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We present a methodology for generating Ising Hamiltonians of tunable complexity and with a priori known
ground states based on a decomposition of the model graph into edge-disjoint subgraphs. The idea is illustrated
with a spin-glass model defined on a cubic lattice, where subproblems, whose couplers are restricted to the two
values {−1,+1}, are specified on unit cubes and are parametrized by their local degeneracy. The construction
is shown to be equivalent to a type of three-dimensional constraint satisfaction problem known as the tiling
puzzle. By varying the proportions of subproblem types, the Hamiltonian can span a dramatic range of typical
computational complexity, from fairly easy to many orders of magnitude more difficult than prototypical bi-
modal and Gaussian spin glasses in three space dimensions. We corroborate this behavior via experiments with
different algorithms and discuss generalizations and extensions to different types of graphs.

I. INTRODUCTION

Hard optimization problems are ubiquitous throughout the
sciences and engineering, and have consequently been the
subject of intense theoretical and practical study. While it
is generally considered highly unlikely that problems clas-
sified as NP-hard can be solved efficiently for all members
of their class, numerous algorithms have been devised that
either strive for an approximate solution (e.g., simulated an-
nealing or stochastic local searches) or solve the problems
exactly in exponential time, but through mathematical in-
sight (e.g., branch-and-bound or branch-and-cut), the algo-
rithms increase the practically-feasible sizes over what can
be achieved using brute force. Evaluation of such algorithms
often requires access to benchmarking problems of various
types; ideally their difficulty should also be a controllable
(or tunable) property. Ideas of generating test instances with
planted solutions, that is whose optimizing values are known
to the problem constructor, have been explored in various
fields for decades [1–3]. A method of planting solutions to
hard random Boolean satisfiability (SAT) problems based on
statistical mechanics was first proposed in Ref. [4]. In con-
trast, doing so for topologically-structured problems is con-
siderably less charted territory, as the correspondence be-
tween random SAT and the diluted spin glass disappears; thus
replica symmetry breaking analysis [5] no longer applies. As
such, generating hard problems with a known solution for
nearest-neighbor Ising models on a hypercube is a relatively
new field of study.

While the task of creating such problems is of theoretical
interest due to their potential assistance in answering open

questions about the nature of spin glasses, the pace of re-
search has been hastened in recent years by practical moti-
vations, in particular, the availability of quantum annealing
[6, 7] and related analog devices (e.g., optical [8]) physi-
cally implementing Ising Hamiltonian minimization heuris-
tics. Such Hamiltonians are usually constrained by device
manufacturing considerations to having short-ranged interac-
tion terms [9]; while more general objectives can typically
be encoded onto their native graphs, this may require many
system variables for each objective function variable, limit-
ing the problem sizes that can be studied. Hence, a way of
encoding topology-native problems is desirable.

In this work, we present a methodology for generating
short-range Ising problems with a known ground state. Our
primary focus is on the three-dimensional lattice with pe-
riodic boundary conditions, primarily because the three-
dimensional spin glass is a prototypical complex system and
of tremendous interest to condensed matter physicists, but
also because the regular structure over the lattice allows a de-
scription of our key contributions in a natural and transparent
manner. We stress, however, that the method is adaptable to
different graph topologies.

By carefully decomposing the underlying graphical struc-
ture and selecting Ising subproblems over the resultant com-
ponents, whose spin-spin interactions are restricted to being
bimodal, from classes designed to have specific features in-
fluencing hardness, we obtain a factor graph representation
having the topology of a body-centered cubic lattice (see
Fig. 1). Following a Voronoi tessellation of this lattice, we
note that the resultant problem is equivalent to a specific type
of three dimensional tile matching puzzle, a generalization
of the two-dimensional edge-matching puzzle [10]. In their
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FIG. 1. Cutaway diagram showing a decomposition of the cubic
lattice into edge-disjoint induced subgraphs, the colored unit cube
cells. A cell in the right foreground is omitted for clarity. The col-
lection of vertices specifying each colored cube is defined as C. Un-
der a periodic boundary, each spin appears in exactly two subgraphs.
Ising subproblems with Jij 2 {�1, 1}, i.e., requiring a single bit of
precision, are specified for the cells such that one of each subprob-
lem’s ground states is consistent with its neighbors’. Over the full
problem, the concatenation of these partial states forms the planted
solution. As discussed in the text, the unit cell Hamiltonians’ lack
of shared edges is a crucial property enabling large, tunable changes
in complexity while guaranteeing a known ground state.

of three dimensional tile matching puzzle, a generalization
of the two-dimensional edge-matching puzzle [10]. In their
two-dimensional form, these puzzles are constraint satisfac-
tion problems requiring placement of tiles from a given set in
permissible spatial locations so that patterns on the tile edges
match those of their neighbors. A well-known example is
Eternity II [11], a to date unsolved problem for whose solu-
tion a $2 million prize was once offered; the prize deadline
expired in 2010. Our construction yields polyhedral rather
than square puzzle pieces; in particular the units are trun-
cated octahedra whose facets are of various color patterns
(see Fig. 6 below). By varying the pattern properties via ma-
nipulation of the underlying Ising subproblems, we quickly
and efficiently induce a tremendous variation in problem dif-
ficulty observed over all examined heuristic algorithms; hun-
dreds of problems at any hardness level within our attainable
range can be obtained in seconds with modest computing re-
sources. Hard problems within our class are observed to be
many orders of magnitude more difficult than randomly gen-

erated spin-glass problems with bimodal disorder, i.e., where
the spin-spin interactions are randomly drawn from {±1}.
Despite our restriction to using problem parameters in {±1},
we can directly generate problems with a known solution that
are vastly more difficult than the Gaussian spin glass, which
is itself known to be considerably harder than the random bi-
modal class. We thus consider our construction technique as
giving rise to a novel type of disordered system, and discuss
our results within the context of hardness phase transitions
for combinatorial problems.

The paper is structured as follows. In Sec. II we present
an overview of recently-introduced planting techniques, fol-
lowed by an outline of the planting approach presented in this
work in Sec. III. Sections IV and V discuss the relationship
of the presented problems to constraint satisfaction problems.
Section VI presents numerical experiments using different al-
gorithms highlighting the tunability of typical computational
complexity for the problems with planted solutions, followed
by discussions, generalizations to other graphs, as well as
concluding remarks.

II. RELATED WORK

Our methodology addresses several shortcomings of
recently-proposed techniques for solution planting in short-
range Ising models. In Ref. [12], a construction method was
presented in which frustrated loops with known solution were
employed as subproblem units. While the idea is appealing,
the resultant problems typically have coupler strengths span-
ning a large range, posing serious issues for physical devices
with precision limitations. An ad hoc limited-precision vari-
ant was introduced in Ref. [13]. Both approaches, however,
bear the more serious and systematic disadvantage of tend-
ing to generate sets of problems whose members are not of
sufficient hardness; we contend that this is a consequence
of adding subproblem couplers. It is not hard to see that
when partial Hamiltonians having consistent ground states
are added, couplers in common which in the individual min-
ima are either both satisfied or both violated will increase in
magnitude. In a ground state, however, satisfied couplers are
more common than violated ones, hence for any given shared
coupler, it is relatively likely that the resultant (added) cou-
pler tends to more strongly prefer alignment with the shared
ground state. When this occurs over many edges, the prob-
lem’s degrees of freedom are “softly” constrained. The effect
is the introduction of “hints” facilitating an optimization al-
gorithm’s task.

In Ref. [14], a method was presented for generating dif-
ficult instances with bimodal couplers by iteratively chang-
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ing the couplers’ signs to maximize the time required by a
given solver to reach the (hypothesized) ground state. This
is a promising approach as it both avoids the coupler addi-
tion issue and makes modest precision demands, however it
generally does not allow the ground state to be known with
certainty and hence, is difficult to scale to larger systems.
Furthermore, the approach requires a Monte-Carlo-like bond
moving algorithm that will likely not easily scale up to much
larger problem sizes. The authors do discuss a variant en-
abling solution planting, but as it again relies on adding cou-
plers, the precision issue returns and, they report, the gains
in hardness are modest compared to the mode not controlling
the ground state. While the authors provide a useful analysis
of post hoc empirical correlates of hardness, for example the
parallel tempering mixing time, first proposed in Ref. [15],
the generation procedure is ultimately a local search tech-
nique with respect to solver computational time, and hence
does not yield or use physical or algorithmic insight at the
problem level about what tunes difficulty. In other words, one
could not, merely by reference to the resultant Hamiltonian,
predict whether the problem is easy or hard. Finally, to design
problems based on the time-to-solution of a given solver, as-
suming this will carry over to other optimization techniques,
requires theoretical backing that is missing to date.

A recent paper [16] introduced the method of patch plant-
ing, in which subgraphs with known solution are coupled
to each other satisfying all interactions and thus planting an
overall ground state. An advantage is that low-precision and
tunable problems can be readily created for a given applica-
tion domain. The authors report, however, that the resultant
problems are observed to be less difficult than random prob-
lems, simply because frustrated loops typically do not ex-
tend beyond the subgraph building blocks, making the ground
state less frustrated than in the fully random case. This prob-
lem can be slightly alleviated by post-processing mining of
the data [16].

III. PROBLEM CONSTRUCTION

Consider a cubic lattice of linear size L with periodic
boundary conditions. Let the underlying graph be G =
(V,E) with V and E its vertex and edge sets, respectively.
DefineU to be the vertices of V whose coordinates (ix, iy, iz)
consist of integers of the same parity, for example, (1, 3, 1) or
(0, 2, 4). For each u ∈ U , define C to be the vertices of
the cubic unit cell implied when u is opposite to the vertex
with coordinates (ix + 1, iy + 1, iz + 1), where the addition
is modulo L to account for the periodic boundary. Let C be
the collection of all such cell vertex sets. This construction is

partially illustrated in Figure 1, where each colored unit cell
represents a subgraph G[C] induced by a vertex set C ∈ C as
defined. It should be clear that first, each vertex in V appears
in two and only two unit cells, and second, that the unit cell
subgraphs do not share any edges. In graph terminology, the
family C partitions G into edge-disjoint induced subgraphs.

We are concerned here with constructing Ising problems
on the lattice with zero field, i.e., whose Hamiltonians are of
the form

H(sss) =
∑

ij∈E
Jijsisj . (1)

Due to the disjointness of the cell edge sets, we can regroup
the Hamiltonian into terms each dependent only on the cou-
plings within a unit cell in C:

H(sss) =
∑

C∈C
HC(sss), (2)

where

HC(sss) ,
∑

ij∈E[C]

Jijsisj . (3)

The terms {HC(sss)} are called the unit cell subproblem
Hamiltonians. Specifying each subproblem’s Hamiltonian
is sufficient to imply a full Hamiltonian over the lattice. A
straightforward consequence of the relation between sum-
mation and minimization, exploited in Ref. [12], is that if
the subproblems share the same minimizing configuration sss∗,
then H is also minimized at sss∗. This, in turn, suggests a nat-
ural construction procedure for a problem H with a known
ground state. We note a seemingly small but in fact deep
and far-reaching difference between prior methodologies and
what we propose is that subproblem couplers are never added,
avoiding the issue discussed in Section II.

It may appear surprising at first that any interesting behav-
ior can result from linking such apparently simple unit cell
subproblems, but this impression turns out to be quite false.
Indeed, by restricting our attention to simple classes of sub-
problems whose couplers belong to the set {±1}, in other
words representable with a single bit of precision, we can ef-
fect dramatic changes in problem complexity, from trivial to
many orders of magnitude harder than, e.g., Gaussian spin
glasses.

Without loss of generality, we focus on planting the ferro-
magnetic ground state, i.e., sss∗ = (+1,+1, . . . ,+1) and its
Z2 image, because once such a problem has been generated,
the structure of the construction procedure can be concealed
by gauge randomization from a would-be adversary seeking
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the solution. Specifically, to translate to an arbitrarily chosen
ground state ttt∗, one would transform the initially-determined
couplings {Jij} via

J ′ij ← Jijt
∗
i t
∗
j . (4)

We thus turn our attention to the set of unit cell Hamiltonians
having couplers of magnitude 1 and ground state sss∗. Here we
disregard the trivial subproblem comprised uniquely of ferro-
magnetic bonds; those remaining can be naturally partitioned
into three types according to their number of frustrated facets.
We call these types F2, F4, and F6, as they contain unit cells
with 2, 4, and 6 frustrated facets, respectively. These types
can be further partitioned into members equivalent under ac-
tion of the cube graph automorphism group. More precisely,
problems within a given equivalence class can be arrived at
from one another via transformation from Oh, the 48 octa-
hedral symmetries comprised of rotation and reflection leav-
ing a (generic) cube invariant. It turns out that F2 and F4

contain two such classes (the orbits of Oh acting on F2 and
F4, called F21, F22 and F41, F42) while all members of F6

are equivalent under Oh. Figure 2 illustrates an arbitrarily-
chosen set of equivalence class representatives for the three
problems types, while in Figure 3, a few members of type F6

are shown.
While the subproblems can all readily be verified to have

sss∗ as a GS, they clearly differ in the number of other minimiz-
ers they possess. Up to Z2 symmetry, members of F21 have a
unique ground state while those of F22 have 4. All problems
in F4 and F6 have 2 and 8 global minima, respectively. Figure
4 shows the 4 ground states of a specific member of F22. As
we shall see, this variation in subproblem ground-state degen-
eracy turns out to exert a crucial effect on the computational
difficulty of the final planted problem.

We are now ready to straightforwardly specify our prob-
lem construction procedure. First, a probability distribution
is chosen over the problem classes {Fij}. A naı̈ve example,
which in fact turns out to be a poor choice for generating hard
problems, is to sample them uniformly. Next, a distribution
over members of the classes is specified. In our examples
this was always uniform. The randomness in generating the
problems is thus decomposed into what we call subproblem
disorder (over the classes) and Oh-disorder (over the mem-
bers); the latter so called because it arises equivalently by
sampling symmetries of the octahedral group. Subproblems
over the unit cell set C are then sampled from the defined dis-
tributions.

Note that Oh-disorder is sufficient to induce considerable
richness in the types of final problems, even when the cells in
C are all assigned from the same subproblem class. For ex-
ample, it may appear at first that restricting all subproblems
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FIG. 2. Class representatives of the three unit cell problem types
grouped by number of frustrated facets (shaded). Straight and wavy
edges denote ferromagnetic and antiferromagnetic bonds, respec-
tively. All problems have, generally among others, the ferromag-
netic state sss⇤ = (+1, +1, . . . , +1) as a Hamiltonian minimizer.
The total number of ground states |�| (up to Z2 symmetry) for prob-
lems within each class is indicated beside each representative.

to the class F6 (a regime which turns out to be highly inter-
esting) will result in a so-called fully-frustrated model [17],
i.e., where all chordless cycles (or plaquettes) are frustrated
in the final Hamiltonian, because problems in F6 are them-
selves fully-frustrated. That, however, would be incorrect; it
is easy to check that cycles forming the facets of unit cubes
not in C may or may not be frustrated depending on the ran-
dom orientation of the bounding C-cell problems.

It should be pointed out that while the method does ensure
that the planted state is in fact a ground state, as the couplers
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FIG. 3. Selected members of class F6, equivalent under octahedral
symmetry, that is, one of the 48 compositions of rotation and reflec-
tion leaving an unmarked cube invariant.

are selected from the {±1} class, it is in principle possible for
other ground states to exist [18]. Our experimental validation
in Sec. VI is thus concerned with the difficulty of finding any
ground state. Methods of removing the degeneracy are cer-
tainly conceivable and are discussed briefly in Sec. VII, yet
will be the subject of future study.

We proceed next to a further exploration of the problem
structure, discussing its connection to tiling puzzles.

IV. THE PUZZLE OF SPIN GLASSES

The proposed problem generation formalism enables trans-
lation to a specific type of geometrically-appealing constraint
satisfaction problem (CSP) called a tiling puzzle. While these
problems are usually defined over two-dimensional domains,
we shall see that our three-dimensional technique yields a
polyhedral generalization of an edge-matching puzzle, an ex-
ample of which is Eternity II [11]. The idea is to abstract
the Ising problem into a generic CSP representation known

FIG. 4. All subproblem ground states for a member of class F22 (up
to Z2 symmetry) where black (dark) and red (light) represent spins
of opposite sign.

as a factor graph [19]. While the Ising Hamiltonian itself can
always be interpreted as a factor graph, under our planting
technique additional structure is present, namely the restric-
tion to certain subsets of states. Following construction of
the CSP exploiting this structure, the natural connection to a
tiling puzzle is observed.

Figure 5 illustrates the necessary steps for the mapping.
For clarity, a direct two-dimensional analog of the three-
dimensional case is shown, in which the unit cells induced by
the decomposition into C are the cycles forming a checker-
board pattern rather than unit cubes as displayed in Figure 1.

We first consider the construction of a graph with respect to
C which we call the subproblem lattice, denoted by eG. Sup-
pose a vertex is placed at the centroid of each unit cell. The
subproblem lattice is defined by considering two such ver-
tices to be adjacent if and only if their corresponding unit
cells share a corner vertex. Clearly, this lattice may be 2-
colored, that is partitioned into two subsets none of whose
members are neighbors. This in turn implies a partitioning of
the cells in C into two disjoint sets W and B, whose elements
are labeled with colors W and B, respectively. Figure 5 (left
panel) demonstrates the two-dimensional construction of eG
and its vertex coloring, where yellow (light shading) and blue
(dark shading) may represent labels W and B or vice versa.
In three space dimensions, each yellow (light shading) cell is

FIG. 3. Selected members of class F6, equivalent under octahedral
symmetry, that is, one of the 48 compositions of rotation and reflec-
tion leaving an unmarked cube invariant.

that the planted state is in fact a ground state, as the couplers
are selected from the {±1} class, it is in principle possible for
other ground states to exist [18]. Our experimental validation
in Sec. VI is thus concerned with the difficulty of finding any
ground state. Methods of removing the degeneracy are cer-
tainly conceivable and are discussed briefly in Sec. VII, yet
will be the subject of future study.

We proceed next to a further exploration of the problem
structure, discussing its connection to tiling puzzles.

IV. THE PUZZLE OF SPIN GLASSES

The proposed problem generation formalism enables trans-
lation to a specific type of geometrically-appealing constraint
satisfaction problem (CSP) called a tiling puzzle. While these
problems are usually defined over two-dimensional domains,
we shall see that our three-dimensional technique yields a
polyhedral generalization of an edge-matching puzzle, an ex-

5

FIG. 3. Selected members of class F6, equivalent under octahedral
symmetry, that is, one of the 48 compositions of rotation and reflec-
tion leaving an unmarked cube invariant.

are selected from the {±1} class, it is in principle possible for
other ground states to exist [18]. Our experimental validation
in Sec. VI is thus concerned with the difficulty of finding any
ground state. Methods of removing the degeneracy are cer-
tainly conceivable and are discussed briefly in Sec. VII, yet
will be the subject of future study.

We proceed next to a further exploration of the problem
structure, discussing its connection to tiling puzzles.

IV. THE PUZZLE OF SPIN GLASSES

The proposed problem generation formalism enables trans-
lation to a specific type of geometrically-appealing constraint
satisfaction problem (CSP) called a tiling puzzle. While these
problems are usually defined over two-dimensional domains,
we shall see that our three-dimensional technique yields a
polyhedral generalization of an edge-matching puzzle, an ex-
ample of which is Eternity II [11]. The idea is to abstract
the Ising problem into a generic CSP representation known

FIG. 4. All subproblem ground states for a member of class F22 (up
to Z2 symmetry) where black (dark) and red (light) represent spins
of opposite sign.

as a factor graph [19]. While the Ising Hamiltonian itself can
always be interpreted as a factor graph, under our planting
technique additional structure is present, namely the restric-
tion to certain subsets of states. Following construction of
the CSP exploiting this structure, the natural connection to a
tiling puzzle is observed.

Figure 5 illustrates the necessary steps for the mapping.
For clarity, a direct two-dimensional analog of the three-
dimensional case is shown, in which the unit cells induced by
the decomposition into C are the cycles forming a checker-
board pattern rather than unit cubes as displayed in Figure 1.

We first consider the construction of a graph with respect to
C which we call the subproblem lattice, denoted by eG. Sup-
pose a vertex is placed at the centroid of each unit cell. The
subproblem lattice is defined by considering two such ver-
tices to be adjacent if and only if their corresponding unit
cells share a corner vertex. Clearly, this lattice may be 2-
colored, that is partitioned into two subsets none of whose
members are neighbors. This in turn implies a partitioning of
the cells in C into two disjoint sets W and B, whose elements
are labeled with colors W and B, respectively. Figure 5 (left
panel) demonstrates the two-dimensional construction of eG
and its vertex coloring, where yellow (light shading) and blue
(dark shading) may represent labels W and B or vice versa.
In three space dimensions, each yellow (light shading) cell is

FIG. 4. All subproblem ground states for a member of class F22 (up
to Z2 symmetry) where black (dark) and red (light) represent spins
of opposite sign.

ample of which is Eternity II [11]. The idea is to abstract
the Ising problem into a generic CSP representation known
as a factor graph [19]. While the Ising Hamiltonian itself can
always be interpreted as a factor graph, under our planting
technique additional structure is present, namely the restric-
tion to certain subsets of states. Following construction of
the CSP exploiting this structure, the natural connection to a
tiling puzzle is observed.

Figure 5 illustrates the necessary steps for the mapping.
For clarity, a direct two-dimensional analog of the three-
dimensional case is shown, in which the unit cells induced by
the decomposition into C are the cycles forming a checker-
board pattern rather than unit cubes as displayed in Figure 1.

We first consider the construction of a graph with respect to
C which we call the subproblem lattice, denoted by G̃. Sup-
pose a vertex is placed at the centroid of each unit cell. The
subproblem lattice is defined by considering two such ver-
tices to be adjacent if and only if their corresponding unit
cells share a corner vertex. Clearly, this lattice may be 2-
colored, that is partitioned into two subsets none of whose
members are neighbors. This in turn implies a partitioning of
the cells in C into two disjoint setsW and B, whose elements
are labeled with colors W and B, respectively. Figure 5 (a)
demonstrates the two-dimensional construction of G̃ and its



6

vertex coloring, where yellow (light shading) and blue (dark
shading) may represent labels W and B or vice versa. In
three space dimensions, each yellow (light shading) cell is
surrounded by eight blue (dark shading) cells instead of four.

We next construct the factor graph CSP representation
equivalent to the problem of minimizing H . The idea is to
derive an objective consisting of independent variables sub-
ject to equality constraints along the edges of G̃. First, each
vertex in G̃, mapping to cellC in the original lattice, is identi-
fied with a variable sssWC or sssBC , over 8 Ising variables (4 in two
space dimensions) depending on its label in the 2-coloring.
Because each vertex of the initial lattice is a shared corner
of two unit cells in C of opposite color, in the concatenation
of the states

∏
C∈W sssWC

∏
C′∈B sss

B
C′ variables sWi and sBi will

occur exactly once for each vertex i ∈ V . The domain of each
subproblem lattice variable is simply the ensemble of its sub-
problem ground states, the ground-state set ΓC , so that the
full configuration space of the new problem is the Cartesian
product

ΓW,B ,
∏

C∈W
ΓC

∏

C′∈B
ΓC′ . (5)

To be a feasible solution to the original problem however,
equality of neighboring variables must be enforced, that is
sWi = sBi ∀ i. If we define the problem

max
sssW,B∈ΓW,B

∏

i∈V
δ[sWi , s

B
i ], (6)

where δ(x, y) = 1 if x = y and zero otherwise, we readily
see that the solution is obtained for the overall planted ground
state sssB = sssW = sss∗. To make the graphical connection, we
note that each delta function in Eq. (6) can be interpreted as a
factor over neighboring subproblem lattice variables (iden-
tified with) C,C ′, i.e., ψC,C′(sssWC , sss

B
C′) , δ[sWi , s

B
i ] with

i = C ∩ C ′. The final maximization objective is then the
product of all factors over subproblem lattice variables

f(sssW,B) =
∏

C,C′∈Ẽ

ψC,C′(sssW , sssB), (7)

where the product index refers to edges of G̃ by the cells in
C mapping to their endpoint vertices. The factor graph corre-
sponding to the two-dimensional lattice in Fig. 5 (a) appears
in Fig. 5 (b), with variables represented by circular vertices
(whose colors identify their labels as W or B) and factors by
the squares along the edges. In three dimensions, each vari-
able is involved in eight factors rather than four.

Consider now the subproblem lattice with its vertices ly-
ing at their “natural” points in Euclidean space, i.e., at the

centroids of the unit cells, rather than as a generic graph. A
Voronoi tessellation [20] is a partitioning of the space sur-
rounding the vertices into convex polytopes, usually called
tiles, but for reasons that will soon be clear, we refer to as
tiling locations, such that all points within a polytope are clos-
est (typically in the L2 norm sense) to the enclosed vertex. It
is easy to see in Fig. 5 (a) that in two dimensions, the sub-
problem lattice forms a periodic pattern, sometimes called the
quincunx, of squares of length 2 each with a central vertex.
The appropriate tessellation of G̃ is a partitioning into tilted
square regions centered at each vertex. Neglecting for an in-
stant the significance of the colors, Fig. 5 (c) shows 5 full and
8 partial tiling squares in the section of lattice drawn. Return-
ing to the CSP in which the task was to assign the variables
from their respective domains (ground-state sets) so that fac-
tor constraints are satisfied, we now observe the equivalence
to a tile-matching puzzle. This is comprised of a board (the
space embedding G̃), segmented into octagons (the cells in
the Voronoi tessellation), each of which is endowed with a
repertoire of tiles (the ground-state set associated with the lo-
cation). The tile faces could be in one of two colors (the spin
values, not to be confused with the 2-coloring introduced to
construct the CSP). The puzzle task is to select the tiles so
that no two adjacent tile faces have a different color. If orange
(light) and purple (dark) represent spin values, say 1 and −1,
respectively, then Fig. 5 (c) shows a hypothetical tiling as-
signment. Here, a violation occurs where the tile colors on
both sides of a factor differ.

In three dimensions, the puzzle is analogous, but with a
few twists. In generalization of the two-dimensional case,
the subproblem lattice G̃, will, when respecting Euclidean
coordinates, form a pattern of cubes of length 2, each with
a vertex at its centroid. Such a formation is known as
the body-centered cubic (BCC) lattice. The correspond-
ing Voronoi tessellation is the space-filling bitruncated cu-
bic honeycomb whose base unit is the truncated octahedron
[20, 21]. These polyhedral cells, which now define the three-
dimensional tiling locations, each consist of eight hexagonal
facets, through which the the edges of our CSP factor graph
pass, and six square facets, defining the boundaries between
G̃ vertices at distance 2, but through which no CSP factors
pass. The ground-state sets associated with each vertex of G̃
thus map to coloring configurations on the hexagonal facets
of the enclosing Voronoi cell, defining a set of tiles, and again
the task is to place the tiles while meeting all coloring con-
straints. The construction is illustrated in Fig. 6.

While technically fitting the definition of a tile-matching
puzzle, the specific examples proposed here differ in a key
way from conventional puzzles such as Eternity II. In the
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(a)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(c)

FIG. 5. Steps in the derivation of a tile-matching puzzle from the unit cell planting methodology, shown in two dimensions with a free
boundary for clarity. Note that the two-dimensional cells induced by the decomposition are the unit cycle (plaquette) subgraphs arranged in a
checkerboard pattern rather than the unit cubes shown in Fig. 1 in three dimensions. In panel (a), the subproblem lattice G̃ is constructed by
placing a vertex at each subproblem cell’s centroid. As discussed in the text, the vertices are two-colored to yield a convenient representation
of the puzzle. In three space dimensions, each yellow (light shading) unit cell contacts 8 rather than 4 blue (dark shading) neighbors; the
corresponding G̃ is the body-centered cubic lattice. The factor graph associated with G̃ appears in panel (b), with factors shown as squares.
Each vertex is involved in 8 factors in three space dimensions. A Voronoi tessellation of G̃ yields the set of tiling locations. In two space
dimensions, these are the areas within the thick lines in panel (c). The factor graph domains, determined by the Ising subproblems, specify a
set of allowable tile patterns at each location. The figure shows a hypothetical tile placed at each site. The factor constraints require adjacent
colors to agree; hence, the central tile shown has 1 violation among its 4 neighbors. The puzzle for the three-dimensional tessellation is shown
in Fig. 6.

latter, each tile from the given set may be placed at more
than one board location (in an allowable orientation) while
presently, the ground-state set associated with each site con-
strains the choices. This fact, along with the polynomial-time
solvability [22] of the original ground-state problem in two
dimensions, could lead one to suspect that the puzzles we
have contrived may not be overly interesting. In three space
dimensions, however, solution by graph matching is no longer
applicable, and as we shall see, the problems exhibit a rich
range of behavior intimately tied to the known properties of
generic constraint satisfaction problems.

V. THE PHASES OF SATISFACTION

Hardness phase transitions in combinatorial problems have
been an active area of study for several decades now [23].
Of particular interest is the emergence of difficulty divergen-
cies in random satisfiability (SAT) problems as parameters
guiding instance generation are varied [24]. While the tiling
CSPs we have proposed here can certainly be expressed as
SAT problems [25], the resultant formulae do not, however,

follow the typical assumptions of random SAT. Most notably,
the variables are not free to appear in any clause with some
probability, but follow the highly-structured topological con-
straints of the puzzle. Of course, the subproblem and Oh-
disorder impose stochasticity over the factor graph variable
domains {ΓC}, but this is a localized randomness, violating
key assumptions in the analysis of random SAT. Nonetheless,
we expect that commonly-known facts and intuitions regard-
ing the relation between how constrained a problem is and its
empirical hardness will apply to our situation.

Because the tiling puzzle color factors are invariant to the
distribution over cell problems, constrainedness depends ex-
clusively on the features of the ground-state sets. As we al-
luded to earlier, a dominant correlate of problem hardness is
the average size of the ground-state sets, E|Γ|. A highly con-
strained regime is one in which the subproblems tend to have
relatively small degeneracy, and vice versa for a loosely con-
strained one. A subproblem demonstrating a maximal con-
straint level is any member of class F21 (with a unique ground
state up to Z2), while one constrained minimally, which was
not considered in the experiments, is the zero J subproblem,
in which all 256 states are ground states. Within the class
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FIG. 6. The tile-matching puzzle associated with three-dimensional
unit cell planting. The tile locations are truncated octahedra, the
elements of a bitruncated cubic honeycomb, in turn the Voronoi tes-
sellation of the body-centered cubic lattice eG. Color constraints are
defined among neighboring hexagonal facets of the octahedra; the
square facets are uninvolved. Four of the eight factors associated
with a location are shown (the other four point into the page). In the
example configuration shown, one constraint satisfaction and two
violations occur.

By construction, all our problems are satisfiable, i.e., there
is no UNSAT (or overconstrained) regime as usually under-
stood. Clearly, the minimally-constrained full problem is triv-
ial as each state is a solution to the original problem. In the
tiling puzzle representation, the factor constraints can be met
independently because the resultant states are always in the
ground-state sets. At the other extreme, highly-constrained
problems are also typically easy: Because there are few local
choices from the ground-state sets, a tree search method will
encounter relatively small branching factors when traversing
the state space, while for local search, the energy landscape
will be such that the algorithm can reliably locate the ground
state using simple strategies to escape from local minima.
These extremes strongly suggest that for some intermediate
level of mean ground-state set size, a peak in problem hard-
ness will occur. While it is not possible to increase |�C | past
8 for unit cells without introducing more complex Ising in-
teractions (or without trivially removing all Jij), an interest-
ing question, probed experimentally in the sequel is: Given

the proposed classes of unit-cell subproblems (F2, F4, and
F6) and all possible mixture distributions over the classes,
did the hypothesized peak occur for some interior point of
the distribution set? An affirmative answer would suggest
that the corresponding CSP class is among the hardest of all
tile-matching puzzles of the type we have introduced, i.e., for
which the locations’ tile sets may be chosen arbitrarily, not by
constraining them to map to subproblem ground states. Con-
versely, if the hardness maximum within the set of mixtures
occurs at the set boundary, it would point to the existence
of more difficult tiling puzzles not representable within our
framework.

VI. EXPERIMENTS

We now numerically study the typical complexity of cer-
tain subproblem classes to illustrate their tunability. While
we would ideally have performed a rigorous numerical study
for a discrete “grid” representing all subproblem types we
have proposed, this is computationally prohibitive. Conse-
quently, we focus on two illustrative regimes demonstrating
interesting variations in problem difficulty over three algo-
rithms, and the role played by subproblem degeneracy. The
simulation results show that highly complex problems with
known ground state, and more difficult than conventional spin
glasses with both Gaussian and random bimodal couplings,
are accessible via our methodology, but they also strongly
suggest that the hardness maximum over the distribution set
occurs at a boundary, namely when the distribution is a point
mass concentrated on class F6. Perhaps unsurprisingly then,
we conclude that tiling puzzles equivalent to Ising problems
constructed using the classes {F2, F4, F6} are likely not the
hardest among those where the tile sets are arbitrarily speci-
fiable.

All problems are defined on three-dimensional lattices of
size 8⇥8⇥8 with periodic boundary conditions. We consider
two classes of problems corresponding to one-dimensional
slices of the problem mixture parameter space. The first
class, gallus 26, allows subproblems to belong solely to
classes F6 and F22, while in the second, gallus 46, they
are constrained to F6 and F42. Both instance classes are
parametrized by p6, the probability of selecting class F6 in-
stead of the alternative [26]. The classes each contained
200 instances generated at 30 uniformly-spaced values of
p6 2 [0.8, 1], for a total of 6000 instances per class. All sub-
problems are subject to uniform Oh-disorder. The selected
range of p6 values is interesting as within it, problems are
more difficult than conventional spin glasses with Gaussian
or random bimodal couplings. We note that the problems

FIG. 6. The tile-matching puzzle associated with three-dimensional
unit cell planting. The tile locations are truncated octahedra, the
elements of a bitruncated cubic honeycomb, in turn the Voronoi tes-
sellation of the body-centered cubic lattice G̃. Color constraints are
defined among neighboring hexagonal facets of the octahedra; the
square facets are uninvolved. Four of the eight factors associated
with a location are shown (the other four point into the page). In the
example configuration shown, one constraint satisfaction and two
violations occur.

of subproblems introduced in Sec. III, including members of
F21 and F6 (with degeneracy 8) tend to bias the final problem
towards the maximal and minimal extremes respectively.

By construction, all our problems are satisfiable, i.e., there
is no UNSAT (or overconstrained) regime as usually under-
stood. Clearly, the minimally-constrained full problem is triv-
ial as each state is a solution to the original problem. In the
tiling puzzle representation, the factor constraints can be met
independently because the resultant states are always in the
ground-state sets. At the other extreme, highly-constrained
problems are also typically easy: Because there are few local
choices from the ground-state sets, a tree search method will
encounter relatively small branching factors when traversing
the state space, while for local search, the energy landscape
will be such that the algorithm can reliably locate the ground
state using simple strategies to escape from local minima.
These extremes strongly suggest that for some intermediate

level of mean ground-state set size, a peak in problem hard-
ness will occur. While it is not possible to increase |ΓC | past
8 for unit cells without introducing more complex Ising in-
teractions (or without trivially removing all Jij), an interest-
ing question, probed experimentally in the sequel is: Given
the proposed classes of unit-cell subproblems (F2, F4, and
F6) and all possible mixture distributions over the classes,
did the hypothesized peak occur for some interior point of
the distribution set? An affirmative answer would suggest
that the corresponding CSP class is among the hardest of all
tile-matching puzzles of the type we have introduced, i.e., for
which the locations’ tile sets may be chosen arbitrarily, not by
constraining them to map to subproblem ground states. Con-
versely, if the hardness maximum within the set of mixtures
occurs at the set boundary, it would point to the existence
of more difficult tiling puzzles not representable within our
framework.

VI. EXPERIMENTS

We now numerically study the typical complexity of cer-
tain subproblem classes to illustrate their tunability. This sec-
tion focuses on three-dimensional cubic lattices, followed by
a demonstration that the approach works well also in two
space dimensions (Sec. VII B). We conclude with a discus-
sion of generalizations to other graph types.

While we would ideally have performed a rigorous numer-
ical study for a discrete “grid” representing all subproblem
types we have proposed, this is computationally prohibitive.
Consequently, we focus on two illustrative regimes demon-
strating interesting variations in problem difficulty over three
algorithms, and the role played by subproblem degeneracy.
The simulation results show that highly complex problems
with known ground state, and more difficult than conven-
tional spin glasses with both Gaussian and random bimodal
couplings, are accessible via our methodology, but they also
strongly suggest that the hardness maximum over the distri-
bution set occurs at a boundary, namely when the distribu-
tion is a point mass concentrated on class F6. Perhaps un-
surprisingly then, we conclude that tiling puzzles equivalent
to Ising problems constructed using the classes {F2, F4, F6}
are likely not the hardest among those where the tile sets are
arbitrarily specifiable.

All problems are defined on three-dimensional lattices of
size 8×8×8 with periodic boundary conditions. We consider
two classes of problems corresponding to one-dimensional
slices of the problem mixture parameter space. The first
class, gallus 26, allows subproblems to belong solely to
classes F6 and F22, while in the second, gallus 46, they
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FIG. 7. Simulated annealing (SA) 〈log10 TTS〉 (right y-axes, red triangles) and parallel tempering with isoenergetic cluster moves (ICM)
〈log10 TTSopt〉 (left y-axes, blue circles) as a function of population annealing Monte Carlo (PAMC) 〈log10 ρS〉 for three-dimensional prob-
lem classes gallus 26 (a) and gallus 46 (b). SA and ICM TTS are measured in Monte Carlo sweeps and seconds, respectively. Within
each problem class, every point in a given color (symbol) jointly shows the two corresponding measures for one of the 30 subclasses de-
scribed in the text (averages are computed over 200 instances from each subclass). The data show that PAMC 〈log ρS〉 exhibits a strong
linear correlation with the other two algorithms’ log TTS metrics, confirming its power as a measure of hardness and landscape roughness.
Furthermore, as relative hardness measures for these problems, the three quantities studied here can be used more or less interchangeably.
Error bars omitted for clarity.

are constrained to F6 and F42. Both instance classes are
parametrized by p6, the probability of selecting class F6 in-
stead of the alternative [26]. The classes each contained
200 instances generated at 30 uniformly-spaced values of
p6 ∈ [0.8, 1], for a total of 6000 instances per class. All sub-
problems are subject to uniform Oh-disorder. The selected
range of p6 values is interesting as within it, problems are
more difficult than conventional spin glasses with Gaussian
or random bimodal couplings. We note that the problems
continue to become easier as p6 decreases. Using the val-
ues of |Γ| shown in Fig. 2, the expected ground-state set sizes
in terms of p6 are E|Γ| = 8p6 + 4(1 − p6) for gallus 26
and E|Γ| = 8p6 + 2(1− p6) for gallus 46.

Problem difficulty is assessed through performance of
three different algorithms designed for problems with rough
energy landscapes. The measures of difficulty are in strong
agreement across the methods, providing corroboration that
the observed difficulty trends should persist robustly across a
fairly large class of heuristic algorithms, including backtrack-
based search [23].

Simulated annealing (SA) [27] is the most basic algorithm
considered. We use the optimized implementation developed
by Isakov et al. [28] with βmin = 0.01 and βmax = 1.
While some form of optimized time to solution (TTS) mea-

sure, which considers the best tradeoff between simulation
length and number of simulations, would rather have been
used, SA runs were too time consuming on the hard problems
to generate the requisite runtime histograms reliably. Conse-
quently, we selected a fixed run length of NS = 8192 sweeps
for all problems with a single sweep per temperature. Each
problem is simulated R = 106 times independently. The SA
TTS is defined as the computational time required to find a
ground state with at least 99% probability, i.e., for each in-
stance, TTS = NS log(0.01)/ log(1 − p), where p is the
fraction of successful runs out of the R repetitions.

Furthermore, we have used a highly optimized implemen-
tation of parallel tempering Monte Carlo with isoenergetic
cluster moves (ICM) [29], an adaptive hybrid parallel tem-
pering (PT) [30–32] cluster algorithm [33]. Because ICM is
considerably more efficient than SA, it allowed us to gather
runtime statistics for each instance, allowing optimized TTSs
to be computed. In contrast to SA, total ICM computational
time is not merely a function of overall Monte Carlo sweeps,
but includes the additional cost of constructing random-sized
clusters. Consequently, to track aggregated ICM computa-
tional effort we record run times in seconds on hardware
dedicated entirely to the simulations. If P (τ) is the em-
pirically observed probability of finding the ground state in
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FIG. 8. Average log-entropic family size 〈log10 ρS〉 (population annealing Monte Carlo landscape roughness measure), for L = 8 cubic
lattice classes gallus 26 and gallus 46. Each point corresponds to a subclass in which unit cell subproblems are selected from F6

with probability p6, or else from F22 for gallus 26 and from F24 for gallus 46. Averages are computed over 200 instances from each
subclass. In panel (a) 〈log10 ρS〉 is plotted against p6, and in panel (b) against E|Γ|, the expected subproblem degeneracy within their range
of overlap. For a given mixing probability p6, panel (a) shows that gallus 26 is consistently more difficult than gallus 46 despite being
less frustrated. On the other hand, panel (b) shows that instances from either class with a given subproblem degeneracy have very similar
difficulty, suggesting that E|Γ| considerably explains the variation in hardness irrespective of the specific underlying subproblem mixture or
frustration level. In light of the proposed tiling puzzle interpretation, this is consistent with knowledge of CSP hardness. For reference, note
the 〈log10 ρS〉 values of equal-sized spin glasses with random ±1 and Gaussian interactions. For certain subclasses, the problems proposed
here are far more difficult than the traditionally-used cases.

time τ or less, the optimized time to solution is defined as
TTSopt = minτ τ log(0.01)/ log[1 − P (τ)]. We note, how-
ever, that despite the efficiency of ICM, it commonly failed
to find the solution for the harder problems within the max-
imum allowed 224 total Monte Carlo sweeps, requiring 60
to 75 minutes of real time, when computing the runtime his-
tograms. For difficult classes, these “timeouts” occurred at
least half of the time within the 100 ICM repetitions used to
tally the histograms. Fortunately, we were nonetheless able
to infer an optimized TTS from the conditional histogram in
which solutions were found. We used NT = 30 temperatures
spaced within Tmax = 3 and Tmin = 0.01; see Ref. [29] for
further details of ICM.

The final set of tests have used the sequential Monte Carlo
[34] method known as population annealing Monte Carlo
(PAMC) [35, 36]. This algorithm is related to SA but differs
crucially in its usage of weight-based resampling, which mul-
tiplies or eliminates members of a population according to the
ratios of their Boltzmann factors at adjacent temperatures,
maintaining thermal equilibrium at each step. Our simula-
tions used NT = 201 temperatures with 1/T = β ∈ [0.0, 5]

and Ns = 10 sweeps per temperature, and a population
size of R = 5 × 105 replicas. In Ref. [37], a PAMC-
derived index of landscape roughness called the entropic fam-
ily size ρS was proposed. If qi is the fraction of replicas
in the final population descended from initial replica i, then
ρS = limR→∞R/eh[q], where h[q] = −∑

i qi log qi. An en-
ergy landscape is thus deemed rough if h[q] is small, that is, if
relatively few initial replicas survive to the final distribution,
yielding a large value of ρS. Note that ρS converges quickly
in R and is easily estimated with finite populations. Thermal
equilibration is ensured by requiring h[q] > log 100; when
this is not satisfied for an instance, it is rerun with a larger
population size. ρS is known to covary strongly with the PT
autocorrelation time [37], and as can be seen from Fig. 7,
does so for the TTS-based hardness metrics considered here
as well. Figure 7 shows, respectively, the dependence of both
SA and ICM 〈log10 TTS〉 measures on PAMC 〈log10 ρS〉 for
the 30 subclasses of gallus 26 (a) and gallus 46 (b)
studied, where the averages 〈· · · 〉 at each point representing a
subclass are computed over its 200 generated instances. The
plots clearly show a distinct near-linear dependence of both
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time-based measures on the PAMC-defined value. Larger
ρS on average implies longer time to solution with respect
to both SA and ICM algorithms, corroborating the former’s
power as an objective measure of landscape roughness.

Results of the PAMC simulations are shown in Fig. 8.
We observe a trend of increasing ρS (and hence complex-
ity) for both problem classes as the fraction of subproblems
from F6 increases towards unity. For comparison, we dis-
play the mean log ρS value of two prototypical problems with
rough landscapes on the same lattice, the random Jij ∈ {±1}
and Gaussian Jij ∼ N(0, 1) [N(0, 1) a Normal distribution
with zero mean and variance one] spin glass, computed us-
ing 1000 and 5099 instances of each type, respectively. It
is clear that problems in most of the examined subclasses of
gallus 26 and gallus 46 are more difficult than both of
these widely-studied problem classes. Indeed, for subclasses
of gallus 26 corresponding to p6 ∈ [0.91, 1], problems are
∼ 2 – 3 orders of magnitude harder than bimodal spin glasses.
Perhaps more surprisingly, they are also ∼ 2 – 3 orders more
difficult than Gaussian spin glasses, despite the latter possess-
ing continuous-valued couplings while our instances restrict
couplers to {±1} which are believed to generally be easier to
minimize.

Setting p6 = 1 yields the most complex problems of
those considered. In fact, we conjecture, based on less com-
prehensive simulations, that these instances are the hard-
est among all those constructed with subproblem classes in
{F2, F4, F6}. We plan to perform a comprehensive analysis
in the future. For this hard class, the unit cell subproblems,
deriving exclusively from F6, have 8 ground states each. Be-
cause this hardness peak occurs at the boundary of the prob-
lem parameter space, it seems plausible that one could in-
stantiate yet more complex three-dimensional tiling puzzles,
where the locations were allowed more than 8 (times 2) tile
possibilities but not so many that the problem becomes un-
derconstrained and easy to solve.

At first, the greater pointwise difficulty shown in Fig. 8 of
an {F6, F22} mixture over one made of {F6, F42} appears
to contradict intuition that greater frustration implies higher
difficulty. After all, with four bounding frustrated facets, a
member of F42 can be interpreted as more frustrated than one
of F22, which has two. The story is somewhat more sub-
tle though: While frustration certainly plays a role in tuning
hardness in our problems, it appears to do so through its ef-
fect on constraint level, namely on the sizes of ΓC , with F22

inducing higher complexity than F42 because its ground-state
set size is larger. This fact is displayed in Fig. 8 (b), where
log ρS for the two classes is plotted against E|Γ| instead of p6.
The graph shows that for a given value of E|Γ|, gallus 26
and gallus 46 have a very similar roughness index, im-

plying that mean subproblem degeneracy accurately predicts
difficulty regardless of the underlying subproblem mixture.

For completeness, analogous plots displaying similar dif-
ficulty trends for SA’s log TTS and ICM’s log TTSopt are
shown in Fig. 9, where they are again plotted against p6.

In contrast to our results so far, which have considered
instance-averaged difficulty measures, Fig. 10 shows his-
tograms of optimized ICM log10 TTS values for three sub-
classes of gallus 26 [Fig. 10 (a)] and of gallus 46
[Fig. 10 (b)] indexed by E|Γ|. The leftward shift in histogram
support shows clearly that problems tend to become easier
with decreasing E|Γ|. Given the histogram shapes, one may
naturally suspect that TTSopt is log-normally distributed. As
log TTS is unlikely to be precisely normal across the entire
data range, we visualize correspondence with a Gaussian via
normal probability plots [38], which relate the sample order
statistics, obtained by sorting the data, with the theoretical
means of the corresponding normal order statistics. Devia-
tions from a linear relation signal lack of Gaussianity. Figure
11 shows the probability plots for the three subclasses used
to generate the preceding histograms for the gallus 26 (a)
and gallus 46 (b) classes, respectively. The relation is
close to linear over the majority of the histogram support, im-
plying in turn that the TTSopt is approximately log-normally
distributed. This is consistent with quantities such as the par-
allel tempering Monte Carlo autocorrelation time and other
roughness measures [15, 39] having the same property.

While we have argued that E|Γ| is a good predictor of mean
difficulty, the histogram results show that this value by no
means provides a complete picture. Indeed, when E|Γ| = 8
(i.e., p6 = 1) there is no variance in |ΓC | as all subproblems
have eight-fold degeneracy, yet the log TTS distributions in
Fig. 10 nonetheless show considerable intraclass spread in
difficulty. Therefore, there are certainly other factors at play
in predicating the hardness, which will be analyzed in upcom-
ing studies.

VII. DISCUSSION

In this Section we discuss generalizations of the planting
approach using lattice animals. Furthermore, we present a
case study on how the approach generalizes to other non-
hypercubic lattices. Finally, we discuss the use of the planted
problems for fundamental studies of spin glasses and related
statistical systems.
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FIG. 9. SA 〈log10 TTS〉 (a) and ICM 〈log10 TTSopt〉 (b) plotted against parameter p6 for 30 subclasses of gallus 26 and gallus 46
defined in the text. The problems show the same relative difficulty trends with respect to both algorithms and in accordance with the PAMC
results shown in Fig. 8 (a).
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FIG. 10. Histograms of (optimized) log10 TTSopt relative to isoenergetic cluster moves for classes gallus 26 (a) and gallus 46 (b)
for three subclasses characterized here by mean subproblem degeneracy E|Γ|; 200 problems within each subclass were used to obtain the
histograms. The leftward trend in both sets of histograms shows clearly that the problems become easier with decreasing E|Γ|, and their
shapes suggest that TTSopt is log-normally distributed.

A. Generalization via lattice animals

The proposed unit cell planting technique shows encourag-
ing results and properties, and one may inquire how it may be

generalized. In this Section, we present a natural extension of
the idea, still assuming lattice-structured problems, where in-
stead of defining subproblems on the unit cells of C, they are
specified on subgraphs consisting of their unions. One can



13

−3 −2 −1 0 1 2 3

Theoretical Quantiles

−4

−3

−2

−1

0

1

2

3

4

5

D
at

a
Q

ua
nt

ile
s

(a)

E|Γ| = 8.00

E|Γ| = 7.59

E|Γ| = 7.20

−3 −2 −1 0 1 2 3

Theoretical Quantiles

−6

−4

−2

0

2

4

6

D
at

a
Q

ua
nt

ile
s

(b)

E|Γ| = 8.00

E|Γ| = 7.38

E|Γ| = 6.80

FIG. 11. Normal probability plots of ICM’s log10 TTSopt for the instance subclasses used to generate the histograms in Fig. 10. A linear
relation between the Gaussian theoretical and data quantiles implies that the data follow a normal distribution. The plots show clearly that for
the three representative subclasses of gallus 26 (a) and gallus 46 (b) parametrized by E|Γ|, the histograms are close to normal over
the majority of their support. In other words, TTSopt approximately follows a log-normal distribution.

verify that such subgraphs, called lattice animals or polyomi-
noes, also partition the lattice into edge-disjoint subgraphs,
meaning that subproblem couplers are still not added.

A two-dimensional example of decomposition into lat-
tice animals is shown in Fig. 12. Generalization to three-
dimensional polyominoes obtained by grouping cells from
the decomposition shown in Fig. 1 is straightforward. Shown
in non-gray colors are 6 lattice animals. Only the pink
(top right) one is made of a single cell. The key difference
from the basic method is that unit cells of a given color are
no longer constrained to have their individual ground states
agree; only the complete animal ground state is relevant. This
extension thus considerably extends the types of subprob-
lems that can be employed, and also introduces an additional
mechanism of solution hiding, namely via randomization of
the employed lattice animals, which would of course be un-
known to the would-be adversary. While the tiling puzzle and
CSP interpretation of the problem, suitably modified, contin-
ues to hold in this generalization, under lattice animal ran-
domization, the adversary would in essence no longer be cer-
tain what puzzle they are even solving.

In this work, we have considered carefully chosen families
of subproblems on three-dimensional unit cells. An explo-
ration of extensions to more general lattice animals is outside
the scope of the present work. We note, however, that if sub-
problem couplers are sampled from a given distribution, then

provided that the subgraph tree widths are small, their ground
states can be computed exactly [40] and gauged to the desired
overall ground state.

Finally, we note that this lattice animal generalization is
also key when attempting to reduce degeneracy in the planted
problems. For example, by selecting the coupler values
from a Sidon set [41–43] of the form {±(n − 2)/n,±(n −
1)/n,±1} with, e.g., n = 50 the degeneracy is drastically
reduced. Similarly, one could select the couplers from a dis-
tribution of the form

|Jij | ∈ a+ (1− a)u, (8)

where u ∈ [0, 1) is a uniform random number and a close
to 1 [44]. However, instead of using basic tiles, more com-
plex lattice animals must be used to construct the problems,
something we intend to tackle in the near future.

B. Generalization to arbitrary graphs

The need to benchmark both classical and quantum op-
timization heuristics has hastened the development of ad-
vanced planting techniques for solutions of spin-glass-like
optimization problems. We have so far focused our attention
on hypercubic lattice problems. However, quantum annealing
machines typically have hardwired hardware graphs that are
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FIG. 12. Generalization of unit cell planting using lattice animals,
also known as polyominoes. Illustrations are in two dimensions for
clarity. The analogous procedure in three space dimensions is simi-
lar. With lattice animal planting, the edge-disjoint subgraphs under-
lying the subproblems are no longer restricted to the unit cells in C
(the checkerboard in two space dimensions and the decomposition in
Fig. 1 for three space dimensions) but are now permitted to be con-
nected subgraphs comprised of unions of cells from C. As before,
subproblem couplers are not added. Above, six such subgraphs in
non-gray colors are shown, of which only the pink one (top right) is
comprised of a single cell. If the tree widths of the lattice animals
are small, their ground states can be computed exactly and gauged to
the overall target ground state. This extension considerably expands
types of subproblems that can be employed and also introduces an
additional mechanism of solution hiding via randomization of the
employed lattice animals.

close to planar. A prototypical example is the Chimera graph
[45] used by current versions of the D-Wave quantum anneal-
ing machines. When presented with such a situation, one has
two possible options to apply our planting framework. The
first is to impose a lattice structure onto the available graph,
and the second is to specify subproblems on altogether differ-
ent “unit cells” than cubes, which of course, must be graph-
dependent. We now discuss the first option applied to the
special case of Chimera.

Although in principle three-dimensional lattices can be im-
plemented on the Chimera graph [46], the required over-
head may limit linear (planted) problem sizes that can be
practically studied. On the other hand, relatively large two-
dimensional lattices with periodic boundaries can be straight-

(a) (b)

(c) (d)

FIG. 13. Implementation of a 6 × 6 square lattice with periodic
(toroidal) boundary from a 3 × 3 unit cell Chimera graph. (a): In-
stantiation of two-dimensional logical spins from Chimera. For con-
creteness, 36 lattice spins are assumed to be labeled in row-fastest
order. First, each spin in the bipartite cells is paired with the directly-
opposing spin of the same cell. Next, the resultant spin pairs, called
dimers, are forced to behave as one spin via strong ferromagnetic
coupling. Each dimer is labeled with the corresponding lattice log-
ical spin. (b): In the first and last columns of cells, lattice problem
edges between dimers {1, 2} and {3, 4} of each cell are added. Note
that only one of the two existing cell edges is shown, but if both are
used, the coupler strength must be suitably divided. (c): In the top
and bottom rows of cells, lattice edges between dimers {1, 3} and
{2, 4} of each cell are added. Again, only one of the two available
edges is displayed. (d): All inter-cell couplers are specified accord-
ing to the lattice problem. The lattice variables are labeled beside
each dimer again, from which one can verify that the resultant con-
struction does indeed implement a 6× 6 two-dimensional torus.

forwardly embedded on Chimera, with a relatively modest
constant ratio of two Chimera variables per lattice spin. More
precisely, a Chimera graph of L×L bipartite unit cells, com-
prised of 8L2 variables in total, can produce a toroidal two-
dimensional lattice of size 2L×2L. Rather than formally de-
scribe the rather natural procedure, we illustrate it in Fig. 13,
where a 6×6 periodic lattice is created from a 3×3K4,4 cell
Chimera graph.

So far, we have focused primarily on planting subproblems
on three-dimensional unit cells, in part because planar prob-
lems without a field are solvable in polynomial time [22], but
as illustrated in Figs. 5 and 12, the two-dimensional analog
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FIG. 14. Average log-entropic family size 〈log10 ρS〉 for L = 24
periodic planar lattice classes C 23 and C 24. Each point corre-
sponds to a subclass in which unit cell subproblems are selected
from C2 with probability p2, or else from C3 for C 23 and from C4

for C 24. Averages are computed over 200 instances from each sub-
class. As for the study in three dimensions, we see a large range of
landscape roughness, again with a range of subclasses demonstrat-
ing greater difficulty than equal-sized random bimodal spin-glass
problems. The most difficult problems in our ensemble are those in
which the subproblems are exclusively selected from C2, in which
the local GS degeneracy is 2.

is readily obtained. The analytical tractability of the planar
lattice enables a deep exploration of physical and computa-
tional properties, a work which will be reported elsewhere
[47]. Here we outline the idea and demonstrate that it does in-
deed perform well on planar lattices and nonplanar quasi-two-
dimensional Chimera graphs using population annealing sim-
ulations. The two-dimensional subproblems, i.e., the analogs
of the cells shown in Fig. 2, are partitioned into classes {Ci}
for i ∈ {1, . . . , 4}, within which cells have i minimizing
ground-state configurations each. To achieve the construc-
tion, first define two magnitudes Js, Jl > 0 with Jl > Js;
presently we take Jl = 2 and Js = 1. A cell in class Ci is
constructed by setting a random edge to be antiferromagnetic
with magnitude Js, i − 1 of the remaining edges to be fer-
romagnetic with magnitude Js, and the leftover edges to be
ferromagnetic with magnitude Jl [48]. It is readily verified
that the subproblems do indeed have the specified number of
local ground states which always include the ferromagnetic
state.

As was done in three space dimensions, we consider two
classes of problems each comprised of mixtures of two sub-

problem classes. Problem class C 24, consists of mixtures
of C2 and C4 cells, while in C 23 the cells may belong to
C2 or C3. Both problem classes are parametrized by p2,
the probability of choosing a cell from C2. The results on
24 × 24 periodic lattices are shown in Fig. 14. Again, a
wide range of landscape roughness is seen to be attainable,
including a regime in which the problems are more difficult
than random bimodal (±1 couplers) spin glasses. An inter-
esting distinction from three-dimensional results is that the
most difficult problems are not those in which cells exclusive
belong to the maximally-degenerate class C4, but rather the
moderately constrained C2 class. In fact, class C4 is a highly
underconstrained regime for this topology and gives rise to
very easy problems. The fascinating connections between di-
mension, complexity, and phase behavior are the subject of
ongoing study that goes beyond the scope of this paper.

If one wished to move beyond a regular lattice structure,
the natural objective is a decomposition of the problem graph
G into edge-disjoint subgraphs satisfying some constraint al-
lowing tractable minimization. An example of a constrained
decomposition is into subgraphs with given minimum ver-
tex degree [49]. More directly applicable to the planting
context would be a constraint on maximum subgraph tree
width thereby allowing determination of the planted subprob-
lem ground states. The edge-disjointness property is the key
common aspect with the ideas presented in this paper, as it
continues to circumvent the need for adding subproblem cou-
plers. This idea is clearly a generalization of the lattice an-
imal methodology discussed previously. While we have not
presently considered planting using such generic subgraphs,
one can readily envision a heuristic decomposition algorithm
that greedily grows partitioning subgraphs until their tree
widths exceed some criterion.

C. Spin-glass physics

We hope researchers in the field embrace these planted
problems to study physical properties of glassy systems be-
yond the benchmarking of optimization heuristics.

Having arbitrarily-large planted solutions for hypercubic
lattices allows one to address different problems in the
physics of spin glasses. For example, the computation of
defect energies—intimately related to fundamental proper-
ties of these paradigmatic disordered systems—strongly de-
pend on the knowledge of ground states (see, for example,
Refs. [50–55]). Being able to plant problems would drasti-
cally reduce the computational effort in answering these fun-
damental questions.

Furthermore, by carefully tuning the different instance
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classes, problems with different disorder and frustration can
be generated. A systematic study of the interplay between
disorder and frustration is therefore possible for nontrivial lat-
tices beyond hierarchical ones. Similarly, being able to tune
the fraction of frustrated plaquettes allows one to carefully
study the emergence of chaotic effects in spin glasses (see,
for example, Refs. [56–58] and references therein).

D. Application-based benchmark problems

It is well established that random benchmark problems
[59, 60] for classical and quantum solvers using spin-glass-
like problems are computationally typically easy. Further-
more, the control over the hardness of the benchmark prob-
lems has been rather limited either because (post-) process-
ing is expensive [14, 42], or because the benchmark genera-
tion approach does not give the user enough control over the
problems to match, e.g., hardware restrictions [12].

Because application-based problems from industrial set-
tings are highly structured, they pose additional challenges
for the vast pool of optimization techniques designed, in gen-
eral, for random unstructured problems. This has sparked the
use of problems from industry to generate hard (and some-
times tunable) benchmark problems. Most notably, the use
of circuit fault diagnosis [61, 62] has produced superbly-hard
benchmarks with small number of variables. However, the
use of application-based problems for benchmarking is in its
infancy and while circuit fault diagnosis shows most promise
[62], many applications have produced benchmark problems
that lack the richness needed to perform systematic studies;
see, for example, Refs. [63–66].

The problems presented in this work are highly tunable
and computationally easy to generate. Furthermore, they
can be embedded in more complex graphs, as is, for exam-
ple, commonly done on the D-Wave hardware for application
benchmarks. Having this tunability thus should allow for not
only the generation of problems that might elucidate quan-
tum speedup in analog annealers, but it might also help gain a
deeper understanding into quantum annealing for spin glasses
in general. In parallel, having these tunable problems might
elucidate the application scope of specific optimization tech-
niques, both classical and quantum.

VIII. CONCLUSIONS

We have presented an approach for generating Ising Hamil-
tonians with planted ground-state solutions and a tunable
complexity based on a decomposition of the model graph
into edge-disjoint subgraphs. Although we have performed
the construction for three-dimensional cubic lattices and il-
lustrated the approach with the two-dimensional pendant, the
approach can be generalized to other lattice structures, as
shown in Sec. VII B for the Chimera lattice. The construc-
tion allows for a wide range in computational complexity de-
pending on the mix of the elementary building blocks used.
We corroborate these results with experiments using different
optimization heuristics. Subsequent studies will discuss con-
structions with controllable ground-state degeneracy, as well
as the mapping of the complete complexity phase space.
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