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The transport of micron-size particles such as bacteria, cells, or synthetic lipid vesicles through
porous spaces is a process relevant to drug delivery, separation systems, or sensors, to cite a few
examples. Often, the motion of these particles depends on their ability to squeeze through small
constrictions, making their capacity to deform an important factor for their permeation. However,
it is still unclear how the mechanical behavior of these particles affects collective transport through
porous networks. To address this issue, we present a method to reconcile the pore-scale mechanics
of the particles with the Darcy scale to understand the motion of a deformable particle through
a porous network. We first show that particle transport is governed by a mechanical instability
occurring at the pore scale which leads to a binary permeation response on each pore. Then,
using the principles of directed bond percolation, we are able to link this microscopic behavior to
the probability of permeating through a random porous network. We show that this instability,
together with network uniformity, are key to understanding the nonlinear permeation of particles at
a given pressure gradient. The results are then summarized by a phase diagram that predicts three
distinct permeation regimes based on particle properties and the randomness of the pore network.
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I. INTRODUCTION

The transport and diffusion of soft, colloidal particles
through porous media is at the heart of important pro-
cesses in medicine [1, 2] and biology [3] but also in areas
such as cosmetics, food, or oil recovery [4]. These applica-
tions indeed rely on multiphase fluids that contain a myr-
iad of small deformable particles (microbubbles, droplets,
cells, bacteria, or viruses) that often need to permeate via
physical barriers. For instance, the transport of bacteria
through filtration membranes have shown a correlation
between the permeation outcome and the size, shape,
and deformability of the bacterial wall [5, 6]. Particle
deformability has also been found to be a major player
in cell sorting using microfluidics [7], or in the perme-
ation of nanoparticles through the openings in different
organs like the spleen [8]. However, while the differentia-
tion of particles based on size [9], shape [10], or even pore
characteristics [11, 12] has been well studied, the role of
their deformability is still poorly understood. The chal-
lenge in answering this question is the existence of two
disparate length-scales: the macroscale (or Darcy scale)
and microscale (or pore scale), both of which play dis-
tinct, but yet critical roles in particle transport. At the
pore scale, models have been developed to elucidate the
relation between particle mechanics [13–17] and motion
[18–22] for different types of particles and flow conditions.
Such relations typically characterize the entry of particle
with various size, shape, structure, and adhesion prop-
erties [23–29] in narrow constrictions such as the nozzle
of micropipettes. By contrast, Darcy scale models have
concentrated on the effect of the porous medium (i.e., the
pore network topology) on overall particle transport. In
this context, Yiotis et al. have developed a Lattice Boltz-
mann approach to study the coalescence and break-up

dynamics of multi-phase flows in porous media [30], while
Foucard et al. used a finite element approach [17, 31] to
study the effect of the network geometry on soft particle
transport [32]. The above models are usually computa-
tionally expensive and are thus limited to low particle
numbers and small domains; this has precluded a more
fundamental understanding of the problem at hand. Rec-
ognizing these limitations, alternative approaches based
on statistical mechanics have been introduced to study
transport in complex lattices [33, 34]. The concept of
percolation theory has proven to be critical in exploring
a variety of situations involving the transport and spread-
ing of multiphase fluids in porous media [35–39], the clog-
ging mechanisms of rigid particles [40], or the spreading
of microorganisms in bioclogging [41] and bioremediation
[42]. Despite this progress, there is not yet a theory that
connects the pore-scale models on soft particles to the
Darcy-scale models (involving network statistics).

The present work addresses this need by introduc-
ing a theoretical framework that can help understand
and characterize the dynamics of a single particle trav-
eling through a random medium under an overall pres-
sure gradient. We particularly focus on situations where
the particles are larger than the average pore opening.
In this case, particle deformability becomes an essen-
tial component of their transport by allowing them to
squeeze through pore constrictions under sufficient pres-
sure forces [15, 43]. This mechanism has been used, for
instance, for the construction of bubble-based logical cir-
cuits [44]. The objective of this study is to better under-
stand how these concepts affect the nonlinear transport
of droplets [45] in random networks. We also aim to char-
acterize the role of droplet properties and network geom-
etry in this process. This will be done in three steps. In
the next section, we construct the transport model and
highlight its connection to the mechanics of a soft par-
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FIG. 1. (a) Section of a PDMS microfluidic channel with a solution of hexadecane with two dispersed water droplets coated
with SPAN-80. The system is subjected to an increasing pressure drop ∆P from top to bottom which eventually (∆Pc) pushes
the smaller particle out of the system. (b) In the model of a porous medium, each pore is idealized as a connection of three
axisymmetric sections in series whose direction is determined by the position of the obstacles. The external chambers are then
assigned a permeability κ and the central one to a lower permeability κc that represents the narrowing of the pore throat. (c) The
semianalytical solution [29] for the critical pressure (δp∗c = s

2γ
δpc) versus the relative radius of the particle (R∗ = R/s) is plotted

for two toroidal pores (b∗ = 2, b∗ = 10). The results are compared to the approximation of Eq. (1) at a = 1.068 (solid line). The
inset shows an example of a signature curve for a non-adhesive particle with radius R∗ = 1.5 using a 3d approximation (solid
line) [29], and a 2d one (dashed line) [43]. In it, the normalized equilibrium pressure drop (∆P ) is plotted against the position
of the center of mass of the vesicle inside the pore (zc.m.)

ticle permeating through a narrow pore. In section III,
the model is used in conjunction with percolation the-
ory to predict particle transport in various conditions.
In section IV, we finally discuss the significance of these
results and their connection to crowding and jamming in
complex networks.

II. MODEL FORMULATION

We are interested here in characterizing the transport
of deformable particles in a porous medium whose aver-
age pore size (2s0) is smaller than the average particle
diameter (2R). For the sake of simplicity, the particles
are modeled here as immiscible fluid droplets with sur-
face tension γ and no adhesion energy. However, the
same analysis can be extended to particles with com-
plex membranes or even elastic bodies. Such a situation
was reproduced in the laboratory by fabricating a PDMS
microfluidic channel in which we pushed a solution of
hexadecane with dispersed water droplets coated with
SPAN-80 (Fig. 1a). In this experiment, the channel con-
sists of an array of micropillars separated by a constant
distance 2s0, and the solution was pushed using a global
pressure drop ∆P . After successfully trapping droplets
inside the channel, we made the following observations:
for a small pressure drop, the droplets did not exhibit
motion despite the surrounding fluid flow. However, as
∆P reached a critical value, the smaller droplet suddenly
and rapidly permeated through the pillar network. The
larger one eventually exhibited a similar behavior when

subjected to a larger pressure. Although real porous net-
works are typically more random, these simple observa-
tions indicate that the permeation process is extremely
fast compared to pore clogging, which implies that the
permeation of soft colloids is a nonlinear process domi-
nated by the latter. In other words, the model needs to be
accurate regarding the critical pressure at which a parti-
cle permeates a pore, but it may remain approximate re-
garding the dynamics of a particle between constrictions.
Hence, we constructed a numerical model that considers
the above system at two distinct scales: (a) at the pore-
scale, we will use an accurate solution to understand the
critical pressure drop at which a particle is allowed to per-
meate. (b) At the Darcy scale, the porous network will be
approximated as a network of long, cylindrical channels
with a central constriction (Fig. 1a-b) where the flow will
be resolved using the Hagen-Poiseuille solution. Our aim
will be to quantify the effect of the porous medium ge-
ometry and topology on particle transport at both length
scales.

The pore-scale physics have traditionally been inves-
tigated in the context of micropipette aspiration [46],
microfluidics [47], and membrane filtration [48] among
others. These studies showed that a deformable particle
would remain trapped by a constriction unlesss the pore-
pressure (δp); i.e., the pressure difference across the pore,
exceeded a critical pressure (δpc) [15]. For pressures be-
low the threshold (δp ≤ δpc), the particles block the pore
but do not permeate. For pressures above the threshold
(δp > δpc), the particle becomes unstable and crosses
the pore. We have recently characterized this behavior
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(b)          σ = 0.1

(c)          σ = 0.2 (d)          σ = 0.3

(a)          σ = 0

FIG. 2. Example of four networks at different values of the
randomness parameter σ = 0, 0.1, 0.2 and 0.4. The networks
are created in a domain Lx = Ly = [−1, 1] for an average
value s0 = 0.08 and b/s0 = 2. The lines represent all the pores
in the system regardless of their pressure or open/closed state.

via a pressure-displacement curve shown in the inset of
Fig. 1c, which allows the evaluation of the critical pres-
sure in terms of its size, surface tension, adhesion, and
pore geometry [29]. We noticed that normalized solu-
tions for different pore shapes, or even 2d vs 3d models
(see inset in Fig. 1c), follow the same trends. Hence, for
the sake of clarity, we concentrate here on toroidal, ax-
isymmetric pores (Fig. 1c) with internal constriction 2s.
In this scenario, δpc scales linearly with the factor 2γ/s
and its value varies with the relative size of the particles
(R∗ = R/s), and in less measure, with the size of the pore
(b∗ = b/s). We found that a good estimation of the rela-
tionship between the critical pressure and the normalized
particle radius is provided by:

δpc =

{
0 if R∗ ≤ a

2γ
s

(
1− a

R∗

)
if R∗ > a

(1)

where a is a constant depending on the pore shape and
size (b). In the rest of this article, we considered toroidal
pores with b∗ = 2 for which we obtained a = 1.068.

Let us now explore how this pore-scale response af-
fects the transport of particles at the Darcy scale. For
this, we first need to characterize the pressure distribu-
tion and fluid flow in a porous medium modeled as a
network of constricted pipes [49, 50]. A single pore is
regarded here as the connection of three axisymmetric
sections connected in series: two wider chambers with a
permeability κ and a central, narrower one with a per-
meability κc representing the pore throat. For throat di-
ameters on the order of microns, flows are in the Stokes

regime so that the fluid flux q in a section can be deter-
mined as q = −κ[p] where [p] is the pressure difference
across the chamber. Using the Hagen-Poiseuille solution,

the permeability can further be found as κ = πr4

8µL where r

corresponds to the radius of the section, µ is the viscosity
of the fluid and L is the length of the chamber. Note that
these assumptions would break down for larger Reynolds
numbers (i.e. larger pores or small viscosities).

Such a network of pipes was constructed in a rectangu-
lar, two-dimensional domain Ω = 2Lx × 2Ly where pores
are generated with a periodic Voronoi diagram based on
the center of randomly located circular obstacles (Fig.
2). The channel constrictions are then determined based
on the space between obstacles. Hence, the network ge-
ometry is characterized by three main parameters: (i)
the size b of the obstacles, (ii) the average distance 2s0

between them, and (iii) the randomness σ of their loca-
tion (see Appendix A for details on obstacle collocation).
As shown in Fig. 2, σ is a measure of the disturbance
of the obstacle location from that of a perfect lattice
arrangement. We found that as long as σ ≤ 0.3 the
obstacles do not excessively overlap, and the pore size
follows a truncated normal distribution fs ∼ N(s, σ).
This is consistent with the fact that most porous net-
works are characterized by the distributions of their pores
throats fs, which are commonly taken as lognormal or
truncated normal distributions [51]. We, therefore, limit
ourselves to this range for the remainder of the paper.
The network is then solved considering the pressure at
each node in the vector p, and determining its value
by enforcing the local balance of mass on each node
(
∑
q = 0). This leads to the linear system Kp = 0,

where K is the node conductance matrix [52]. To ac-
count for the fact that we are only modeling a portion of a
larger porous media, we solved the system using periodic
boundary conditions enforcing equal flux on each bound-
ary (qleft = qright and qtop = qbottom) and a vertical pres-
sure drop ∆P (pleft = pright and pbottom = ptop + ∆P ).

Let us now consider the motion of a single particle
within this network. In this context, we recognize that
the particle’s effect is twofold: (a) if the particle is in
a constriction whose pressure drop [p] is below its criti-
cal value, it remains immobile, and the pore permeabil-
ity is significantly reduced. In this study, we assume
that the permeability vanishes (κc = 0). Hence, the
trapped particle divides the pore into two chambers of
constant pressure and zero flux whose values are deter-
mined by solving the previous linear system. (b) If the
local pressure drop drop [p] exceeds its critical value; the
particle will cross the pore. In other words, there is a
two-way coupling between fluid and particle transport.
When the particle is trapped, it blocks a single pore and
locally redistributes flow and pressures. This redistribu-
tion may feed-back onto the particle and either accelerate
or postpone its permeation depending on the local net-
work topology. Hence, we will define the pore pressure
(pp) on channel i as the pressure drop [p] obtained by
solving the linear system with κic = 0. This corresponds
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FIG. 3. (a) Scheme of the pore classification according to their geometry (wide (Oc), narrow (On), and blocked (Ob)) and their
status (opened (π) or closed (1 − π)). These two classifications are related via the pressure drop ∆P , which determines the
proportion of narrow, open pores G. (b) Evolution of the probability π as a function of the pressure. The three insets show a
pore network at different pressure drops in which the channels where cp > pp (regardless of their connectivity) are depicted with
black lines.

to the effective pressure applied to a trapped particle.
Finally, let us introduce the following normalization

on the pressure gradient ∇P ∗ = ∇P (L2
y/γ) which will

allow us to concentrate on the effects of particle size (R∗)
and network uniformity (σ). Using this normalization,
we further performed a convergence analysis to deter-
mine the optimal network size to avoid boundary effects.
We observed that for a square domain and parameter
s∗0 = s0/Ly ≤ 0.015, the distributions for both the pore
size and nodal pressures converged with an error below
1%, so we will stay in this range for the remainder of the
paper.

III. NETWORK PERMEABILITY AND
PERCOLATION THEORY

To determine whether a particle can percolate through
the pore network, one needs first to estimate its chances
of passing through a series of constrictions whose pres-
sure drop δp is larger than the critical value δpc. For this,
let us split the pore population into three categories (Fig.
3): (i) wide pores (with number fraction Ow) are char-
acterized by a throat size that is larger than the particle
(i.e., δpc = 0). (ii) Narrow pores (with number fraction
On), whose size is smaller than the particles (δpc > 0),
and (iii) blocked pores (with number fraction Ob) that
can never be crossed because the obstacles are touching
or overlapping (s < 0). This information can be found
via the knowledge of the pore throat distribution fs as:

Ow = 1− P (s ≤ R) and Ob = P (s ≤ 0) (2)

where P is the cumulative distribution of fs. Because
these pores span the entire pore population, the num-
ber fractions satisfy the condition Ow + On + Ob = 1.
To relate these fractions to particle transport, we further
subdivide the population of narrow pores by their open
(particles permeate through them) and closed (particles
do not permeate through them) fractions G and 1 − G,
respectively. It is clear here that the fraction G = G(∆P )
is dependent on pressure gradient, i.e., for low pressure
gradient G → 0, while when the pressure is large, all
pores are open and G → 1. Based on this classification,
the total fraction of open (π) and closed (1−π) are writ-
ten, respectively as:

π = Ow +OnG (3a)

1− π = Ob + (1−G)On. (3b)

Note that, both G and π are monotonically increasing
functions of the pressure. Indeed, for pressures close to
zero (G → 0) the particle can only permeate through
those spaces that require no deformation, π = Ow.
As this pressure increases, more constrictions become
permeable (not necessarily connected), until the total
amount of open pores reaches its maximum at π = 1−Ob
(Fig. 3).

Interestingly, once the proportion (π) of open pores
is known, it is possible to estimate particle permeation
through the porous medium by determining the proba-
bility θ of finding an open path that connects both ends
of the network. This quantity might be estimated with
directed bond percolation via the power law:



5

0 2 0 0
0 . 0 0 0

0 . 0 1 8

0 2 0 0
0 . 0 0 0

0 . 0 7 2

( b )( a )

f c

C r i t i c a l  p r e s s u r e ,  δp c *

 σ = 0.1
 σ = 0.2
 σ = 0.3

0

0 . 0 1 8

R * = 1 . 5

R * = 3
f c

R * = 1

0 2 0 0
0

0 . 0 2

γ=2γ0

γ=γ0

γ=γ0/2

f c

δp c *

f p

P o r e  p r e s s u r e ,  δp *

 ∇ P *  =  1 0 0 0
 ∇ P *  =  2 0 0 0
 ∇ P *  =  3 0 0 0

0

2 0

 σ = 0.1
 σ = 0.2
 σ = 0.3

µ p

0 1 0 0 0
0

2 0  σ = 0.1
 σ = 0.2
 σ = 0.3σ p

∆P *

FIG. 4. (a) Density distribution of the critical pressure on three different networks with σ = 0.1, 0.2 and 0.3. The top inset
shows the same curves for three different values of the relative radius R∗, and the bottom one is the same problem but for three
different values of the surface tension, where we took γ0 = 1. (b) Density distribution of the pore pressure for three different
values of the relative pressure gradient applied to the system. The two insets show the evolution of the mean and standard
deviation of the pore pressure in three different networks (σ = 0.1− 0.3).

θ(∇P )

{
0 if π < πc

∼ (π(∇P )− πc)β if π > πc
, (4)

where πc and β are constants that only depend on net-
work topology and dimension. On the one hand, the
exponent β is a universal constant that only varies with
the spatial dimension of the problem [53]. For the 2-
dimensional lattices considered in this article this value
is estimated at β = 0.277 [54]. On the other hand, πc
corresponds to the percolation threshold which separates
an absorbing (i.e., no particles permeating) from a per-
colating state. This value is also completely independent
of the physics discussed here and depends only on the
dimension of the problem and the pore lattice [55].

From (3) and (4), it is clear that our understanding of
particle permeation eventually relies on finding the prob-
ability functionG(∆P ), interpreted here as the likelihood
that δp > δpc for any pore in the network. To this end,
if we introduce the probability distribution f∩ of finding
a pore with a given values of δp and δpc, the fraction G
is then found as the integral:

G =

∫ ∞
0

(∫ ∞
δpc

f∩(δpc, δp)d(δp)

)
d(δpc). (5)

To determine the distribution f∩, we note that the calcu-
lation of the pore pressure (δp) does not depend on the
pore-particle properties; i.e., it is only a function of the
network topology. In contrast, the critical permeation
pressure (δpc) is exclusively a function of the pore-scale
characteristics (size and shape of the pore) and does not
depend on the pore location within the network. As a
consequence, the variables δpc and δp can be treated as

independent, and the probability density f∩ becomes the
product of two simple probability functions:

f∩ = fc · fp, (6)

where fc and fp denote, respectively, the probability den-
sity function of δpc and δp in narrow pores. Let us next
determine their expressions in terms of network and par-
ticle properties.
a. Probability density function of the critical

pressure (δpc) Since the probability distribution fs of
the pore throats is known form the network geometry, it
is possible to find the distribution of any continuous and
differentiable function that depends on fs. In particular,
using the relation δpc = δpc(s) established in Eq. (1), we
can write the actual density distribution of the critical
pressure in narrow pores as (Appendix B):

fc =
s2

2γ

fs
On

. (7)

where s(δpc) if found by inverting Eq. (1). Fig. 4a shows
the distribution of the critical pressure on three networks
characterized by different values of sigma (σ = 0.1, 0.2
and 0.3). As expected, in uniform networks (small σ),
the distribution is concentrated around the average value
δpc(s0). This distribution, however, tends to spread out
as the network loses regularity. We also note that the
peak of the distribution shifts to lower pressure values,
which is a consequence of finding more wide pores in the
network. The effects of surface tension and the relative
radius of the particles are further shown in the insets of
Fig. 4. We see there that those two parameters exhibit
similar trends: a lower surface tension γ or small particle
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size R∗ improve particle permeation by lowering their
critical pressure δpc.
b. Probability density function of the pore

pressure (δp) This distribution was found by fitting
the results given by numerical simulations. More specifi-
cally, for a given macroscopic pressure drop, the value of
δp on each pore was determined by setting its permeabil-
ity to zero to simulate a blocked particle in the pore. This
process was then repeated on a large number of network
models following the same statistics until the histograms
converged with an error below 1%. The results showed
that for values of σ < 0.3 the pore pressure in narrow
pores is well approximated by a normal distribution as:

fp ∼ N(µp;σp) (8)

where µp and σp are, respectively, the mean and standard
deviation. Appendix C, shows the details of the calcu-
lation as well as the obtained values of µp and σp for
each value of σ. Additionally, since the solution comes
from a linear system, this distribution will also scale lin-
early with the applied pressure; i.e., µp = ∇P ∗µ1

p and

σp = ∇P ∗σ1
p, where µ1

p and σ1
p correspond to the solu-

tion at ∇P ∗ = 1. As a result, the function fp translates
to higher values and spreads out as the macroscopic pres-
sure gradient ∇P increases (Fig. 4b). We further found
that while the mean pore pressure µp is little sensitive to
network uniformity σ (insets in Fig. 4b), the standard
deviation σp does increase with σ.

By introducing expressions (7) and (8) into (3a) and
(5), it is now possible to express how the proportion of
open pores (π) grows with applied pressure drop ∆P .
Furthermore, it is possible to understand the effect of
geometrical parameters such as pore shape, particle size,
and surface tension via the functions fc and fp. However,
since there is no simple analytical solution for the inte-
gral in (5) and the obtained distributions, we used nu-
merical integration (Appendix D) to obtain the results
shown in Fig. 5 for different scenarios. These results
were further verified by computing the actual value of π
from direct numerical simulations where we π was deter-
mined as the average number of open pores (δpc > δp)
divided by the total number of pores. The results plot-
ted in Fig. 5 correspond to a total number of networks
such that the histograms converged with an error be-
low 1%. We observe an excellent agreement between the
numerical results and our predictions, with a maximum
relative error of 1.2% between the analytical and numer-
ical predictions. The results show how the amount of
open pores at zero pressure (Ow) decrease with particle
size and network uniformity (low σ). A similar obser-
vation can be made for blocked pores (Ob) as it is less
likely to find them in regular networks or for large par-
ticles. We further see that the proportion of open pores
increases nonlinearly with the pressure gradient with a
steeper increase around δpc(s0), (Fig. 5b), the pressure
at which approximately half the narrow pores open. As
the network becomes more regular, both the distribution
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FIG. 5. Evolution of the probability π with the applied pressure
on the system. (a) The probability is plotted for three different
particles with radii R∗ = 1, 1.5 and 3 and a network with
parameter σ = 0.2. (b) The same curves are plotted here for
four different networks with values of σ = 0, 0.1, 0.2, 0, 3 and a
radius R∗ = 1.5. The vertical bars in both graphics correspond
to the numerical histograms of the network for two different
values of σ = 0.1 and 0.2 and a particle of radius R∗ = 1.5.

δpc and δp become more uniform and the transition be-
tween closed and open pores occurs at a narrower region
of the applied pressure. As expected, when σ = 0, the
distribution becomes a perfect step function.

To close this section, we need to determine the value
of πc. For this, we defined θ as the fraction of top nodes
connected (via open pores) to the bottom edge at a given
pressure. Its value was then determined by simulating
several random scenarions until the values converged. We
noticed that a minimum domain of Ly = 3Lx was needed
to avoid boundary effects in the computation of θ, Fig.
6a. Knowing the functions of π(∆P ) and θ(∆P ) we can
construct the percolation curve (θ − π) and determine πc
by fitting θ = (π − πc)0.277. We found that πc varies non-
linearly from 0.64 to approximately 0.6 when σ = 0.3,
which is consistent with values reported in the litera-
ture (πc = 0.6447) for square lattices in diagonal direc-
tion [56].

IV. RESULTS AND DISCUSSION

We are now in a position to explore how the prob-
ability θ relates to the overall permeability of particles
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obtained percolation network at π < πc, π = πc and π > πc.

through the network. In Fig. 6 we plot the evolution of
this probability as a function of the applied pressure and
for different variations of the particle size and network
randomness. Two main observations can be drawn from
these results.

(i) There is a critical pressure ∇Pc analogous to πc
below which there is no droplet permeation. This pres-
sure increases with the particle size and network unifor-
mity. The effect of droplet size is expected since larger
particles typically require more pressure to permeate the
same pore (Fig. 1c). The effect of network uniformity
is, however, less intuitive and may be interpreted by
the fact that non-uniform networks (larger σ), have a
larger chance of creating a wider path (with lower ∇Pc).
These networks also possess a larger number of narrower
throats; this means that a higher pressure is required
to converge to θ = 1 − Ob. Furthermore, the numeri-
cal curves exhibit a small tail around ∆Pc which induces
imprecisions in the numerical evaluation of ∆Pc. This
is a consequence of the finite size of our system, and
it is known to disappear as the domain becomes infi-
nite.[57, 58]

(ii) The behavior predicted by these curves is di-
vided into three stages. The network is (A) droplet-
impermeable below ∇Pc, i.e., only the fluid is able to
permeate. Once this value is reached, there is a sharp
increment around (∇P = ∇Pc) where the network un-
dergoes a (B) weakly permeable transition as θ increases
rapidly. In this regime, the number of available paths
reduces as the droplet moves through the network (Fig.

6c). Finally, the network becomes strongly permeable
(C) when the majority of pores are open. In this regime,
the probability θ keeps increasing with pressure, but this
occurs at a much lower rate. The size of the clusters ex-
hibited in each of these three regions is also given by uni-
versal exponents and the critical pressure. Hence, given
the probability p, their values are only a function of each
lattice type [53].

Interestingly, when the applied pressure is relatively
low, the trajectory taken by the droplet eventually tends
to converge to a single path (regime A and B, Fig. 6c).
To understand this, we first note that the trajectory cho-
sen by a droplet at a junction between pores [59, 60]
is driven by the direction of maximum fluid velocity.
Consequently, particles tend to be attracted to series
of connected pores in which the fluid velocity is maxi-
mum, which is analogous to the enhanced fluid flux when
a crack is present in fractured porous media [61, 62].
This implies that soft particles in a dilute system are
inevitably attracted and concentrate in a specific region
within the network, while other regions remain totally
unexplored. This effect, however, disappears for larger
pressures since particles are allowed to permeate more
pores.

To better understand the distinct roles of particles and
network on permeation, we show in Fig. 7a a phase dia-
gram showing the three regions (A,B,C) in the parameter
space (R∗, σ). In this diagram, the boundary between re-
gions A and B is given by the condition∇P = ∇Pc, while
the boundary between B and C is chosen as the value of
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FIG. 7. (a) Phase diagram of the three different permeating stages of the porous network as a function of the relative particle
radius R∗, network uniformity σ and applied pressure ∇P ∗. Slices of the phase diagram at the values of σ = 0.2 (b) and
R∗ = 1.5 (c) showing the variation of the minimum pressure (or ∇P ∗

c ) and the semipermeable/permeable distinction.

∇P when 50% of narrow pores are open (corresponding
to a global probability θ ≈ 0.7). The diagram shows that
weakly permeable regime (B) only exists as the network
becomes non-uniform. Indeed, highly uniform networks
tend to have an “all or nothing” response in which all
pores open at the same critical pressure, Fig. 6b. This
response smoothens out as lattice disorder is introduced.
A similar effect is observed as the relative size of the
particle is varied; smaller particles tend to percolate at
a smaller range of pressures reducing the range of the
weakly permeable regime.

V. CONCLUSIONS

In summary, we presented a theoretical framework
based on directed percolation in order to describe the
permeation of soft particles in random pore networks.
Focusing on a dilute concentration of particles whose size
is comparable to that of the pores, we found that perme-
ation is a highly nonlinear function of applied pressure.
The model predicts the existence of three regimes of per-
meation: (A) when the applied pressure is smaller than a
critical value, particles are unable to permeate the pores
and remain jammed in the network. (B) When the ap-
plied pressure exceeds this critical value, the system en-
ters a so-called weakly permeable regime, during which
particles tend to converge to predefined trajectories and
thus only explore limited regions of the network. (C)
When the applied pressure is large, particles are able to
permeate through most of the pores in the network, and
a strongly permeable regime is observed. Importantly,
our model shows how these behaviors vary in terms of

particle size, properties, and network geometry. A phase
diagram was constructed to visualize the effect of these
physical parameters on the systems response. This may
provide a useful tool with which one can tune the opera-
tional pressure ∆P applied on a membrane or microflu-
idic device in order to meet a particular objective such
as permeation, separation or trapping.

On a final note, while this work concentrated on sim-
ple droplets (characterized by their size and surface ten-
sion) and pore shapes (toroidal), it is possible to include
other important physics related to varying pore shape,
size, or even pore-droplet adhesion. This can be done
by modifying the critical pressure defined in Eq. (1)
based on previous studies [29]. Furthermore, the role
of particle kinetics was not explored, but we expect it to
play a large role in subsequent jamming at higher con-
centrations. Future models may, therefore, include the
time necessary to permeate a pore, which can be deter-
mined via time-dependent pore-scale models of particle
permeation [15, 20, 22]. Viscoelastic models of particle
deformation should also be considered in the future [63].
We further expect the systems behavior to deviate from
our predictions when the droplet concentration increases
above the dilute regime. In this situation, the presence of
multiple droplets will tend to drastically change the pres-
sure distribution on the network and probably lower the
critical pressure for permeation as predicted in a previous
study [43]. Further research effort will, therefore, be nec-
essary to fundamentally understand the motion of soft
particles or macromolecules in porous media under the
action of driving pressure, self-propulsion [64] and more.
Applications in particle separation, filtration, sorting as
well as our ability to control macromolecule transport
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in polymers for tissue engineering [65–67] will critically
depend on this understanding.
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APPENDIX A: NETWORK CONSTRUCTION

We describe here the general approach taken to con-
struct a random network of pores inside a square domain
2Lx×2Ly. We start by locating a diamond grid of equally
spaced, circular obstacles of radius b, where the space left
between two obstacles is 2s0, see case σ = 0 in Fig. 2.
The randomness is then introduced by moving the cen-
ter of each obstacle (xi) a random distance and direction
dx = [dx, dy], where dx and dy are taken from a ran-
dom normal distribution N(0, σs). For convenience, we
took σs = 2s0σ, where σ is a parameter that allows us
to control the level of randomness in the system. The
final position of the pores is obtained by generating a
Voronoi diagram based on the resulting location of the
obstacles’ center. The throat size of each pore is then
assigned as the minimum distance between the edges of
the circles. This method, however, introduces a lot of
small-sized pores which simply connect different nodes
at the junctions but which have no constriction, they are
part Ow. Hence, we only refer as pores to those connec-
tions in the system whose length is at least as long as the
obstacle (2b). Using these rules, we observed that the
resulting pore throats follow a normal distribution such
that:

s ∼ N(s0, σs0) (9)

where s0 and σs0 are the mean and standard deviation,
respectively.

APPENDIX B: CRITICAL PRESSURE
DISTRIBUTION

The critical pressure is a magnitude that can only be
defined in narrow pores (0 < s < R). Additionally, we
know from Eq. (1) that δpc is related to s by the following
expression:

s =
2γR

δpcR+ 2γa
, (10)

so we can redefine the the distribution of cp as a condi-
tional probability density function fc = fc(δpc|0 < s <

R); i.e., the probability density of δpc constrained to the
narrow pores. Since the distribution of pore throats fs
is known, we can use Eq. (10) to derive the distribu-
tion of fc. For this, we start by building the cumulative
distribution of the critical pressure (Pc) and write:

Pc = 1− P (δpc > X|0 < s < R), (11)

where X is any given value of δpc. Using the Bayes the-
orem, we can rewrite this function as:

Pc = 1− P (0 < s < R|δpc > X)P (δpc > X)

P (0 < s < R)
. (12)

where the probability P (0 < s < R|δpc > X) is equal
to 1 since constrictions with non-zero critical pressure
will naturally be narrow pores. The bottom probability
P (0 < s < R) simply corresponds to the fraction of nar-
row pores, or On. Hence, we can rewrite the value of Pc
as:

Pc = 1− P (δpc > X)

On
. (13)

From equation (10) we can directly establish that the
probability P (δpc > X) is equivalent to P (0 < s <
s(X)), which is found using the cumulative density dis-
tribution of the pore size. Based on that we can write:

Pc = 1− P (s < s(X))−Ob
On

. (14)

Finally, the probability density can be found by taking
the derivative as:

fc =
∂Pc
∂(δpc)

= − fs
On

∂s

∂(δpc)
=

=
2γR2

(δpcR+ 2γa)

fs
On

=
s2

2γ

fs
On

which implies that the distribution of the critical pres-
sure given a particle size can be directly found from the
distribution of pore throats.

APPENDIX C: PORE PRESSURE
DISTRIBUTION

Our simulations showed that the distribution of the
pore pressure was strongly correlated with the pore
throat distribution. To determine this relationship in
a single network, we first computed the pore pressure
(δp) for each channel at a pressure gradient ∆P ∗ = 1.
Then, we constructed the corresponding frequency his-
togram based on the obtained results. This process was
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repeated for a large number of networks until the average
of the histograms converged with an error below 1%. We
observed that for the range 0 < σ < 0.3, the normal-
ized histogram of the pore pressure is well approximated
by a truncated normal distribution. The parameters of
this normal were found next using least square fitting.
The following table summarizes the obtained values for
a normalized network with s∗ = 0.015, b∗ = 0.015 and
Ly = 3Lx:

σ µ1
p σ1

p

0 0.0208 0

0.1 0.0245 0.0087

0.2 0.0276 0.0159

0.3 0.0265 0.0205

APPENDIX D: PROBABILITY OF CROSSING A
NARROW PORE (G)

The probability of crossing a single pore depends on
the probability distribution of both the critical pressure
and the pore pressure. Hence, this result might vary
among problems. In this work, we obtained two normal
distributions, which can be introduced here to obtain:

G =

∫ ∞
0

s2e
− (s̄−s)2

2σ2
s

2γOn
√

2πσs

∫ ∞
cp

e
− (δ̄p−δp)2

2σ2
p

√
2πσp

d(δp)

 d(δpc)(15)

Since our system is originally defined based on the dis-
tribution of pore sizes, we can integrate the second part
and introduce a change of variable as defined in Eq. (10).
Hence, we obtain an integral on the pore distribution as:

G =

∫ R/a
0

(
1− erf

(
δpc(s)−δ̄p
σp
√

2

))
e
− (s̄−s)2

2σ2
s ds

On
√

2πσs
(16)

This equation can be further simplified to obtain the fol-
lowing expression:

G = A−B
∫ R/a

0

erf

(
C

s
−D

)
e−

(s̄−s)2

2σ2 ds (17)

where

A = − 1

4On
Erf

(
R/a+ s̄√

2σ

)
B =

1

2On
√

2πσ2

C =
2γ√
2σp

D = − 2

γa
R
√

2σp −
µp
σp

which was integrated numerically.
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