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We carry out a direct comparison of experimental and numerical realizations of the exact same
granular system as it undergoes shear jamming. We adjust the numerical methods used to opti-
mally represent the experimental settings and outcomes up to microscopic contact force dynamics.
Measures presented here range from microscopic, through mesoscopic to system-wide characteristics
of the system. Topological properties of the mesoscopic force networks provide a key link between
micro and macro scales. We report two main findings: 1) the number of particles in the packing
that have at least two contacts is a good predictor for the mechanical state of the system, regardless
of strain history and packing density. All measures explored in both experiments and numerics,
including stress tensor derived measures and contact numbers depend in a universal manner on
the fraction of non-rattler particles, fNR. 2) The force network topology also tends to show this
universality, yet the shape of the master curve depends much more on the details of the numerical
simulations. In particular we show that adding force noise to the numerical data set can significantly
alter the topological features in the data. We conclude that both fNR and topological metrics are
useful measures to consider when quantifying the state of a granular system.

An important class of particulate systems includes
granular materials, colloids, foams and molecular glass
formers. These materials can become “rigid”, or
“jammed”, in the absence of long range spatial order.
Jammed states are solids in mechanical equilibrium, with
non-zero elastic moduli [1, 2]. In order to be in mechan-
ical equilibrium, forces must be transferred from parti-
cle to particle, creating self-organized networks of con-
tacts and forces. These networks undergo rearrange-
ments when shear induced deformation of the materi-
als occurs. The networks are typically spatially hetero-
geneous [3], and during deformation, they are tempo-
rally intermittent, with avalanches, slip events, fracture
and elasto-plastic failure modes. Finding the microscopic
metrics responsible for this broad spectrum of mechani-
cal behaviors across the solid-liquid transition has been
challenging, since many of the conventional tools for char-
acterizing ordered thermal systems do not apply.

Understanding how granular materials self-organize
into mechanically stable states requires consideration of
the structure of force networks. Figure 1 shows exam-
ples of typical force networks found in the experiments
and simulations. A full description of the force network
requires a high dimensional space that reports on micro-
scopic features and does not directly reveal its mesoscopic
structure. In order to understand this structure, we need
statistical tools for their characterization that are sensi-
tive, systematic, unbiased, minimal, and consistent with
macroscopic properties, such as the system-wide stresses.
These tools must also be able to distinguish different
states of the system, based on force networks.
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FIG. 1. Examples of an experimental (a) and a numerical
(b) force network. Experimental and numerical examples
are generated at the same strain amplitude γ = 14.9% and
φ = 0.8036. The color scale represents the total force at each
contact, normalized by the concurrent mean force. As de-
scribed in the text, the simulation results in this and all the
following figures include additional noise of amplitude 0.01 N,
except if specified differently.

To demonstrate the need for mesoscopic descriptions of
the force network we will consider the granular response
to quasi-static shear strain, γ, which is analogous to time
in a more conventional dynamical system. The structure
of the network as the granular system is strained shows a
sensitive dependence on the initial conditions. We show
that simple topological measures detect the variability
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in force networks formed in response to shear in quasi-
two-dimensional granular systems. These metrics cap-
ture features that are missed by conventional measures,
such as stresses or contact force distributions.
In this article, we consider two replicas of the same

granular system: experimental and computational. The
studies of these realizations show the importance of the
fraction of non-rattler particles, fNR, defined here for
frictional particles, as particles with at least two contacts,
as a relevant state variable. In particular, the considered
metrics fall onto master curves when expressed as func-
tions of fNR. These metrics include traditional measures,
such as contact numbers, stresses, and contact force prob-
ability distribution functions which identify system-wide
as well as microscopic features. We observe a good match
between the experimental and computational systems at
these scales. To our knowledge, this is a first attempt to
directly compare the microscopic and network properties
of experiments and simulations on, nominally, the same
system. However, Veje et al. [4] made comparisons of
macroscopic properties for experiments and simulations
of a Couette system.
However, at the mesoscale, there are clear differences

identified using topological metrics. We conjecture that
the differences arise from small imperfections and noise
in the experiments that are absent in the simulations.
The topological metrics that we employ are sensitive to
the force noise in the experimental data sets and capture
these differences. Our conjecture is reinforced by the fact
that by introducing appropriate random noise in the sim-
ulations we can generate a reasonable match between the
statistics of the topological networks in simulations and
experiments. This finding suggests that the considered
topological measures may have an important utility in
quantifying the properties of intrinsic noise that is always
involved in the experiments. As a consequence, topolog-
ical techniques provide new opportunities for identifying
the scale of the experimental noise, and distinguishing
noise from intrinsic fluctuations.

I. TOPOLOGICAL METRICS

Although there exists a number of tools to extract net-
work information, see [5, 6] for reviews, recent work [7–
16] demonstrates that topological methods are well suited
to characterize force networks in granular packings. In
this work, we use the Betti numbers β0 and β1 to quantify
the topology of a network, where β0 indicates the number
of clusters or connected components of the network, and
β1 characterizes the number of loops. Thus, in a rough
sense, β0 is a measure of force network segments, and β1

is related to their interconnectivity. Computations were
performed using the software Perseus [17]. In particu-
lar, we are interested in the properties of the (simplicial
complex) network that describes the force interactions
between the particles with force magnitude larger than
fc. We pick fc = 1.0〈|f|〉 in our analysis (here 〈|f|〉 is the
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FIG. 2. The evolution of the fraction of particles with contact
number Z2,3,4,5 as a function of the fraction of non-rattlers
fNR, for both experiments (◦) and simulations (△) for a range
of φ’s (color scale).

average force), and note that results are not very sensitive
to this choice of threshold. This network is constructed in
the following manner. Every particle, pi, is represented
by a vertex, vi. The edge < vi, vj > belongs to the net-
work if the magnitude of the force interaction, between
the corresponding particles pi and pj , is larger than fc.
In our construction, we follow a similar approach as in
previous works, see e.g. [16, 36] and ignore the “trivial’
loops formed between three particles in contact, to focus
on the larger loops, as we believe they signify the pres-
ence of “defects”. Therefore the boundary of the loops
detected by β1 must contain at least four edges.
While more elaborate tools from algebraic topology

have been used to quantify force networks in simula-
tions [18, 19], in the present work we restrict ourselves
to the simple measures described above. The reasons
for this choice are twofold: (i) This method allows for
a direct comparison of the statistical properties of force
networks between simulations and experiments. To our
knowledge, such comparison has not been attempted so
far. (ii) These methods show potential for assessing the
type and size of the noise present in the data [20].

II. EXPERIMENTAL & NUMERICAL

SETTINGS

The experiments involve shear of constant-density two
dimensional packings of ∼ 1000 photoelastic bidisperse
disks, starting from a stress free state. The packing den-
sity is given in terms of the packing fraction, φ. The par-
ticles interact via force laws that include friction, and the
result is that the applied strain shear-jams the packing
for lower φ than the isotropic jamming value [31]. This
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protocol allows one to probe a large range of mechani-
cally distinct states, from very loose to highly jammed
packings. In particular, we use experimental data ob-
tained in a simple shear geometry described in [22, 23]
– see the Appendix for details. The particles rest on
a co-moving, articulated base, that through its bound-
aries, induces a linear shear profile, suppressing shear
bands and other large scale inhomogeneities. We con-
sider results for packings in the range 0.77 ≤ φ ≤ 0.825,
where φ = 0.77 is the lowest packing fraction for which
we achieve shear jammed states with this apparatus. We
then quasi-statically shear the system by a sequence of
100 strain steps of 0.27% each, for a maximum strain of
γ = 27% [22], and extract the information about all the
forces the particles experience at each strain step [23].
The force extraction algorithm is applied to each particle
individually. Hence, every contact between two parti-
cles yields two force vectors. In the topological analysis
we use the average of the norms. Note that this ap-
proach has its limitations. For larger pressures, P , we
reach a force level such that deformations at contacts
become large. We note that the force inverse algorithm
assumes small deformations at contacts to make the pro-
cess more efficient and becomes increasingly inaccurate
when fNR > 0.95 where deformations are large, so we
omit this (small) data set from the analysis where forces
are involved (see Appendix for details). The exact value
of this cutoff is not crucial for the present purposes. Note
that this is not an intrinsic limitation on the technique;
however, since we are mostly interested in behavior near
jamming where forces are moderate, amending current
algorithms is not necessary.

Simulation Details Despite the simplicity of the nu-
merical scheme, it is highly nontrivial to select the right
packing preparation protocol. This sensitivity of granu-
lar mechanics to initial preparation is well known even for
frictionless systems [25] yet makes a direct comparison
between numerical and experimental results very non-
trivial. Note that regardless of the preparation protocol
chosen, the qualitative behavior observed was always sim-
ilar; the collapse of all data sets as a function of fNR is
particularly robust. Two features however required pro-
tocol fine tuning: the density range and offset in which
the shear jamming and network anisotropy were observed
and the network anisotropy. The fine tuning allowed us
to match both the range and offset between experiments
and numerics. The contact number and pressure dynam-
ics are found not to be influenced by preparation proto-
col.

The simulations use a soft-particle non-linear force
model and reproduce the experimental settings as closely
as possible. The shear geometry, particle sizes and
numbers, friction coefficients, density and elastic mod-
uli used in the numerical simulations match the experi-
mental values as taken from the current data or previous
work [23, 31]. The inelasticity of the particles is mod-
eled through a coefficient of restitution and frictional in-
teraction between the particles using the Cundall-Strack

model [26]. We also simulate a moving base, including
translational and rotational friction between the base and
the particles. The details of implementation can be found
in the Appendix. The simulations reported here are car-
ried out for the same values as for which we have exper-
imental data. We show below that simulations produce
results that are comparable to experiments.
As we will discuss in more detail later, we add a small

amount of random noise to simulation data: all the fig-
ures in the paper include this additional noise, unless oth-
erwise specified. Importantly, the essential results shown
in Figs. 1 - 3 are insensitive to the noise addition.

III. COMMON FEATURES OF EXPERIMENTS

AND SIMULATIONS

We extract particle positions and inter-particle forces
for each particle at every 0.27% strain step, and we com-
pute the local stress tensor σ using the Irving-Kirkwood
method [27]. This provides the pressure from the sum
of its eigenvalues P = (σ1 + σ2)/2 the shear stress,
τ = (σ2 − σ1)/2 and the stress anisotropy, τ/P . At each
φ, we carry out five realizations in both simulations and
experiments, and average the results.
To illustrate the degree of agreement between experi-

ments and simulations when conventional measures are
considered, we start by exploring the average number of
contacts per particle, Z. This is an important quantity
since there is a minimum or isostatic value of Z, Ziso, for
marginal stability. For frictional particles, Ziso = N + 1,
(modulo a small correction due to the constraint imposed
by Coulomb friction), where N is the system dimension,
e.g. Ziso = 3 for 2D frictional disks. If a system is
sheared from zero stress into a shear jammed state, Z
must reach at least Ziso = 3 when the system becomes
jammed. However, the parts of the force network that
first form during the shear jamming process contain a
number of particles with only two contacts. Hence, it is
relevant to consider not only Z, but also Zn(φ, γ), the
fraction of particles with n contacts.
A key finding in [31] is that many properties such

as stresses and Z depend on fNR, in a universal way.
Here we show that fNR also determines the dynamics of
Zn(φ, γ). Figure 2 shows data for Z2,3,4,5 vs. fNR. There
are two outstanding features in this data: (i) the dynam-
ics of each Zn collapses on a single curve, independent of
φ; and(ii) the agreement between experiments and sim-
ulations is quantitative. We thus conclude that the sim-
ulations reproduce the experiments very well, and that
fNR can be used as an apparently universal state variable
to describe the state of the system.
Figure 3 shows other conventional measures comparing

the experimental and the numerical data: in Fig. 3a we
see that the experimental pressure data for all φ’s col-
lapse to a single curve. Furthermore, we find power law
scaling for P vs. 1−fNR. Intuitively, the inverse relation
between P and fNR makes qualitative sense: the larger
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FIG. 3. (a) Pressure evolution versus 1-fNR for both exper-
iments (◦) and simulations (△). (b) Normalized anisotropy
τ/P evolution as a function of fNR. (c) histogram of con-
tact force magnitudes |f | for all contacts in the five runs at
φ = 0.7863 for both numerics and experiments. The dot-
dashed line indicates the force noise added after the numer-
ical runs were completed. (d) The probability distribution
function of the norm of the contact forces P (|f|) as a function
of fNR for both experiments (◦) and simulations (△) for the
force bin centered around 1〈|f|〉.

the fraction of rattlers, 1 − fNR, the smaller the pres-
sure. However, the power law nature of this relation is
not trivial. For the simulations, we also find an excellent
collapse of P vs. 1− fNR, via a power-law, although the
dynamics deviates from power law scaling at large non-
rattler fractions, and note a small deviation in the overall
pressure scale. A quantitative magnitude agreement, in
particular in the pressure, is sensitive to various factors,
including the force law used in the numerics and the area
normalization choice in the Irving-Kirkwood formalism.
Hence, it is more challenging to get magnitude agreement
between the experiments and simulations. However, the
trends of fNR collapse and P (fNR) are mostly insensitive
to these differences between experiments and simulations.

Figure 3b shows the stress anisotropy, given by τ/P .
We find an initial rapid increase of τ from the randomly
prepared nominally isotropic stress-free initial state. Af-
ter this transient, the anisotropy shows only a modest
decrease with fNR for both experiments and simulations,
while it remains nonzero. The decreasing trend is con-
sistent with the observation that shear jammed states
initially have a very anisotropic network, that evolves to-
wards a more isotropic one with increasing strain. The
agreement between experiments and simulations is only
qualitative, but even though there is modest scatter in
the numerical data, the collapse with fNR within the nu-
merical and experimental data sets is obvious.

Force Probability Distribution — A useful microscopic
measure is the probability distribution function (PDF)
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FIG. 4. Betti numbers, β0 (left) and β1 (right), as a function
of fNR for both experiments (a,b: ◦) and simulations (c-f, △).
(c,d) show original numerical data; (e,f) show the numerical
data with 0.01N noise added.

of the norm of the contact forces P (|f|). Much work has
been devoted to characterizing and understanding this
distribution [28, 29] although isotropically compressed
packings have been the primary focus of past work. Here
we examine P (|f|) vs. fNR, and contrast the experimen-
tal and numerical data. Figure 3c shows the probability
of finding a contact force of a certain magnitude in the
entire data set at φ = 0.7863. We collect the data for all
strain values at this density to obtain better statistics.
The numerical and experimental histograms are very sim-
ilar. Note that for the numerical data, the bin size is such
that forces below noise amplitude all add to the same bin.
Also the probability distribution function again shows a
good collapse with fNR: in Figure 3d we show the bin
with force centered on 1.0〈|f|〉. In both experimental and
numerical data, there are good collapses with fNR; the
experimental and numerical data are in qualitative agree-
ment. This seems to say that the probability of finding f
at the mean grows significantly with fNR. The collapse
with fNR is observed for other force bins; for example,
we have verified that the same feature are observed for
force bin centered on 0.5〈|f|〉 and 1.5〈|f|〉 (see Appendix).

The previous metrics have addressed either macro-
scale or micro-scale structural properties, but do not pro-
vide detailed information about the structure of force
networks, such as those shown in Fig. 1. We now use
topological metrics to analyze the properties of the net-
work that describes the force interactions between the
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particles with force magnitude larger than fc = 1.0〈|f|〉.
Figure 4a,b shows the resulting Betti number dynam-

ics for the experiments. β0 shows a plateau around 100
and subsequently a decrease. Simulations without added
noise (Figure 4c) however, show very different results
with much smaller values of β0: they are essentially inde-
pendent of fNR. This observation is in a sharp contrast
to the findings for more conventional measures, for which
experimental and numerical simulations showed at least
a qualitative agreement. We see a similar difference in
the β1 dynamics in Figure 4b,d: the numerical data do
not seem to asymptote to β1 = 0 in the limit of fNR → 0.
The question is: what causes such a dramatic differ-

ence in the numerical and experimental network prop-
erties? To explain the larger number of the connected
components present in the experimental data we propose
the following mechanism. Consider the part of the con-
tact network at which the particle interactions are a little
below fc. A slight increase of a single interaction in this
region will introduce a new connected component. On
the other hand a slight decrease of single interaction, at
the region where the interactions are just a little above
fc might result in breaking a connected component into
two pieces. Noise will thus affect topological features in
the network. To explore this possibility, we add random
noise to the simulations results. The random noise that
we use is chosen from a flat distribution within the range
of [0, 0.01]N (so with mean of 0.005N) that is consistent
with the expected level of error in the experiments — see
Fig. 3c. Note that after the noise is added to the contact
forces, a small force inbalance may result on the parti-
cles. The non-zero mean of the added noise is motivated
by the fact that we consider here a (positive definite)
norm of the force vector.
After noise addition, the agreement between experi-

mental and simulations improves significantly for both
β0 and β1. Figures 4e shows a monotonically decreas-
ing behavior of β0, much more in line with experimental
data. For β1 we observe quantitative agreement between
experiments and simulations. Again, for both β0 and β1

we see a good collapse when we consider these quantities
as functions of fNR.

IV. CONCLUSIONS

In this paper, we have presented one of the first at-
tempts to directly compare microscopic contact force
level data from experiments and simulations of dense
granular systems. We perform the comparison with met-
rics across the scales that range from micro to meso and
macro. The comparison of micro and macro measures
is mostly satisfactory. In particular, we find for both
experiments and simulations that, when we express the
contact number, pressure, anisotropy, or probability den-
sity function of the normal forces as a function of the
non-rattler fraction, fNR, we obtain collapse onto mas-
ter curves, capturing the dynamics over a wide range of

conditions.
After finding good agreement for the quantities speci-

fied above, it is perhaps surprising to see that the force
network in the experiments and simulations, described by
Betti numbers, are qualitatively different when raw data
from simulations are considered. We argue that contact
force noise can be of significant influence on mesoscopic
network features, and test this by including adding arti-
ficial noise to the simulation results. We find that after
adding noise of small magnitude, the mesoscopic Betti
number dynamics is very similar between experiments
and numerics.
On the one hand, the fact that noise influences the

properties of force networks, but not classical micro and
macro measures listed above is encouraging, since it sug-
gests that the quantities that are commonly observable
in granular experiments should not be influenced by typ-
ical (experimental) noise. On the other hand, the fact
that noise had to be added to simulation results to reach
agreement with experiments suggests that comparison
of the force network properties is more subtle. How-
ever, sensitivity of the force networks’ properties to noise
opens the door towards the use of topological measures to
quantify the experimental noise level and its properties,
and to distinguish intrinsic fluctuations from experimen-
tal noise.
Our future work will consider in detail other measures

quantifying the force networks such as total persistence
and related measures that we have considered in our pre-
vious works [16, 19, 36] to provide even better under-
standing of the properties of force networks and their
connection to macroscopic response of particulate-based
systems.

V. APPENDIX: EXPERIMENTS

We discuss here experimental data obtained in a setup
described in detail elsewhere [22, 23]. We use ∼ 1000
bi-disperse photoelastic particles in a linear shear cell
with articulated bottom. The articulated bottom shear
induces a linear shear profile, suppressing shear bands
and other inhomogeneities. We extract the local parti-
cle stress by either a nonlinear pattern-fitting algorithm
discussed previously [30–32] that yields the complete con-
tact network, particle forces, and stress tensor (e.g. pres-
sure P and anisotropy τ), or via G2, the local squared
intensity gradient of the photoelastic response, averaged
on each particle. G2 is a one-to-one function of P on the
particle level, and provides an easy measure for P . For
small data sets, we use the former approach; for larger
data sets, we use the latter approach to get only P . In
addition to P and τ , we can probe the contact number
dynamics with great accuracy: due to the photoelastic
response of the disks, we can determine contacts with
much more sensitivity than typical distance based met-
rics [12]. We can thus measure the fraction of particles
with n contacts, which we describe with Zn. We thus
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impose.

also have access to the number of non-rattlers fNR, the
particles that are in a force bearing network. Recent
work [31] showed that this was an important microstruc-
tural metric. We probe these structural metrics and force
networks in shear jammed states by shearing the system.
We prepared packings in a stress free initial state, for
0.75 ≤ φ ≤ 0.825. We then quasi-statically shear the
system by 100 small strain steps of 0.27%, up to a total
strain of γ = 27% [22]. For the larger φ’s considered
here, we could not apply the full 27% strain because P
became so large that the layer of disks was unstable to
out-of-plane buckling. If buckling occurs, we terminate
the shear experiment. At each packing fraction, we car-
ried out the same shear experiments five times for repro-
ducibility. Beyond a contact pressure of about 10 N/m
or, equivalently, fNR = 0.95, the compression of the disks
is such that the particles visibly deform, and hence the
force inversion method breaks down. We measure the
quality of force extraction by calculating the total image
difference between the original photoelastic images and
their reconstructed equivalents, where the reconstructed
image is based on the fitted contact forces. We show the
results in Fig. 7. At large fNR we can clearly see that
the image reconstruction becomes significantly different
from the image as taken during the experiment, so we
omit all data for fNR > 0.95.

VI. APPENDIX: NUMERICS

We perform discrete element simulations using a set of
circular disks confined in an initially rectangular domain.
The number of the particles ranges from 910 up to 1050,
depending on the packing fraction and is set exactly to
the number of particles in the experiments. The walls are

FIG. 6. Calibration curve from experiments (o) and curves
using non-linear force model in Equation 1 with different δ.

composed of monodisperse disks. The domain is rectan-
gular, and the length and width of the rectangle are 54
and 27 particle diameters, respectively. System particles
are bidisperse and the ratio of the diameters of the large
and small particles is ≈ 15.9/12.7. The exact positions
and particle radii for all packing fractions and different
realizations are taken from the initial conditions in the
experiments. Particles are soft and interact via normal
and tangential forces during collision, with static friction
and viscous damping.
The force model used in the simulations is non-linear;

normal force between particles i and j is (see [33] for
more details) given by

Fn
i,j = knx

δn− γnx
0.5m̄vn

i,j (1)

ri,j = |ri,j |, ri,j = ri − rj , n = ri,j/ri,j

kn =
2Y

3(1− σ2)
d1−β
ave

where 1+β = δ, vn
i,j is set to the relative normal velocity

and Y and σ are Young’s modulus and Poisson ratio,
respectively. The amount of compression is x = di,j−ri,j ,
where di,j = (di + dj)/2; di and dj are the diameters of
the particles i and j; dave is the average particle diameter.
Here, ri, rj are the vectors pointing from the centers of
particles i, j towards the point of contact.
The exponent δ in the force model is chosen to match

the experimental calibration curve measuring the amount
of compression of the photoelastic disk particle pressed
by a steel plate with a given force. Figure 6 shows the ex-
perimental calibration curve and knx

δ curves for chosen
values of δ with kn (dependent on δ, as specified in the
set of Equations 1) and Y = 3.45 GPa and σ = 0.5 set to
match the experiments. We find that choosing δ = 1.625
yields the least square difference between knx

δ and exper-
imental calibration curve and therefore we use this value
of δ in the force model for particle-particle interaction in
the simulations.
For the simulations, the characteristic length scale is

dave, the average particle mass, m̄, is the mass scale and
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the binary particle collision time τc is the time scale. The
value of τc is set to [33]

τc = α(1 + 0.5β)
1

2+β

(

m̄
3(1− σ2)

2Y d
(1−β)
ave

)
1

2+β

v
−β

2+β

0 (2)

where v0 = 0.01423 ms−1 is a characteristic magnitude of
velocity in the system (shearing speed); prefactor α and
damping coefficient γn is obtained using the coefficient
of restitution, e = 0.5, as reported in [33].
We implement the commonly used Cundall-Strack

model for static friction [26], where a tangential spring
is introduced between particles for each new contact
that forms at time t = t0. Due to the relative motion
of the particles, the spring length, ξ, evolves as ξ =
∫ t

t0
vt
i,j (t′) dt′, where vt

i,j = vi,j − vn
i,j . For long lasting

contacts, ξ may not remain parallel to the current tan-
gential direction defined by t = vt

i,j/|v
t
i,j| (see, e.g,. [34]);

we therefore define the corrected ξ′ = ξ − n(n · ξ) and
introduce the test force

Ft∗ = −ktx
βξ′ − γtx

0.5m̄vt
i,j (3)

where kt = 6/7kn (close to the value used in [35]), γt is
the coefficient of viscous damping in the tangential direc-
tion (with γt = γn). The value of µ = 0.7 is set to the
inter-particle friction from the experiments [24]. To en-
sure that the magnitude of the tangential force remains
below the Coulomb threshold, we constrain the tangen-
tial force to be

Ft = min(µ|Fn|, |Ft∗|)Ft∗/|Ft∗| (4)

and redefine ξ if appropriate. In the force model, we
include interaction with the base. The force between
the particle and the base has a translational and a ro-
tational component and the particle-base friction coeffi-
cient is µb = 0.4, corresponding to the reported experi-
mental value [24]. The magnitude of the deceleration of
the particle in translational direction due to the friction
with base is µb|g| where g is the gravitational accelera-
tion. The rotational deceleration of i-th particle due to
friction with base

|αi| =
4

3
µb

|g|

ri
(5)

is computed by integrating torque arising from friction
with the base and using the moment of inertia of the
disk, I = (mir

2
i )/2, where mi, ri are the values of mass

and radius of the i-th particle, consecutively. For sim-
plicity, we use ri = 1/3dave for both small and large
particles. We integrate Newton’s equations of motion for
both the translation and rotational degrees of freedom
using a 4th order predictor-corrector method with time
step ∆t = 0.02τc. From the initial configuration taken
from the experiments, the system is sheared by moving
the left wall in positive and the right wall in the nega-
tive direction. Shearing speed used in the simulations,

expressed in the units of dave/τc, is v′0 = 2.5 × 10−5.
Relaxation is interjected after each strain step of 0.27%.
The maximum strain amplitude is 27%.
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FIG. 7. Probability distribution function of contact forces for
a force magnitude bin centered at 0.5〈|f|〉 (left) and 1.5〈|f|〉
(right)

f
NR

τ/
P

0 0.5 1

0

0.5

1
0.821

0.826

0.823

0.824

0.825

ρ

log
10
(1-f

NR
)

lo
g
1
0
P

-1.5 -1 -0.5 0

-2

-1

0

1

2

FIG. 8. Pressure, log
10
(P ) and anisotropy, τ/P as a function
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VII. APPENDIX: CONSISTENCY CHECKS

In this section we present consistency checks; specifi-
cally, we focus on the distribution of the forces measured
in both experiments and simulations for a different force
bin than in the main body of the paper. Then we show
that the particle-particle and particle-base friction is es-
sential if we want to achieve a quantitative agreement
between simulations and experiments.
In Figure 3d we show the probability distribution func-

tion of contact forces for a force magnitude bin of 1.0〈|f|〉.
In Figure 7 we show that the fNR collapse and consis-
tency between experimental and numerical data is re-
tained for the force bin around 0.5〈|f|〉 (a) and 1.5〈|f|〉
(b). Thus we conclude that our results comparing force
distribution is not sensitive to the choice of the bin.
To demonstrate the importance of having a non-zero

friction coefficient, we consider the dynamics of pressure
and anisotropy for a few single runs with µ = 0.0 and
µb = 0.0 at various different packing fractions around
the jamming point as observed in our protocol. Figure 8
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shows P and τ/P as a function of fNR for frictionless
systems and should be compared to Fig. 3a,b Evidently,
our numerical protocol does not produce the same fNR, P
dynamics as the experiments, even though the pressure
and anisotropy values remain within a similar range in
jammed systems (especially for large fNR).
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