model system. As the composition field evolves, the

transformation coefficients in the composition-dependent Laplacian ∇2
c , are updated accordingly.

As the elastic relaxation is much faster than composition evolution, we introduce a time-like fictive

variable n to compute δF
δψ ≈ 0. The variable n is treated as a rapidly changing parameter in

comparison to the dimensionless time, τ . This variable n is used as a relaxation parameter to

approximate equilibrium of ψ at each c(τ):

∂ψ

∂n
= −δF

δψ
+

1

nxny

ˆ
δF
δψ

d~x

= −γ[(r + (1 +∇2
c)

2) ψ + ψ3] +
1

nxny

ˆ
γ[(r + (1 +∇2

c)
2) ψ + ψ3]d~x. (6)

Here, nx and ny are the sides of a rectangular simulation domain, and γ = 1. Eq. (6) follows

from the numerical scheme introduced by Melenthin et al. [39] that allows equilibrium states to

be attained faster in comparison to the standard equation of motion of the PFC model [21]. Here,

ψ, is treated as a locally nonconserved order parameter, while the mass conservation,
´
ψd~x, is

ensured globally. Other approaches to model faster dynamics for the peak density field can be

found in the work by Stefanovic et al. [40] and Heinonen et al. [41]. Stefanovic et al. [40]

introduce a damped wave form of dynamics in Eq. (6). This modified PFC (MPFC) approach
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models instantaneous elastic relaxation in crytalline solids under external loads. This modification

to Eq. (6) is important to investigate defect propagation, such as dislocation climb in crystalline

materials, under finite strain rates [40]. The modified PFC approach is not used in the present work

due to computational limitations. The comparison of the results between the MPFC approach and

the diffusive dynamics in Eq. (6) is a subject of future study. For our purposes, we focus on the

elastic-relaxation of ψ using diffusive dynamics alone. Note, the variational derivative in Eq. (6)

introduces coupled composition-lattice symmetry terms. These coupled terms affect the symmetry

of the periodic system.

Eqs. (5) and (6) are computed using an Euler discretization scheme in a 2D finite-difference

framework. Simulation grids of size nx × ny are modeled with periodic boundary conditions and

with grid spacings of δx = δy = 4π
q06
√

3
. At each grid point, the dimensionless composition and peak

density fields are represented in their discrete forms as cij and ψij respectively. The dimensionless

composition time derivative in Eq. (4) is computed at regular time steps of ∆τ , to track the evolving

composition field. At each time step, τ+∆τ , the transformation coefficients of the Laplace operator

∇2
c , are updated to correspond with the evolving composition field. Next, the equilibrium lattice

symmetry at time τ + ∆τ , is identified by maintaining δF
δψ ≈ 0. This general numerical procedure

is iterated. In other work, we apply the CH-PFC method to model Li-ion diffusion in electrode

materials [42].

CH-PFC simulations

In this section we investigate the nature of the CH-PFC methods by simulating a few representative

examples. First, we explore how the transformation coefficients stabilize hexagonal and square
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symmetries as a function of the composition field. Using the hexagonal and square symmetries as

base cases, we next model a representative binary alloy with diffuse interfaces. Here, we study how

the model interpolates the peak density field across a diffuse phase boundary. Finally, we simulate

a Cahn-Hilliard type of diffusion for the composition field and model the accompanying structural

changes to the underlying lattice symmetry during a phase transition.

Lattice symmetry

At first, we describe two representative systems (not necessarily a physical system) with homoge-

neous composition fields, cij = 0 and cij = 1, respectively. The composition fields are treated as

fixed. Using the composition fields as input, we compute the peak density fields for the periodic

systems. These representative systems will be generalized subsequently in the following subsections.

Note, the peak density field is rapidly evolving with reference to the composition field dynamics,

and is modeled with a fictive time in the subsequent computations, see Eq. (6).

Two simulation grids of sizes 145 × 145 are modeled with periodic boundary conditions. The

computational grid size is an integer multiple of the fundamental peak separation, L ≈ 20 4π
q0
√

3
.

The transformation matrices at each grid point, for the two representative systems with cij = 0

and cij = 1 are computed following Eq. (4):
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(a)

(b)

Figure 2: (Color online) Evolution of the peak density fields in representative systems forming (a)
hexagonal and (b) square symmetries with homogeneous composition fields cij = 0 and cij = 1
respectively. Subfigures illustrate the peak density fields starting from a randomized initial state
(far left), during evolution (centre) and at the final equilibrium state (far right).
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AH = A(cij = 0) =

 1 0

0 1

 ,

AS = A(cij = 1) =

 1 −1/
√

3

0 2/
√

3

 . (7)

The matrices AH and AS describe hexagonal and square lattice symmetries at equilibrium. The

coordinate transformation coefficients given by AS at cij = 1 correspond to a square lattice sym-

metry at equilibrium. This is analytically proved in Appendix A.2. Note, the determinant of the

matrices in Eq. (7) are det(AH) = 1 and det(AS) = 1.15 respectively. The difference in the

determinants det(AS)− det(AH) = 0.15, indicates an area change between the square and hexag-

onal lattices. This is because, in the current work we model hexagonal and square symmetries to

assume equal lattice spacing of 4π
q0
√

3
. Therefore the number density of peaks changes with lattice

symmetry.

Using the transformation matrices in Eq. (7) we next compute the peak density fields of the periodic

systems. The simulation grids are initialized with random peak-density field values, −0.1 ≤ ψij ≤

0.5 – a condition that we will refer to as the “random initial seed”. Starting from this random state

and average density, ψij = 0.2, the evolution of the peak density field, Eq. (6), is iterated until

equilibrium is reached.

Fig. 2(a-b) shows the evolution of density fields from randomized initial states, for the two homo-

geneous composition fields, cij = 0 and cij = 1, respectively. During evolution, individual grains

with hexagonal and square lattice symmetries nucleate in Fig. 2(a) and Fig. 2(b) respectively.
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Note, grains of different sizes and lattice orientations form during a CH-PFC simulation, see ’Dur-

ing evolution’ in Fig. 2(a-b). At the grain boundaries, lattice symmetries distort to form coherent

interfaces. At equilibrium, individual grains coalesce and form single crystals in both Fig. 2(a) and

Fig. 2(b). In the Appendix A.2, the lattice symmetries of the equilibrium patterns in Fig. 2(a-b)

are geometrically validated.

Fig. 2(a-b) shows the formation of multiple grains in homogeneous composition fields and identifies

the position/orientation of the grain boundaries in the model system. In Fig. 2(a), the density

peaks that model the hexagonal symmetry are of circular shape. However, for the square symmetry

in Fig. 2(b), the density peaks are ellipsoidal in shape. This difference in the density peak shapes

is explained from the use of transformation matrices AH and AS in Eq. (7). The transformation

matrix for hexagonal symmetry, AH describes an isotropic composition-dependent Laplacian, ∇2
c .

This computes the density peaks to be of circular shape. While, the transformation matrix for a

square symmetry, AS introduces transformation coefficients in the composition-dependent Laplace

operator, see Eq. (7) and Eq. (3). These transformation coefficients shear the density peaks to an

ellipsoidal shape. Similar ellipsoidal density peaks are observed in the anisotropic PFC simulations

[43]. Furthermore, the density peaks near grain boundaries in both Fig. 2(a) and Fig. 2(b), appear

smeared and deviate from the regular ellipsoidal/circular shapes. Here, an interpretation is that

the smeared appearance indicates lattice distortion at the interfaces to maintain coherency between

neighboring grains.

Diffuse interface

Next, we investigate the model behaviour to interpolate the peak density field across a diffuse

interface in a representative binary alloy. Here, the hexagonal and square lattice symmetries at
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compositions cij = 0 and cij = 1 are used as base cases, and correspond to the two phases of

the binary alloy. A representative binary alloy with diffuse phase boundaries is modeled and its

composition field is treated to be fixed. The equilibrium lattice symmetry for this system with

heterogeneous composition field is computed.

A periodic simulation grid of size 200 × 30 is modeled. Here, two phases with cij = 0 and cij = 1

separated by a sharp interface is assumed in the initial state:

cij =


1

0

for
i < 20, i > 180

20 ≤ i ≤ 180

. (8)

Next, the composition field is evolved following Eq. (5), without any influence from the peak

density field. That is, ∂c
∂τ = −∇2 δF(c,ψ=0)

δc . The composition time derivative is iterated until the

phase boundary begins to smooth and is then held fixed. This is to explore the coupling of the fast

kinetics of ψ for a single interation of c. Fig. 3(a) illustrates the composition of a binary alloy with

diffuse phase boundaries. Fig. 3(b) shows the composition variation across the simulation grid at

j = 15.

Following Eq. (3)-(4), the transformation matrix, A(cij), is next computed with cij describing the

discrete composition field shown in Fig. 3(a):

A(cij ) =

 1 2√
3

cos[π3 + π
6 cij ]−

1√
3

0 2√
3

sin[π3 + π
6 cij ]

 . (9)
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Figure 3: (Color online) (a) The composition field of a representative binary alloy. (b) Variation
of composition across AA in the simulation grid at j = 15. (c) The equilibrium peak density field
describing the underlying symmetry of the binary alloy corresponding to the composition field in
subfigure 3(a). Square and hexagonal symmetries are described for phases with cij = 1 and cij = 0
respectively. The width of the composition phase boundary (illustrated by vertical dashed-lines) is
numerically calibrated to span across ∼ 4 peaks.

Here, A(cij) defines the transformed space for the composition-dependent Laplace operator at each

grid point. Using this transformation matrix as an input, the equilibrium peak density field is next

computed, Eq. (6).

To model the lattice symmetry of the binary alloy shown in Fig. 3(a), the simulation grid is

initialized with random peak density field values, −0.1 ≤ ψij ≤ 0.5. Using A(cij) from Eq.

(9), the evolution of the peak density field, Eq. (6), is iterated to find the equilibrium lattice-

symmetry for the model system. Fig. 3(c) shows the equilibrium lattice-arrangements described

for the heterogeneous composition field (shown in Fig. 3(a)). Lattices with square symmetry

are stabilized in the phase with cij = 1, and hexagonal symmetry is observed in the phase with

cij = 0. At the phase boundaries, 0 < cij < 1, the coupled CH-PFC model describes a coarse-

grained representation of deformed lattices. Here, the density peaks are smeared to illustrate the

lattice distortion at the phase boundaries, see Fig. 3(c). Note, the composition phase boundary
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is numerically calibrated to span over ∼ 4 density peaks (about 25 grid spacings). Fig. 3(a-c)

provides an atomistic insight into the coarse-grained lattice arrangements across a diffuse phase

boundary.

Phase transition

Up to this point, we only modeled the microscopic configurations at fixed compositions. However,

to model phase transition with microscopic insights on the coarse-grained lattice symmetry, we need

to simulate the evolution of the composition field. The binary alloy in Fig. 3(a-c) is considered

as the initial state, and we next extend the simulation to describe the propagation of the diffusion

front. A representative Cahn-Hilliard type of diffusion for the composition field is modeled. During

the phase transition, the equilibrium lattice arrangements of the underlying system is computed.

An assumption made in this simulation is that the dynamics of elastic relaxation (equilibrating the

peak density field) is several times faster than the diffusion of the composition field. Using this

CH-PFC approach we investigate how composition field influences the lattice arrangements in a

model system during phase transitions.

Taking as an initial state, the lattice arrangements described for a binary alloy from Fig. 3(a-c),

the phase transition is modeled by allowing composition to diffuse into the simulation domain. The

composition field is held fixed at cij = 1, for i < 20 and i > 180 throughout the simulation. This

boundary condition is a proxy for having a consistent composition reservoir. The composition field

on the remaining part of the simulation grid, 20 ≤ i ≤ 180, is allowed to evolve with time. The

composition time derivative, Eq. (5), is iterated from τ = 0 to τ = 2500, in dimensionless time

intervals of ∆τ = 25. Note, the composition evolution at τ , receives input from the equilibrium peak

density field calculated for the (τ − 1) time step. The composition field is tracked as cij(τ + ∆τ) =
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cij(τ) + ∆τ
∂cij
∂τ , until a homogenous phase is obtained.

The composition field at each evolution step, cij(τ), is used as an input to compute the transfor-

mation matrix in Eq. (9). At a given time step, τ , the transformation matrix A(cij(τ)), is used to

calculate the equilibrium peak-density-field following Eq. (6). The composition and peak density

fields are iterated until the phase transition is complete.

Fig. 4(a-f) shows the structural evolution of the coarse-grained lattice arrangements during the

phase transition. At the intial state τ = 0, the coarse-grained lattice symmetry for the heteroge-

neous composition, cij(τ = 0) is described, see Fig. 4(a). Here, two coherent phases with square

and hexagonal symmetries are formed in domains with cij = 1 and cij = 0 respectively. Note in

Fig. 4(a), the edges of the square lattices are mostly aligned with the axes of the simulation grid.

A pair of green arrows in Fig. 4(a) illustrates the orientation of square lattices in the simulation

grid. Across the diffuse phase boundary, hexagonal and square lattices are distorted to maintain

coherency, see Fig. 4(a). Next, in Fig. 4(b-e), as the composition field diffuses into the simulation

domain, the hexagonal lattice symmetry is transformed to a square symmetry.

In Fig. 4(b), the phase with square symmetry occupies ∼ 50% of the simulation grid. Here, it is

interesting to note that square lattices begin to rotate uniformly as the diffusion front propagates

through the simulation grid. In Fig. 4(c-d), the square lattice symmetry is observed to rotate

further (e.g., orientation of the green arrows in Fig. 4(c-d)). We interpret that the square lattices

rotate to maintain coherency with the neighboring hexagonal phase. Note, the periodic boundary

conditions on the simulation domain further enforce an additional strain on the peak density field.

This is discussed in detail in the next section of this paper. In Fig. 4(e), a grain boundary
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: (Color online) Phase transition showing structural evolution of lattices from a hexagonal
(in blue with cij = 0), to a square symmetry (in red with cij = 1). Subfigures illustrate lattice
transformations as a function of the composition field, cij . The pair of green arrows indicate the
orientation of the square symmetry during phase transition. The dashed lines in subfigures 4(e-f)
indicate a grain boundary in the square symmetry phase.
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(as indicated by the dashed line) is formed in the square symmetry phase. This grain boundary

migrates in the square symmetry phase and remains in the homogeneous phase, see Fig. 4(f). At

τ = 2500, the phase transition is complete with a homogenous composition field and a phase with

square symmetry is described at equilibrium, see Fig. 4(f).

Discussion of the CH-PFC model

The coupled Cahn-Hilliard – phase field crystal model provides a theoretical framework to describe

continuum phase transition with microscopic insights. There are several issues we feel remain to

be clarified in interpreting the simulations. Among these issues are a few questions: Do the peaks

in a CH-PFC simulation with ξ � 1 represent atomic sites or illustrate the underlying lattice

symmetry? Are the total number of peaks in a simulation grid conserved? Does the finite size of

the computational domain affect the lattice symmetry of the equilibrium pattern? In Eq. (1) why

was the composition field coupled with the peak density field only via the Laplace operator? In this

section, we discuss these key details of the coupled CH-PFC model and explore potential further

work.

The CH-PFC method with ξ � 1 models a coarse-grained lattice unit. That is the peak separation

is scaled with the lattice spacing by a factor ξ. Note ξ does not affect the lattice symmetry of the

material system, which is controlled by the transformation matrix A(c). A detailed explanation of

how the scale factor ξ describes a coarse-grained density field is given in Appendix A.3. For our

purposes, we note the individual peaks to not represent atomic sites, however the arrangement of

peaks indicates the unit cell symmetry of the model system. Similarly, a grain boundary in a CH-

PFC simulation is a coarse-grained approximation of the underlying lattice orientations, distortions
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Figure 5: (Color online) Schematic illustration of the atomic sites, peak positions and coarse-grained
lattice symmetry in a square phase system. The small-black dots represent atomic sites of the unit
cell. The big-green dots schematically indicate peak positions in a CH-PFC simulation. The
dashed-red lines connecting the peaks highlight an example of a coarse-grained lattice symmetry
of the underlying unit cells. Note, in this figure the coarse grained symmetry is four times the unit
cell size.

and defects. Fig. 5 provides a schematic illustration of the difference between the atomic sites, peak

positions and the coarse-grained lattice symmetry. In Fig. 5, the small-black dots indicate atomic

sites, which correspond to the deterministic positions of atoms in the unit cell. The big-green

dots highlight representative peak positions modeled by a CH-PFC method. The dashed-red lines

connecting the peaks in Fig. 5, indicate an example of a coarse-grained lattice symmetry. In Fig.

5, the side of the coarse-grained lattice is four times that of the unit cell. However, with ξ � 1 the

coarse-grained lattice is several times larger than a unit cell. This coarse-graining approximation

allows us to explore material systems on a larger length scale. In these systems we are primarily

interested to investigate the effect of grain-orientations and grain-boundary structures on the phase

transition process.

Next, the number density of peaks in the CH-PFC simulations are not necessarily conserved.

Let us consider Fig. 2(a-b), where hexagonal and square symmetries are described on identitical
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computational domains of size 145 × 145. The total number of peaks in both these symmetry

systems are not necessarily the same. This is because the transformation matrices in Eq. (7),

AH and AS, describe lattice symmetries with an area difference (∼ 0.15). To accommodate for

the area change during transformation and to simultaneously satisfy the boundary conditions on

the computational domain, the CH-PFC model introduces (or removes) peaks to (or from) the

simulation grid. Numerical correction terms to Eq. (6) can be added to conserve the number of

peaks [44].

Furthermore, the finite size of the computational domain affects the periodic peak separation of the

equilibrium pattern. For example, consider a one-dimensional density field modeled on an infinitely

large grid. The density field has a wavelength λ∗ corresponding to its minimum free-energy state.

Next, let us assume the one-dimensional density field is modeled on a finite computational domain

of size L with periodic boundary conditions. The domain L, contains n peaks with a periodic

separation of λ at equlibrium, such that nλ = L. However, if λ 6= λ∗, the density field is strained,

ε = L−nλ∗
L and the finite domain size affects the peak separation. The strain, ε = L−nλ∗

L is

minimized if L→∞, i.e., the computational domain is sufficiently large. Alternatively, the strain

is reduced if the domain size is an integer multiple of the fundamental peak separation, that is

L ≈ nλ∗. In the present CH-PFC simulations (for example, Fig. 2(a-b)), we use the latter

approach of choosing a finite domain of size L ≈ nλ∗. However, during phase transitions lattices

structurally transform between two different symmetries. The lattice symmetries could correspond

to two different fundamental peak separations. In these cases, we typically choose a domain size

that is an approximate multiple of the peak spacing(s). For example in Fig. 4, a domain of size

200δx× 30δy ≈ 28 4π
q0
√

3
× 4 4π

q0
√

3
is used to model the hexagonal to square phase transition.
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(a) (b) (c)

Figure 6: (Color online) The finite size effect of the computational domain on the square lattice
symmetry. Computational domains of size (a) L = 100δx (b) L = 363δx (c) L = 725δx are
modeled with composition cij = 1 to correspond with the square lattices. Inset figures illustrate
lattice defects such as edge dislocations (small yellow circles) and grain boundaries (large green
ellipses) in larger computational domains.

Fig. 6(a-c) shows the the finite size effect of the computational domain on the square symmetry.

Here, computational domains of sizes L = 100δx, 363δx and 725δx are modeled with composition

cij = 1 to correspond with a square lattice symmetry. The computational grids are initialized

with a random seed and the peak density-fields are evolved following Eq. (6). The symmetry

of unit lattices in Fig. 6(a-c), are geometrically analyzed. The average peak separations and

interaxial angles3 of a unit lattice are measured. In Fig. 6(a), a unit cell has lattice constants

of {0.85 4π
q0
√

3
, 1.2 4π

q0
√

3
} with an interaxial angle of ∼ 0.9π2 . These parameters suggest a rhombic

symmetry for the lattice structure formed at equilibrium. In Fig. 6(a), the computational domain

L ≈ 13.8 4π
q0
√

3
is small and not an integer multiple of the peak separation. The finite domain size

strains the peak-density field and affects the lattice constants and symmetry in Fig. 6(a). On

increasing the computational grid size to L = 363δx ≈ 50 4π
q0
√

3
and L = 725δx ≈ 100 4π

q0
√

3
, unit

lattices with peak separations of ∼ 4π
q0
√

3
and π

2 interaxial angles are observed in Fig. 6(b) and Fig.

6(c) respectively. These lattice parameters suggest a square symmetry for unit cells. The relatively

large size of the computational grid in Fig. 6(c) stabilizes grains with different crystal orientations.

The inset figures highlight edge-dislocation defects and grain boundaries. Note, the lattices at or in

3Angle between two edges in a unit lattice
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(a) (b) (c)

Figure 7: (Color online) Edge-dislocations react with each other on further evolving the density
field in Fig. 6(b). The subfigures (a-c) correspond to the inset box in Fig. 6(b).

close proximity to the grain boundaries are distorted and multiple dislocation defects are observed.

The simulations in Fig. 6(a-c) indicate the need to choose a computational domain size either as a

multiple of the fundamental peak separation or of a sufficiently large size, L > 725δx.

We further evolve the pattern in Fig. 6(b) to test the stability of the dislocation defects. Fig.

7(a-c) illustrates the evolution of the dislocation defects shown in the inset-figure of the L = 363δx.

On evolving the pattern in Fig. 7(a) the edge-dislocations move towards each other and react, see

Fig. 7(b-c). A single crystal is formed as shown in Fig. 7(c). Note, the lattice parameters of the

underlying material are not affected upon elimination of the defects.

Finally, in Eq. (1), the composition and the peak density fields are coupled only via the Laplace

operator. Here, we assumed the ideal free energy contribution from other non-linear terms (ψ2, ψ4)

to be independent of the composition field for a couple of reasons: First, this assumption allows

the 2D CH-PFC model to stabilize a reference hexagonal lattice symmetry for composition field,

cij = 0. Second, Eq. (1) will always describe a crystalline/ordered state for the model system.

This is because the driving force for the peak density field towards the disordered state (controlled

by term ψ4) is not a function of the composition field. Further details on the effect of composition

field on the phase-diagram in the c− r − ψ̄ space is discussed in the Appendix A.4.
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Summary

We introduced a 2D theoretical framework, which combined a Cahn-Hilliard (CH) model and a

phase field crystal (PFC) model, to describe a phase transition process. In this CH-PFC method,

the composition field of a diffusing species (Li-ions) was coupled to the coarse-grained lattice sym-

metry of the host material (electrode). The CH-PFC modeling approach captured the effects of

microscopic configurations, such as lattice orientations, distortions and presence of defects, on the

phase-transition process. Furthermore, the model described the structural evolution of the coarse-

grained lattice symmetry during a phase change.

Using the CH-PFC approach, we stabilized representative lattice symmetries (hexagonal and square)

as a function of the composition field. Here, we found that multiple grains formed in a single phase,

and identified the position and orientation of grain boundaries. Next, in a binary alloy, we described

the coarse-grained distortion of lattice symmetry across a diffuse phase boundary. Finally, we mod-

elled a representative phase transition process – here, the CH-PFC simulations modeled grain

rotations and grain boundary migrations during phase change.
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Appendix

A. 1 Deriving the transformation matrix, A(c)

The matrix A(c) describes the structural transformation between two lattice symmetries as a linear

function of the composition field. The two unit lattices are described by edge lengths {α1, β1},

{α2, β2} and interaxial angles θ1, θ2, respectively. The interaxial angle θ1 is the angle between the

lattice edges α1 and β1.

The steps involved in deriving the matrix A(c) are as follows:

• Identify two lattice symmetries corresponding to the local equilibrium states at c = 0 and

c = 1. For example, in the present work we choose hexagonal H = {α1 = 1, β1 = 1, θ1 = π
3 },

and square symmetries S = {α2 = 1, β2 = 1, θ2 = π
2 }, to represent phases with compositions

c = 0 and c = 1, respectively.

• Set a reference symmetry. The hexagonal symmetry described by the Laplace operator ∇2 =

∂2

∂x2
+ ∂2

∂y2
in the standard PFC model is set as the reference symmetry [21]. The transformation

coefficients corresponding to this reference hexagonal symmetry are R = {α0 = 1, β0 = 1, θ0 =

π
3 }.

• Calculate the transformation matrices that map the reference symmetry to the two chosen

lattice symmetries at c = 0 and c = 1 respectively. In this paper, the transformation matrices
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AH and AS, mapping R → H and R → S respectively are calculated [37, 38]. AH = α1 0

0 β1

 = I is an identity matrix and AS =

 α2
2α2√

3
cos(θ2)− α2√

3

0 2β2√
3

sin(θ2)

 =

 1 −1/
√

3

0 2/
√

3

.

Following Eq. (3) the Laplace operators that describe the hexagonal and square symmetries

are ∇2
c=0 = ∂2

∂x2
+ ∂2

∂y2
and ∇2

c=1 = 4
3
∂2

∂x2
+ 4

3
∂2

∂y2
− 4

3
∂2

∂x∂y respectively.

• Linearly interpolate the lattice parameters as a function of the composition field. The lattice

parameters (αi, βi, θi), corresponding to the transformation matrices AH and AS, are linearly

interpolated as a function of the composition field to map H → S. For example, α2(c) =

α1 + c∆α12, where α1 corresponds to the edge of the first lattice. The deformation ∆α12

is required to map the first lattice to the second lattice symmetry. In the current work,

A(c = 0) = AH and A(c = 1) = AS. The deformations required to map H → S are

{∆α12 = ∆β12 = 0,∆θ12 = π
6 }.

This general procedure is followed to derive the transformation matrix of other lattice symmetries

in both 2D and 3D.

A. 2 The transformation matrix A(c = 1) describes square symmetry

In this section, we show that the CH-PFC model with the transformation matrix A(c = 1) =

AS =

 1 −1/
√

3

0 2/
√

3

 describes a square lattice symmetry at equilibrium. To prove this, we

substitute a one-mode approximation of square-lattice density field in Eq. (2). We calculate the

transformation matrix A at c = 1 that minimizes the free energy density corresponding to this

one-mode approximation of the square-lattice density field.

Consider the density field ψ = P (cos(qx) + cos(qy)) + ψ̄ as a solution to the CH-PFC model at
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composition c = 1. The density field with amplitude P and average density ψ̄ describes a square

lattice of sides a0 = 2π
q . We substitute ψ, c = 1 and ∇c = 0 in Eq. (2) and integrate over a unit

lattice:

F =

2π
qˆ

0

dx

2π/q

2π
qˆ

0

dy

2π/q
[
ψ

2
(r + (1 +∇2

c)
2)ψ +

ψ4

4
]

=
1

16
(9P 4 + 4ψ̄2(2(1 + r + ψ̄2) + 4P 2(−2q2(A2

11 + A2
12 + A2

21 + A2
22)

+ q4((A2
11 + A2

12)2 + (A2
21 + A2

22)2) + 2(1 + r + 3ψ̄2))). (A.1)

The Laplace operator is given by∇2
c=1 = (A2

11+A2
12) ∂2

∂x2
+(A2

21+A2
22) ∂

2

∂y2
+(A11A21+A12A22)( ∂2

∂x∂y+

∂2

∂y∂x), where Akl are the unknown coordinate transformation coefficients. Minimizing Eq. (A.1)

with respect to the transformation coefficients gives:

A2
11 + A2

12 = A2
21 + A2

22 =
1

q2
. (A.2)

The determinant of the transformation matrix is:
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(A11A22 −A12A21) = |A| . (A.3)

Next, we fix a node (invariant) of the reference lattice symmetry during transformation (for ex-

ample, A21 = 0). Using Eqs. (A.2) – (A.3) and A21 = 0 we calculate the transformation matrix

corresponding to a square symmetry to be:

A =

 |A| q ±1
q

√
1− |A|2 q4

0 1
q

 (A.4)

In the present CH-PFC model q =
√

3
2 (the normalized peak separation is 4π√

3
) and the determinant

of the transformation matrix is |A| = 2√
3
. Subsituting q and |A| in Eq. (A.4), the transformation

matrix is A(c = 1) =

 1 ± 1√
3

0 2√
3

 = AS. The ±A12 in AS indicates the clockwise or anticlockwise

transformation paths, which map a hexagonal lattice to square symmetry.

The matrices A(c = 0) and A(c = 1) describe the transformation coefficients to model hexagonal

and square symmetries respectively. Next, the CH-PFC simulations with c = 0 and c = 1 in

Fig. 2(a-b) are geometrically analysed to validate the lattice symmetries formed at equilibrium. A

section of the lattice arrangements in Fig. 2(a-b) comprising ∼ 50 peaks is considered, see inset
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(a)

(b)

Figure 8: (Color online) Geometrical analysis of the (a) hexagonal and (b) square lattice symmetries
formed at equilibrium in Fig. 2(a-b) respectively. The inset figures are sections of the equilibrium
patterns with ∼ 50 peaks. The lattice vectors a, b describe edges of a unit cell and enclose an
interaxial angle γ. The red-dashed lines in inset figures schematically illustrate n−fold symmetry
of the patterns about c – direction (perpendicular to the paper).
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Fig. 8(a-b). In the inset figures, the centroids of the peaks are identified by white solid dots. In

Fig. 8(a), the vectors a = 6.9̂i + 1.3ĵ and b = −4.7̂i + 5.9ĵ describe the edges of a unit cell and

enclose an interaxial angle γ ≈ 2π
3 . The magnitude of the lattice vectors is |a| ≈ |b| ≈ 4π√

3
. The

reciprocal vectors for the unit cell with c = k̂ in Fig. 8(a) are a∗ = 0.8̂i−0.2ĵ and b∗ = 0.6̂i+ 0.9ĵ.

The angle enclosed by the reciprocal lattice vectors is γ∗ ≈ π
3 . These lattice parameters in the real

and reciprocal space suggest the unit cell has a hexagonal symmetry in the 2D plane. The red

dashed lines in the hexagonal lattice shows a 6-fold symmetry about c = k̂ . Similarly in Fig. 8(b),

the lattice vectors a = 7.6̂i+ 0.8ĵ and b = −0.7̂i+ 7.2ĵ describe the edges of a unit cell and enclose

an interaxial angle γ ≈ π
2 . The corresponding reciprocal lattice vectors are a∗ = 0.8̂i − 0.1ĵ and

b∗ = 0.1̂i+ 0.9ĵ that enclose an angle γ∗ ≈ π
2 . These lattice parameters suggest a square symmetry

for the unit cell of side ≈ 4π√
3

in Fig. 8(b). The red dashed lines in the square lattice shows a 4-fold

symmetry about c = k̂.

A. 3 The coarse-grained lattice unit

In this section, we demonstrate that the free energy densities for periodic states described by the

standard PFC model FS [21], and the CH-PFC model FCH, are equal. While the standard PFC

method describes lattice units with atomic spacing, the CH-PFC method models a coarse-grained

lattice unit. The equality FS = FCH enables us to interpret the equilibrium pattern in CH-PFC

simulations as coarse-grained lattice units.

To prove FS = FCH, consider a one-dimension free-energy equation described by the standard phase-

field crystal model [21]:
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FS =

ˆ
dx[

ψ

2
(r + (1 +

∂2

∂x2
)2)ψ +

ψ4

4
]. (A.5)

Let us assume, ψ = P sin(qx)+ ψ̄ is the density field that minimizes Eq. (A.5) in the periodic state.

The density field has an amplitude P , lattice spacing a0 = 2π
q , and an average density constant ψ̄.

Substituting ψ = P sin(qx) + ψ̄ in Eq. (A.5) and integrating over a unit lattice:

FS =
q

2π

2π/qˆ

0

dx[
ψ

2
(r + (1 +

∂2

∂x2
)2)ψ +

ψ4

4
]

=
ψ̄2

2
[r + 1 +

3P 2

2
+
ψ̄2

2
] +

P 2

4
[r + (1− q2)2 +

3P 2

8
]. (A.6)

Next, consider a one-dimension free-energy equation of the CH-PFC model at c = 1 and ∇c =

0:

FCH =

ˆ
dx[

ψ

2
(r + (1 + ξ2A(c)2 ∂

∂x2
)2)ψ +

ψ4

4
]. (A.7)

Here, ξ � 1 is the scale factor introduced in the Laplace operator. The transformation coefficient

A(c) is a scalar value in 1D and is a linear interpolation of the composition field. In the present

work, we claim that Eq. (A.7) models a coarse-grained density field whose peak separation is several

times the lattice constant. That is, a periodic state ψ = P sin( q
ξA(c)x)+ψ̄ is modeled at equilibrium,

where ξA(c)2π
q is the scaled lattice spacing, ξA(c)a0. Fig. 9 shows a schematic illustration of the
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Figure 9: (Color online) Schematic illustration of 1D density fields described by the standard PFC
model (in black with wavelength a0) [21] and the CH-PFC model (in red with wavelength ξA(c)a0).
The black-wave represents atomic sites separated by the lattice spacing a0, while the red-wave is a
coarse-grained lattice unit ξA(c)a0 described by the CH-PFC model. In this illustration, the coarse
grained unit is five times the lattice spacing. In the CH-PFC simulations with ξ � 1, the peak
separation is multiple times larger than a unit cell.

density fields described by Eq. (A.5) and Eq. (A.7) respectively.

Next, let us subsitute ψ = P sin( q
ξA(c)x) + ψ̄ in Eq. (A.7) and integrate over a unit lattice:

FCH =
q

2πξA(c)

2πξA(c)/qˆ

0

dx[
ψ

2
(r + (1 + ξ2A(c)2 ∂

∂x2
)2)ψ +

ψ4

4
]

=
ψ̄2

2
[r + 1 +

3P 2

2
+
ψ̄2

2
] +

P 2

4
[r + (1− q2)2 +

3P 2

8
]. (A.8)

By comparing Eq. (A.6) and Eq. (A.8), we note the free-energy densities of the CH-PFC and stan-

dard PFC models are equal, FCH = FS. The free energy density in Eq. (A.8) is independent of the

scale factor ξ. Note, the energy density in 1D is also independent of the coordinate transformation

coefficient A(c).

The conclusion of FS = FCH is obtained in two dimensions for the density field describing a hexag-

onal symmetry, ψH = P (cos( qξx)cos( q

ξ
√

3
y) − 1

2cos( 2q

ξ
√

3
y)) + ψ̄. Here, the factor ξ � 1 is a scalar
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quantity and scales the peak separation keeping the lattice symmetry constant. For example, sub-

situting ψH and c = 0 in the free energy functional in Eq. (2) and integrating over a unit lattice

(of side ξa0) gives:

(FCH)H =

ξa0/2ˆ

0

dx

ξa0/2

√
3
2
ξa0ˆ

0

dy

ξa0

√
3/2

[
ψ

2
(r + (1 +∇2

c=0)2)ψ +
ψ4

4
]

= − 1

10
(r2 +

13

50
ψ̄4) +

ψ̄2

2
(1 +

7

25
r) +

4ψ̄

25

√
−15r − 36ψ̄2(

4ψ̄2

5
+
r

3
) (A.9)

where, ∇2
c=0 = ξ2( ∂2

∂x2
+ ∂2

∂y2
). Eq. (A.9) is equal to the free energy density calculated in the standard

PFC model for a hexagonal unit with atomic spacing [21]. The same conclusion is obtained for

the density field describing a square symmetry with ψS = P (cos( qξx) + cos( qξy)) + ψ̄ and ∇2
c=1 =

ξ2((A2
11+A2

12) ∂2

∂x2
+A2

22
∂2

∂y2
−2A12A22

∂2

∂x∂y ). Note, in 2D the transformation coefficients Akl control

the lattice symmetry and the scale factor ξ coarse-grains the lattice units. While the transformation

coefficients affect the energy densities of the periodic states in 2D, the energy density is independent

of the scale factor ξ. For example, the energy density of a hexagonal symmetry is different from

the energy density of a square symmetry. However, the energy densities of a single hexagonal (or

square) lattice and a coarse-grained hexagonal (square) lattice unit are equal and independent of

ξ.

A. 4 Phase diagram in the c− r − ψ̄ space

Here, we consider the effect of the transformation coefficients on the phase diagram in the c− r− ψ̄

space. While we do not provide an analytical proof, we hypothesize the nature of the phase diagram

in the c− r− ψ̄ space. In previous works, the phase diagram for a 2D PFC model [21] is derived as
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a function of the temperature r and average-density field ψ̄. In the present work, the temperature

and average density field values are (r, ψ̄) = (−0.2, 0.2) in all the CH-PFC simulations. The 2D

CH-PFC method describes second-order phase transformations of lattices as a linear function of c.

At c = 0, the CH-PFC model is a standard PFC model [21] and the phase diagram on the r − ψ̄

plane is the same as in Ref. [21]. At c = 1, the composition field affects the peak separation and

lattice symmetry of the periodic state. Here, we discuss the effect of the composition field at c = 1

on the r − ψ̄ phase diagram in both the 1D and 2D CH-PFC model. In the 1D CH-PFC model,

c = 1 corresponds to a periodic “stripe-phase” given by ψ = P sin( q
A(c=1)x)+ψ̄. The transformation

coefficient A(c = 1) is a scalar value and scales the peak separation as a function of c. However,

the energy density of the periodic state is independent of the transformation coefficient in 1D,

see Appendix A.3. Thereby, the phase diagram on the r − ψ̄ plane for the 1D CH-PFC model is

independent of the composition field.

In 2D, however, the composition field influences the lattice symmetry and affects the energy density

of the periodic state. For example, a hexagonal symmetry with ψH = p(cos(qx)cos( qy√
3
)−1

2cos(2qy√
3

))+

ψ̄, and square symmetry with ψS = p(cos(qx)+cos(qy))+ψ̄ have different energy densities. Further-

more, the choice of the wave-form and the number of harmonics used in the density field expansions

of ψH, ψS affect the analytical derivation of the phase diagram. We propose to explore the equi-

librium phase space of the 2D CH-PFC model in future works. For our purposes, we numerically

investigate the stability of the square periodic state at ψ̄ = 0.2. With c = 1, we note that at

r ∼ −0.12 and r ∼ −0.6, the square periodic state coexists with the constant and stripe phases

respectively. The same values of r are obtained for the coexistence of the hexagonal-constant and

the hexagonal-stripe phases respectively at c = 0. The numerical simulations suggest that the
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composition field, coupled via coordinate transformation coefficients, does not significantly affect

the transition temperature r at ψ̄ = 0.2.
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[26] L. Grànàsy, G. Tegze, G. I. Tóth and T. Pusztai, Philosophical Magazine, 91, 123-149 (2011).

[27] J. Kundin, M. A. Choudhary and H. Emmerich, The European Physical Journal Special Topics,

223(3), 363-372, (2014).

[28] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic and M. Grant, Phys. Rev. B 75, 064107

(2007).

[29] E. Alster, K. R. Elder, J. J. Hoyt and P. W. Voorhees, Phys. Rev. E, 95, 022105, (2017).

[30] M. Greenwood, N. Ofori-Opoku, J. Rottler and N. Provatas, Phys. Rev. B, 84, 064104, (2011).

[31] N. Ofori-Opoku, V. Fallah, M. Greenwood, S. Esmaeili and N. Provatas, Phys. Rev. B, 87,

134105, (2013).

[32] M. Greenwood, N. Provatas and J. Rottler, Phys. Rev. Lett., 105, 045702 (2010).

[33] V. Heinonen, C. V. Achim, K. R. Elder, S. Buyukdagli and T. Ala-Nissila, Phy. Rev. E, 89,

032411 (2014).

[34] W. Zhang and J. Mi, IOP Conf. Series: Mat. Sci. and Eng. 117, 012056 (2016).

[35] Y. Tao, C. Zheng, Z. Jing, D. Wei-Ping and W. Lin, Chinese Phy. Lett, 29, 078103 (2012).

42



[36] M. Greenwood, C. Sinclair and M. Militzer, Acta Materialia, 60, pp.5752-5761 (2012).

[37] J. M. Ball and R. D. James, Archive for Rational Mechanics and Analysis 100, 13 (1987).

[38] K. Bhattacharya, Microstructure of martensite: why it forms and how it gives rise to the

shape-memory effect, Vol. 2, Oxford Univ. Press, (2003).

[39] J. Mellenthin, A. Karma and M. Plapp, Phys. Rev. B 78, 184110 (2008).

[40] P. Stefanovic, M. Haataja and N. Provatas, Phys. Rev. Lett, 96, 225504 (2006).

[41] V. Heinonen, C. V. Achim, J. M. Kosterlitz, S.-C. Ying, J. Lowengrub and T. Ala-Nissila,

Phys. Rev. Lett. 116, 024303 (2016).

[42] A. R. Balakrishna, Y.-M. Chiang and W. C. Carter, Modeling phase transition in nanoscale

electrodes using the coupled Cahn-Hilliard – phase-field-crystal methods, Manuscript in prepa-

ration, (2017).

[43] R. Prieler, J. Hubert, D. Li, B. Verleye, R. Haberkern and H. Emmerich, J. Phys.: Condens.

Matter 21, 464110 (2009).

[44] S. Aland, H. Hatzikirou, J. Lowengrub and A. Voigt, Biophysical Journal, 109, 1347 (2015).

43


