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Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell
depends on its history of excitation. Memory can originate from slow recovery of membrane ion
channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium
ion concentration accumulation. Here we examine the effects of memory on excitation dynamics
in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization
reserve, with memory from two different sources: slow recovery of a potassium ion channel and
slow accumulation of the intracellular calcium ion concentration. We first carry out computer
simulations of action potential models described by differential equations to demonstrate complex
excitation dynamics, such as chaos. We then develop novel iterated map models that incorporate
memory, which accurately capture the complex excitation dynamics and bifurcations of the action
potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal
the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that
the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which
promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory
converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations
leading to high-periodicity and chaos.

PACS numbers: 05.45.-a, 87.15.A-, 87.19.Hh

I. INTRODUCTION

Dynamical instabilities in the heart can promote ar-
rhythmias such as ventricular tachycardia and fibrillation
(VT/VF)[1, 2], which are the leading causes of sudden
cardiac death [3]. Different mechanisms of dynamical in-
stabilities have been demonstrated at both single-cell and
tissue scales [4–6]. In single cells, nonlinear dynamics in-
cluding period-doubling bifurcations leading to period-2
(called alternans in cardiac electrophysiology) and other
states of higher periodicity, as well as quasiperiodicity
and chaos have been widely demonstrated [7–13]. These
dynamics originate from the nonlinearity in membrane
voltage, intracellular calcium (Ca2+) cycling, or coupling
of the two [6, 14].
Low-dimensional iterated maps have been widely used

to understand the dynamical mechanisms of complex car-
diac excitations. The earliest and most widely used iter-
ated map model was based on action potential (AP) du-
ration (APD) restitution properties of cardiac myocytes
[7]. APD restitution is a property well-known in cardi-
ology and widely measured in experiments [15–19]. One
type of APD restitution is called the S1S2 APD restitu-
tion (see Fig. 1(a)), in which the cell is periodically paced
(S1) to a steady state and then a premature or delayed
stimulus (S2) is applied to obtain the dependence of APD
on the preceding diastolic interval (DI). The S1S2 APD
restitution can be mathematically defined as

an+1 = f(dn), (1)
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where an+1 is the APD of the (n + 1)st beat and dn
is the DI of the nth beat (immediately preceding an+1).
Under periodic pacing, the APD and DI of the same beat
satisfy the relation an + dn = mT , and so Eq. (1) can be
rewritten as

an+1 = f(mT − an), (2)

where T is the pacing period and mT is the actual ex-
citation period. For example, m = 1 indicates that ev-
ery stimulus gives rise to an AP (1:1 capture), m = 2
means every two stimuli result in an AP (2:1 capture),
and so on. Eq. (2) or similar ones have been widely used
to investigate APD dynamics under periodic stimulation
[7, 9–12, 20–22]. A period-doubling bifurcation occurs
when the slope of the APD-restitution curve at the fixed
point exceeds 1. Chaos may occur when f is either a non-
monotonic function of DI or a monotonic function with
stimulation failure [22]. In this study, we refer to Eq. (2)
as the “APD-restitution map model.”
Note that in Eq. (1), the APD depends only on its im-

mediately preceding DI, indicating no memory. However,
cardiac systems exhibit memory [15, 23, 24], in which the
APD depends not only on its immediately preceding DI,
but also on earlier APDs and DIs. Therefore, Eq. (2)
is no longer accurate or valid to describe the APD dy-
namics when memory is present. A higher-dimensional
iterated map is needed to incorporate the memory effect.
In general, one can write

an+1 = f(dn, an, dn−1, an−1, . . . ), (3)

and use this map to investigate the nonlinear dynamics
caused by memory [25]. Another way of incorporating
memory into the iterated map model is to induce phe-
nomenologically a memory variable. One such model was
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developed by Chialvo et al. [26] and Fox et al. [27], which
is described by the following equations:

Mn+1 = e−
dn

τ

[

1− (1 −Mn)e
−

an

τ

]

(4)

an+1 = (1 − αMn+1)f(dn) (5)

where M is the memory variable and τ is the time con-
stant of memory. M in Eq. (4) describes the memory
effect mainly from the slow recovery of K+ channels. In
a study by Schaeffer et al. [28], an iterated map model
was developed to describe the memory effect from slow
intracellular ion accumulation. Since M is always posi-
tive, the steepness of the restitution function in Eq. (5)
is reduced, and thus memory in Eqs. (4) and (5) always
suppresses instability [26, 27]. The effects of memory
on cardiac excitation dynamics have been investigated in
many other previous studies [25, 29–37], which have also
shown that memory suppresses dynamical instabilities.
In a recent study [38], we showed that under certain

diseased conditions, memory can induce dynamical insta-
bilities and complex APD dynamics. One such diseased
condition is the presence of a strong transient outward
potassium (K+) current (Ito), which can cause a sud-
den shortening of APD, the so-called spike-and-dome AP
morphology [39–41] (also see Fig. 2(a)). Ito can induce
complex APD dynamics, including alternans and high
periodicity as well as chaos, which have been shown in
experiments [42] and computer simulations [43–46]. This
condition may occur under cardiac diseases such as Bru-
gada syndrome and ischemia [42, 47]. Another condition
we studied is the condition of reduced repolarization re-
serve in which either the outward currents are reduced
or the inward currents are increased from normal condi-
tions. This causes the lengthening of APD and the gen-
esis of early afterdepolarizations (EADs) [48, 49]. This
condition may occur in cardiac diseases such as long QT
syndrome [50–53] and heart failure [54]. In our previous
study [38], we carried out computer simulations using
a simplified AP model, the 1991 Luo and Rudy (LR1)
model [55], to simulate the complex APD dynamics un-
der the two conditions. We developed a novel iterated
map model which accurately captures the dynamics from
the AP model and revealed the mechanistic role of mem-
ory in promoting these dynamics. This is contrary to the
understanding of the memory effects on cardiac excita-
tion dynamics from previous studies [25–27, 29–37] which
have shown that memory suppresses dynamical instabil-
ities.
In this study, we extend our previous work to investi-

gate the effects of memory on APD dynamics. We inves-
tigate two sources of memory. In the first one, memory
is from the slow recovery of a K+ channel. In the second
one, memory is from the slow accumulation of intracel-
lular ion concentrations. Since the LR1 model does not
have intracellular ion concentration dynamics (they are
fixed), we use the model developed by ten Tusscher et

al. [56], the TP04 model, to study the effects of mem-
ory due to ion concentration accumulation, namely intra-

cellular Ca2+ concentration ([Ca2+]i) accumulation. We
first carry out computer simulations of the AP models
to demonstrate bifurcations and complex APD dynamics
under the two diseased conditions. We then develop iter-
ated map models that incorporate memory to accurately
capture the complex dynamics and bifurcations. Finally,
we perform theoretical analyses of the iterated map mod-
els to reveal the underlying mechanisms and the roles of
memory in promoting the complex dynamics.

The article is organized as follows. In Section II, we
describe the AP models, namely the LR1 model and the
TP04 model, and our modifications to model the diseased
conditions that exhibit the corresponding APD dynam-
ics. The Results section, Section III, is divided into two
major sections based on the two sources of memory. Sec-
tion A investigates the effects of memory originating from
the slow recovery of K+ channels. We choose to use the
LR1 model since it does not exhibit ion accumulation,
so memory originates only from slow ion channel recov-
ery. In Section A.1, we add Ito to the LR1 model to
model Brugada syndrome and show that Ito can unmask
or greatly exacerbate the memory effect caused by slow
recovery of the time-dependent K+ current (IK). In Sec-

tion A.2, we show that adding Ito to the LR1 model
can give rise to complex APD dynamics, including alter-
nans and chaos, which cannot be described by the tra-
ditional iterated map model using the S1S2 APD resti-
tution curve. In Section A.3, we develop a new iterated
map model that incorporates the memory effect from the
slow recovery of IK . Since the memory is mainly deter-
mined by the slow kinetics of the X−gating variable, we
call the new iterated map model the “X-memory map
model.” In Section A.4, we show that the X−memory
map model can accurately capture the complex APD dy-
namics from the AP model and the presence of memory
results in a nonmonotonic first return map to generate
chaos. In Section A.5, we perform a stability analysis
of the X−memory map model, investigating the depen-
dence of the APD dynamics on different parameters, and
validate some of the predictions using the AP model. In
Section A.6, we investigate the second diseased condi-
tion, long QT syndrome, in which inward currents are
increased and/or outward currents are reduced. We show
that memory is also unmasked or exacerbated and the
resulting complex APD dynamics cannot be accurately
captured by the traditional APD-restitution map model.
On the other hand, the X−memory map model can ac-
curately capture bifurcations and the complex APD dy-
namics from the AP model.

Section B investigates the effects of memory originat-
ing from slow [Ca2+]i accumulation. We choose to use
the TP04 model since it exhibits slow ion accumulation
but its ion channel recovery is fast. Following the same
approach as in Section A, we simulated the two diseased
conditions: adding Ito to simulate Brugada syndrome,
and increasing inward currents and reducing outward
currents to simulate long QT syndrome. We develop
a new iterated map model that incorporates the mem-
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ory effects from slow [Ca2+]i accumulation, and call this
model the “Ca2+−memory map model.” We show that
the traditional APD-restitution map model cannot while
the Ca2+−memory map model can accurately capture
the bifurcations and the complex APD dynamics from
the AP model. In the final section, Section IV, we dis-
cuss briefly the implications of our findings from the AP
models and the new iterated map models to cardiac ar-
rhythmogenesis and potential applications to other ex-
citable systems.

II. ACTION POTENTIAL MODELS AND
SIMULATION METHODS

We carry out computer simulations using two AP mod-
els with the voltage (V ) governed by the following differ-
ential equation:

Cm

dV

dt
= −Iion + Isti, (6)

where Cm = 1 µF/cm2 is the membrane capacitance, Iion
is the total ionic current density, and Isti is the stimu-
lus current density, a square pulse for a set duration of
time. Iion is the sum of the ionic currents, each driven
by the flow of Na+, K+, and/or Ca2+ flowing in and out
of the cell. The number of individual currents and their
mathematical formulations depend on specific AP mod-
els. The first model we use is the LR1 model [55], which
is one of the simplest cardiac AP models with physio-
logical ionic current formulations. In this model, we use
Isti = 80µA/cm2 with a 0.5ms duration. The second
model we use is a much more complex one, a human ven-
tricular AP model developed by ten Tusscher et al.[56].
In this model, we use Isti = 52µA/cm2 with a 1ms du-
ration.

Since there is no Ito in the LR1 model, we include an
Ito current taken from the model by Mahajan et al. [57],

Ito = gtoxtoyto(V − EK), (7)

where gto is the maximum conductance, xto is the acti-
vation gating variable, yto is the inactivation gating vari-
able, and EK is the reversal potential of the K+ channel.
We take the formulation of the fast Ito (i.e., Ito,f ) from
the Mahajan et al. model. Ito formulations (both slow
and fast Ito) are present in the TP04 model. For simplic-
ity and consistency, we remove the two original Ito for-
mulations and added the above Ito formulation (Eq. (7))
to the TP04 model.

A time-adaptive forward-Euler method is used in com-
puter simulations. The time step is ∆t = 0.05ms if the
change in voltage ∆V < 0.1mV, otherwise the time step
is ∆t = 0.005ms. The cell is paced periodically with
period T .

III. RESULTS

A. Complex APD Dynamics Caused by Memory
Originating from Slow Recovery of Ion Channels

We first investigate the effects of memory originating
from slow recovery of membrane ion channels. During an
AP, ion channels activate and then inactivate/deactivate,
and after the AP it takes a certain amount of time for the
ion channels to fully recover. Different ion channels have
different recovery times, ranging from a few milliseconds
to seconds or even longer. Memory manifests from slowly
recovering ion channels. One potential source of memory
is the slow component of the delayed rectifier K+ current
(IKs) [58–60], which activates and recovers slowly, on the
order of several hundred milliseconds to a couple seconds.
In this section, we use the LR1 model to investigate the
effects of memory induced by slow K+ channel recovery.
Since the ion concentrations are fixed in the LR1 model,
one avoids the confluent effects of memory caused by slow
ion accumulation. In the LR1 model, the time-dependent
K+ current (IK) is a slowly activating and recovering
current.

1. Memory unmasked/exacerbated by Ito

To demonstrate the effects of Ito on memory, we plot
S1S2 APD restitution curves of the AP model with and
without Ito for different S1 pacing periods, TS1S1 (see
Fig. 1(a) for the S1S2 pacing protocol). The difference
in APD restitution as a result of applying different pre-
pacing S1S1 intervals is a measure of the memory effect
[30].
Fig. 1(b) shows S1S2 APD restitution curves of the

original LR1 model for two different S1 pacing periods
TS1S1 = 400ms and 1000ms. The shorter S1 pacing
period results in an APD restitution curve that shifts
slightly to the right. Thus, in the LR1 model without
Ito, the effect of memory on APD restitution is small.
The presence of Ito causes significant changes in AP

morphology and the resulting APD restitution curves.
Ito is an outward K+ current that spikes during phase-
1 and is almost completely inactivated during phase-2
(Figs. 2(a) and (b)). Fig. 2(c) demonstrates the effects on
AP morphology by Ito. In the original model (solid/black
trace in 2(c)), the phase-1 notch of the AP terminates at
roughly 10mV. Ito causes a more pronounced phase-
1 notch. If the Ito conductance is larger than a criti-
cal value, the voltage repolarizes immediately after the
notch, resulting in early repolarization without a phase-
2 plateau, known as a spike (dashed/red trace in 2(c)).
If the Ito conductance is smaller than the critical value,
there is a rebound depolarization during phase-2, known
as a spike-and-dome (short-dashed/blue trace in 2(c)).
Ito creates an “all-or-none” behavior leading to so-

called spike-and-dome AP morphology, in which small
changes in Ito conductance result in either a spike-and-



4

0 500 1000 1500 2000 2500 3000

-100

-50

0

50

0 100 200 300 400 500 600
0

100

200

300

400

DIAPD

S2S1S1
Vo

lta
ge

 (m
V)

Time (ms)

S1
(a)

(b)

AP
D

 (m
s)

DI (ms)

 TS1S1 = 400 ms
 TS1S1 = 1000 ms

FIG. 1. The S1S2 restitution protocol and S1S2 APD resti-
tution curves from the original LR1 model. (a). APs
demonstrating the S1S2 restitution protocol. Here, TS1S1 =
1000ms, and the S2 stimulus is applied after the third S1 beat
with a diastolic interval DI = 300ms. (b). Restitution curves
showing the dependence of APD on DI for different S1 pacing
periods TS1S1 = 400ms (solid/black) and TS1S1 = 1000ms
(dashed/red). Note that the two curves differ only slightly,
indicating a small memory effect.

dome with a long APD or a spike with a short APD,
as seen in the short-dashed/blue and dashed/red APs in
Fig. 2(c). Fig. 2(d) shows this sensitive dependence of
APD on gto, the maximum conductance of Ito. Increas-
ing gto initially decreases APD slightly, then increases
APD up to about 500ms, at which point APD decreases
sharply from 500ms down to 100ms. Fig. 2(e) reveals
the effects of Ito on the restitution curves in the presence
of varying levels of gto. The presence of Ito causes the
restitution curve to have a more sensitive dependence on
DI. In particular, there is a critical value of DI where the
dependence of APD is very steep. As gto increases, the
APD restitution curves shift to the right.

Fig. 2(f) reveals the effect of changing the S1 pacing
period, from TS1S1 = 400ms to 2000ms. The longer
S1 pacing period causes the APD restitution curve to
shift significantly to the right by about 300ms. Compare
this to the case without Ito (Fig. 1(b)), where instead
the shorter pacing period causes a very slight shift to
the right and by only a few milliseconds. This indicates
that in the presence of Ito, there is a significant effect
of memory. Since the Ito formulation we added to the
LR1 model is the fast Ito, the time constants are small,
typically less than 100ms, and thus memory is not di-
rectly from Ito itself. The memory still originates from
the slow recovery of IK , but Ito unmasks and exacerbates
the memory effect, causing a large effect on S1S2 APD
restitution behaviors.
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FIG. 2. The effects of Ito on AP morphology and APD.
(a). AP with a pronounced phase-1 notch. (b). Ito ac-
tivity during the AP in (a). (c). APs in the absence of
Ito (solid/black) and in the presence of Ito inducing a spike
(dashed/red, gto = 0.3mS/cm2) and spike-and-dome (short-
dashed/blue, gto = 0.28mS/cm2). (d). Dependence of APD
on gto. The pacing period is T = 2000ms. Initially, increas-
ing gto decreases APD, then increases APD up to a criti-
cal value when APD = 500ms, at which point an increase
in gto causes a sudden drop in APD to 100ms. (e). De-
pendence of APD restitution curves on gto. The S1 pacing
period is TS1S1 = 2000ms. Without Ito (solid/black), the
restitution curve is flat except for DI < 200ms. With Ito
(dashed/red and short-dashed/blue), there is a sensitive de-
pendence of APD around a critical value of DI. The higher
value of gto (short-dashed/blue, gto = 0.278mS/cm2) causes
a restitution curve that is right-shifted from that of the lower
value (dashed/red, gto = 0.24mS/cm2). (f). Dependence of
APD restitution curves on the S1 pacing period TS1S1, in the
presence of Ito with gto = 0.278mS/cm2. TS1S1 = 400ms
for solid/black trace, 2000ms for dashed/red trace. We use
TS1S1 = 2000ms instead of 1000ms (as in Fig. 1) in order to
avoid alternans during S1 pacing.

2. Ito−induced complex APD dynamics

We next demonstrate how APD dynamics are effected
by Ito. In the prior section, we showed that in the absence
of Ito, the S1S2 restitution curves remain nearly identi-
cal when the S1 pacing period is either TS1S1 = 400ms
or 1000ms. Using the APD-restitution map model
(Eq. (2)), where the function f is numerically obtained
by using the S1S2 APD restitution curves from the sim-
ulation of the LR1 model (e.g. from Fig. 1(b)), we can
obtain the bifurcation diagrams showing the global APD
dynamics captured by the restitution map.

The bifurcation diagrams generated from the AP
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FIG. 3. APD dynamics of the LR1 model in the absence
of Ito. (a). Bifurcation diagram of the AP model under
constant-T pacing. (b). Bifurcation diagram generated from
the APD-restitution map model (Eq. (2)) using the S1S2 APD
restitution curve with TS1S1 = 1000ms (dashed/red curve in
Fig. 1(b)). The two diagrams are nearly identical.

model (Fig. 3(a)) and generated from Eq. (2) using
the APD restitution curve for TS1S1 = 1000ms in 1(b)
(Fig. 3(b)) are nearly identical, both showing 2 : 1 and
3 : 1 stimulation failure followed by chaos as T decreases.
These results show that the APD-restitution map model
(Eq. (2)) is sufficient in capturing the global APD dy-
namics of the AP model.

In the presence of Ito, we have shown that the S1S2
APD restitution curves change under different S1 pacing
periods. As in the case without Ito, we compare the bifur-
cation diagrams generated by the APD-restitution map
model (Eq. (2)) to the one obtained from the AP model.
Fig. 4 demonstrates the APD dynamics in the case where
gto = 0.278mS/cm2 and the steady-state curve of yto,f
is shifted by 8mV to more negative voltages. The choice
of gto and the modification of yto,f provide an example
where stimulation failure does not occur.

In the presence of Ito, complex APD dynamics, in-
cluding alternans and chaos, occur at slower pacing peri-
ods (Fig. 4). The bifurcation diagram of the AP model,
seen in Fig. 4(b), shows instability occurring in the range
536ms ≤ T ≤ 1183ms, and in addition there is a win-
dow of chaos for pacing periods between 536ms and
639ms. The bifurcation diagrams generated from the
APD-restitution map model (Eq. (2)) using restitution
curves with TS1S1 = 400ms (Fig. 4(c)) and TS1S1 =
2000ms (Fig. 4(d)) each reveals a window of instabil-
ity that is significantly smaller than the window of in-
stability of the AP model. In the TS1S1 = 400ms case,
instability occurs in the range 534ms ≤ T ≤ 897ms,
and in the TS1S1 = 2000ms case, the instability range is
820ms ≤ T ≤ 1196ms. Besides the narrow range of in-
stability, the APD-restitution map model (Eq. (2)) does
not have a chaotic region near the left-most bifurcation
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FIG. 4. APD dynamics of the LR1 model in the presence of
Ito, with gto = 0.278mS/cm2 and the y−gate shifted by 8mV
to more negative voltages. (a). Sample APs from the model
when the pacing period is (from top to bottom) T = 400ms
(stable APs with spikes), 580ms (chaos), 800ms (alternans),
and 1200ms (stable APs with spike-and-domes). (b). Bifur-
cation diagram of the AP model. (c). Bifurcation diagram
generated from Eq. (2) using the S1S2 restitution curve with
TS1S1 = 400ms, shown in Fig. 2(d). (d). Bifurcation diagram
generated from the APD-restitution map model (Eq. (2)) us-
ing the S1S2 restitution curve with TS1S1 = 2000ms, also
shown in Fig. 2(d).

point as revealed in the AP model. This demonstrates
that the APD-restitution map model (Eq. (2)), without
incorporating memory, cannot correctly capture the dy-
namics of the AP model.
To show how Ito affects the APD dynamics, we change

the intensity of Ito by changing its maximum conduc-
tance gto and plot a contour map that reveals the APD
dynamics of the model for different pacing periods. Fig. 5
shows the results, demonstrating how increasing the in-
tensity of Ito increases and shifts the region of instability
towards longer pacing periods. Increased levels of gto
cause instability to occur for longer pacing periods until
gto reaches a threshold. In this particular example, when
gto = 0.284mS/cm2 alternans occurs for pacing periods
up to T = 2000ms, equivalent to 30 beats/min. When
gto is larger, the AP becomes a spike without the spike-
and-dome morphology, and no instability occurs.

3. An iterated map model incorporating the memory effects

In the absence of Ito the APD-restitution map model
(Eq. (2)) can well capture the overall APD dynamics,
as demonstrated in Fig. 3. However, in the presence of
Ito, the iterated map model fails to appropriately capture



6

500 1000 1500 2000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

T (ms)

g to
 (m

S/
cm

2 )
Chaos

P4

P3

P2

P1

FIG. 5. Contour plot of the excitation dynamics of the AP
model as a function of gto, the maximal conductance of Ito,
and the pacing period T . P1 = period-1, P2 = period-2 (al-
ternans), P3 = period-3, P4 = period-4.

the APD dynamics due to a significant effect of memory.
To reveal the effects of memory on APD dynamics, we
develop a new iterated map model that explicitly incor-
porates memory. As discussed previously, the source of
memory in the LR1 model is from the slow recovery of IK
due to the slow activation and deactivation kinetics of the
X−gating variable, where IK = GK ·X ·Xi · (V − EK)
[55]. The kinetics of X are described by the following
differential equation [55]:

dX

dt
=

X∞ −X

τX
, (8)

where X∞ ≡ X∞(V ) is the voltage-dependent steady-
state of X , and τX ≡ τX(V ) is the voltage-dependent
time constant of X . The dependence of X∞ and τX
on voltage is given in the LR1 model, and is shown in
Fig. 6(a)-(b). Importantly, the τX curve shows that the
time constant is about 200ms at resting membrane po-
tentials of around −85mV and peaks at around 600ms,
when the cell is depolarized. All other gating variables in
the model have very fast time constants less than 100ms
for all voltages, and thus cannot contribute to the source
of memory.
Fig. 6(c) provides an example showing the relation be-

tween X and voltage of a cell undergoing alternans. X
increases during the AP, and then decreases during the
DI. In the example given, an and an+1 are corresponding
APDs of short and long APDs, respectively. The value of
X preceding the short AP (xn) is larger compared to X
preceding the long AP (xn+1). In other words, a larger
initial X value gives rise to a shorter AP and vice versa.
Physiologically, this corresponds to a larger repolariza-
tion force [60] due to a higher open probability of the K+

channels, giving rise to early repolarization. Note that
the maximum X value is much smaller during the short
AP than during the long AP.
Since the X−gating variable is responsible for the

memory in the LR1 model, we develop an iterated map
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FIG. 6. Behavior of the X−gating variable. (a). Volt-
age dependence of the time constant τX . (b). Voltage de-
pendence of the steady state X∞. (c). Sample plot of X
(dashed/red) alongside APs (solid/black) undergoing alter-
nans. X increases during the APs and decreases during the
DIs, and a larger value of X precedes a spike (short APD, an)
while the smaller value of X precedes a spike-and-dome (long
APD, an+1).

equation describing the relation between xn and xn+1,
and the relation between an and xn. To develop the it-
erated map equation for xn, we approximate the AP to
be a square wave in which the cell has a constant voltage
Va during the AP and a constant voltage Vd during its
diastolic phase. See Fig. 7(a) for a visualization of the
square wave approximation of an AP. Under this approxi-
mation, τa ≡ τX(Va) is the time constant of X during the
AP, and τd ≡ τX(Vd) is the time constant during the DI.
Similarly, xa ≡ X∞(Va) is the steady state open prob-
ability during the AP, and xd ≡ X∞(Vd) is the steady
state open probability during the DI.
Let xn be the value of X at the beginning of an AP

with APD an and DI dn (as shown in Fig. 6(c)). As-
suming the square wave approximation with the time
constants and steady state values given, Eq. (8) can be
integrated exactly. Assuming that at equilibrium X is
completely deactivated during the resting potential, so
that xd ≡ 0, this gives rise to the following map:

xn+1 =
(

xa − (xa − xn)e
−

an

τa

)

e
−

dn

τ
d ≡ w(xn, an, dn).

(9)
Eq. (9) provides an iterated map for X from beat to

beat, assuming the APD and DI values an and dn are
provided as well. We assume that an is completely de-
termined by xn, i.e.,

an = g(xn), (10)

where g provides the APD-dependence on the memory
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FIG. 7. Effects of the X−gating variable on APD. (a).
Square wave approximation of an AP used for the deriva-
tion of the map in Eq. (9). The resting membrane poten-
tial is Vd and the depolarized membrane potential is Va.
(b). The dependence of APD on the initial value of X,
xinit. When xinit = 0 the resulting AP exhibits a spike-
and-dome, whereas when xinit = 0.05 the resulting AP is a
spike. The AP with a longer APD (spike-and-dome) causes
X to increase for a longer period of time. (c). APD depen-
dence curves on xinit for different maximal conductance lev-
els gto = 0mS/cm2 (solid/black), 0.24mS/cm2 (dashed/red),
0.278mS/cm2 (short-dashed/blue). (d). Without Ito (gto =
0mS/cm2) APD dependence curves on X for different dias-
tolic intervals preceding the AP, DI = 50ms (solid/black),
100ms (dashed/red), 200ms (short-dashed/blue), 1000ms
(dash-dotted/green). (e). Same as (d), but with Ito (gto =
0.278mS/cm2).

variable xn. And since the pacing period T satisfies the
equation mT = an + dn, then

dn = mT − an, (11)

where m is the number of stimuli before giving a new
beat.
Together, Eqs. (9)-(11) form a complete 1-dimensional

iterated map. We next determine the function g in
Eq. (10), which captures the dependence of APD on the
value of X at the beginning of the AP, xinit. In a similar
fashion to the S1S2 restitution protocol which serves to
find the dependence of APD on DI, here we use another
simulation protocol to determine the dependence of APD
on xinit. At a fixed pacing period, e.g. T = 1000ms, af-
ter a certain number of N pre-paced beats we change
the value of xinit at the time of the (N + 1)st stimulus
and record the resulting APD. Fig. 7(b) provides exam-
ples of APs when xinit = 0 and xinit = 0.05, in which
100 pre-paced beats were used. xinit = 0 results in an
AP with a spike-and-dome and an APD of about 400ms,
whereas when xinit = 0.05 the resulting AP is a spike
with a shortened APD of about 100ms.
Ito causes shifts in the APD-dependence curves on

xinit, as demonstrated in Fig. 7. Without Ito (gto =
0mS/cm2) the APD has a maximum at 375ms when
xinit = 0 and smoothly decreases as xinit increases.
When Ito is included, there appears a critical xinit value

in which APD sharply declines from over 300ms to less
than 100ms, indicating a sensitive dependence of APD
on xinit. For values less than the critical xinit value, the
APD is temporarily increasing as a function of xinit, but
is then decreasing beyond the critical value. In Fig.7(c),
the dashed/red and short-dashed/blue curves show the
APD dependence on xinit for gto = 0.24mS/cm2 and
gto = 0.278mS/cm2. When the conductance of Ito
is weaker (dashed/red curve), the critical value occurs
around xinit = 0.08, while when the conductance is
stronger (short-dashed/blue curve), the critical value oc-
curs around xinit = 0.02. In general, the critical xinit

value shifts to the left as gto increases, due to a change
in the balance of Ito−induced early repolarization.
We next test how accurately xinit alone affects APD.

To do so, we check the APD dependence on xinit

when the DI itself varies as well. Fig. 7(d)-(e) each
shows four different curves for different values of DI,
50ms, 100ms, 200ms, and 1000ms, without and with Ito.
In both cases, the curves shift to the left for decreasing
values of DI, but is more pronounced when DI = 50ms
and 100ms. The curves corresponding to DI = 200ms
and DI = 1000ms vary by only about 0.002. Therefore,
this indicates that the recovery of other ionic currents vis-
ibly affects the APD only when DI < 100ms. As shown
in Fig. 4, dynamical instabilities occur for DI ≫ 100ms,
indicating that recovery of IK plays the major role in
causing instability in the presence of Ito. This also jus-
tifies not incorporating DI as an explicit variable in the
iterated map model in Eq. (12). For the same reason,
in this study, we ignore the APD dynamics at very fast
pacing and plot our bifurcation diagrams for T > 200ms
(except for Figs. 3 and 16). In general, one can rewrite
Eq. (12) as an = g(xn, dn) to include contributions from
the recovery of other ionic currents, which could be im-
portant for APD dynamics at fast heart rates.

4. Memory-induced instabilities and complex APD
dynamics in the X−memory map model

The X−memory map model (Eqs. (9)-(11)) explicitly
incorporates memory and its coupling with APD, in con-
trast to the APD-restitution map model using the S1S2
restitution curve as in Eq. (2). As shown in Fig. 4, when
Ito is included, the APD-restitution map model (Eq. (2))
does not adequately capture the APD dynamics in the
AP model. We here show that the X−memory map
model (Eqs. (9)-(11)) does in fact accurately capture the
APD dynamics and bifurcations of the AP model.
We first use the same model parameters and modi-

fications that were used to generate Fig. 4, in which
gto = 0.278mS/cm2 and the yto−gate steady state in
the formulation for Ito was shifted by 8mV to more
negative voltages. Under the square-wave assumption
used to generate Eq. (9), we set the map parameters
xa = 0.6, τa = 600ms, and τd = 200ms. Computa-
tionally, we determine the APD dependence on X , the
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FIG. 8. Bifurcation diagram of the APD dynamics cap-
tured by the X−memory map model, Eqs. (9)-(11), with
xa = 0.6, τa = 600ms, τd = 200ms, and g provided by in-
terpolating the short-dashed/blue curve in Fig. 7(c).

function g in Eq. (10). By varying the cycle length T in
Eq. (11) we generate a bifurcation diagram by iterating
together Eqs. (9)-(11).
The resulting bifurcation diagram is shown in Fig. 8.

The diagram is very similar in topology to the bifurcation
diagram obtained directly from the AP model, as seen in
Fig. 4(b). In particular, both diagrams have windows of
chaos near the initial period-doubling bifurcation point
near T = 500ms, which was completely absent in the
bifurcation diagrams generated from the APD-restitution
map model, as in Fig. 4(c)-(d).
The APD dependence on xinit shown in Fig. 7(c) is

nonmonotonic, in which as xinit increases, the value of
APD increases until around xinit = 0.02 when the curve
suddenly drops to APD values less than 150ms. Simi-
larly, the S1S2 restitution curves are nonmonotonic. As
shown previously, a nonmonotonic APD restitution curve
can give rise to chaos [22], as is shown in Fig. 4(c)-(d).
To avoid the confluent effect of nonmonotonicity on the
genesis of chaos, we changed the parameters of the LR1
model to result in monotonic APD restitution curves,
which is shown in the next example below.
The parameter changes are the following:

gto = 0.21mS/cm2, Gsi = 0.1035mS/cm2, GK1 =
1.330 34mS/cm2, and τx → 5τx. In addition, the yto
steady state curve was shifted by 8mV to more positive
voltages (in the prior case, the curve was shifted to more
negative voltages). Note that setting τX → 5τX , so that
the voltage-dependent time constant of the X−gating
variable was increased 5-fold, effectively amplifies the
effect of memory by requiring 5 times the amount of
time for X to reach equilibrium.
The results under these different parameter changes

and modifications are shown in Fig. 9. Figs. 9(a)-(b)
show that indeed the restitution curves and the APD
dependence on xinit are now monotonic. Because each
restitution curve is monotonic, the APD-restitution map
in Eq. (2) would only give rise to alternans (Fig. 9(c)-(d)).
However, as seen in Fig. 9(e), the bifurcation diagram of
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FIG. 9. Complex APD dynamics captured by theX−memory
map model (Eqs. (13)-(15)), with the following parameter
modifications of the AP model: gto = 0.21mS/cm2, Gsi =
0.1035mS/cm2, GK1 = 1.330 34mS/cm2, τx → 5τx, and the
yto steady state curve shifted by 8mV to more positive volt-
ages. (a). S1S2 restitution curves of the AP model with
S1 pacing periods TS1S1 = 300ms (solid/black) and 1000ms
(dashed/red). (b). APD dependence on X. (c). Bifurcation
diagram of the APD-restitution map model (Eq. (2)) using
the solid/black curve in (a). (d). Bifurcation diagram of the
APD-restitution map model (Eq. (2)) using the dashed/red
curve in (a). (e). Bifurcation diagram of the AP model. (f).
Bifurcation diagram of the X−memory map model (Eqs. (9)-
(11)), with xa = 0.6, τa = 3000ms, τd = 1000ms, and g pro-
vided by interpolating the curve in (b).

the AP model shows very complex behavior, including
very clear period-doubling bifurcation routes to enter and
exit chaos.
Since we made the modification τX → 5τX , we also

appropriately change the iterated map values τa and τd
in the X−memory map model. Since τa = 600ms and
τd = 200ms in the original case, here we multiply these
values 5−fold so that τa = 3000ms and τd = 1000ms.
xa = 0.6 as before. The dynamics of theX−memorymap
model is shown in the bifurcation diagram in Fig. 9(f).
The behavior of theX−memorymap model matches very
closely with the behavior of the AP model, as the bifur-
cation diagram also reveals period-doubling bifurcation
routes to enter and exit chaos, and share other charac-
teristics including large period-2 (alternans) and period-3
windows.
The X−memory map model accurately matches the

dynamics of the AP model, even under crudely approxi-
mating an AP as a square wave. In contrast, the APD-
restitution map in Eq. (2) does not capture the complex
behavior and underestimates the regions of instability.
This demonstrates that the effects of memory produce
more complex behaviors.
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5. Theoretical analysis and predictions of the X−memory
map model

The X−memory map model (Eqs. (9)-(11)) has model
parameters xa, τa, τd, and g, the APD dependence on
curve. We assume here that g takes on the form of a
Hill function, so that

an = g(xn) = amin +
amax − amin

1 +
(

xn

kx

)h
, (12)

where amin and amax are the minimum and maximum
APDs, h is the Hill coefficient, and kx is the half-max
value. A Hill function was chosen to match the sigmoid-
like shapes of the APD dependence curves on X , for ex-
ample in Fig. 9(b). So now, Eqs. (9), (11), and (12) form
an iterated map model, written together below:

xn+1 = w(xn, an, dn) =
(

xa − (xa − xn)e
−

an

τa

)

e
−

dn

τ
d ,

(13)

an = g(xn) = amin +
amax − amin

1 +
(

xn

kx

)h
, (14)

dn = mT − an. (15)

This produces a 1-dimensional iterated map for X since

xn+1 = w(xn, an, dn) = w(xn, g(xn),mT−g(xn)) ≡ W (xn).
(16)

And in addition, via the function g, there is a one-to-one
correspondence between xn and an. In particular, the
inverse of g is obtained via the following formula:

xn = g−1(an) = kx

[

amax − an
an − amin

]
1
h

, (17)

so that

an+1 = g(xn+1) = g(W (xn)) = g(W (g−1(an))) ≡ H(an)
(18)

Eq. (18) is the APD return map for the X−memory
map model. Sample return maps are provided in Fig. 10
when varying the Hill parameter h, the pacing period T ,
and the time constant τd. When varying h (Fig. 10(a)),
the slope of the return map near the fixed point gets
steeper as h increases. An iterated map is unstable when
the slope (or derivative) at the fixed point has absolute
value exceeding unity, and thus h is a key factor in de-
termining stability. In addition, as seen in Fig. 10(b)-
(c), increasing T or decreasing τd tends to shift the re-
turn map to the right, and therefore shifting the fixed
point. Fig. 10(d) shows a return map from a chaotic re-
gion in the actual AP model. Note that the Hill function
is monotonic and so is the S1S2 APD restitution curve.
For a nonmonotonic APD restitution function, the first
return map from Eq. (2) is still nonmonotonic. However,
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FIG. 10. Return maps of the X−memory map model
(Eqs. (13)-(15)) and of the AP model. Default parame-
ter values are xa = 0.6, τa = 3000ms, τd = 1000ms, h =
25, kx = 0.07, T = 500ms, amin = 50ms, amax =
350ms. (a). Return maps for h = 10 (solid/black) 20
(dashed/red), 40 (short-dashed/blue). (b). Return maps
for varying T = 250ms (solid/black), 500ms (dashed/red),
750ms (short-dashed/blue), 1000ms (dash-dotted/magenta).
(c). Return maps for τd = 250ms (solid/black), 500ms
(dashed/red), 1000ms (short-dashed/blue), 2000ms (dash-
dotted/magenta). (d). Return map from the AP model as
in Fig. 9(e) in a chaotic region with T = 530ms. (e). Bi-
furcation diagram of the X−memory map model (Eqs. (13)-
(15)), with parameter values xa = 0.6, τa = 3000ms, τd =
1000ms, h = 25, kx = 0.07.

the addition of the memory equation into the iterated
map model results in a nonmonotonic map, agreeing with
the one from simulation of the AP model. This indicates
that memory plays a key role in promoting chaos by con-
verting a monotonic APD return map to a nonmonotonic
one.
Fig. 10(e) provides a sample bifurcation diagram from

the X−memory map model, using the default map pa-
rameter values xa = 0.6, τa = 3000ms, τd = 1000ms, h =
25, kx = 0.07, amin = 50ms, amax = 350ms. Just as for
the full AP model, the diagram shows period-doubling bi-
furcation routes to enter and exit chaos, with rather large
period-2 and period-3 windows. See Fig. 9(e) to compare
with the bifurcation diagram from the AP model.
We now perform a stability analysis of the fixed point

of the X−memory map model. The APD fixed point,
denoted a∗, satisfies a∗ = H(a∗) so that

a∗ = H(a∗) = g

[

(

xa − (xa − x∗)e−
a
∗

τa

)

e
−

T−a
∗

τ
d

]

, (19)

where x∗ = g−1(a∗) is the corresponding X fixed point.
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To analyze the stability of the fixed point, we findH ′(a∗),
the derivative of H in Eq. (18) evaluated at the fixed
point a∗.

H ′(a∗) = g′(x∗)

[

(

1

τd
−

1

τa

)

x∗ + e
−

T−a
∗

τ
d

(

e−
a
∗

τa

g′(x∗)
+

xa

τa

)]

,

(20)
where

g′(x∗) = −
h

x∗

(amax − a∗)(a∗ − amin)

amax − amin

. (21)

The map is unstable whenever |H ′(a∗)| > 1.
Based on Eq. (11), for |H ′(a∗)| > 1, a large g′(x∗) is

needed, indicating that a sensitive response of APD on X
is necessary. The presence of Ito results in such a steep
response to promote the instability. However, the sta-
bility also depends on other parameters, such as τa and
τd. Since it is not obvious from Eq. (20) to assess their
roles, we simulate the X−memory map model directly
to show their effects. Fig. 11 provides some relation-
ships between the model parameters T, τd, τa, and h, and
the overall stability of the X−memory map model. The
periodicity of the iterated map is provided for different
parameter values of T, τd, τa, and h, with white regions
indicating stability (P1), and increasing gray-scale inten-
sities indicating higher orders of periodicity (P2, P3, P4,
and chaos).
Fig. 11(a) shows the APD dynamics in the parameter

space of the time constant τd and the pacing period T ,
with constants τa = 3000ms and h = 25 fixed. There
is a linear relationship between τd and T on stability, in
which an increase in τd causes both an expansion and
a shift to the right of the instability region for varying
values of T . Fig. 11(b) shows the APD dynamics in the
parameter space of h and T , with constants τa = 3000ms
and τd = 1000ms fixed. As one would expect, an in-
crease in h causes the window of instability to increase
and expands the chaotic regimes until h is very large.
Fig. 11(c) shows the APD dynamics in the parameter
space of h and τd while keeping constants τa = 3000ms
and T = 500ms fixed. Again as expected, increasing
h increases the regime of instability and chaos, while at
the same time increasing τd reduces the instability re-
gion. Finally, Fig. 11(d) shows the APD dynamics in the
parameter space of the time constants τa and τd while
keeping constants h = 25 and T = 500ms fixed. Sim-
ilar to that seen in Fig. 11(a), there is at first a linear
relationship between τa and τd, in which an increase in
τa causes an increase in the instability region for various
values of τd. However, when both τa and τd get too large,
the instability region wraps around and closes.
The previous analysis using the X−memory map

model examines the effects of different parameters on
stability, in particular on the parameters τd and τa that
affect the activation and inactivation kinetics of IK . We
now test our results on the AP model. Since τd affects
only the inactivation of IK during the DI, changing τd
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FIG. 11. Stability maps when varying parameters of the
X−memory map model (Eqs. (13)-(15)). Default param-
eter values are as follows: xa = 0.6, τa = 3000ms, τd =
1000ms, h = 25, kx = 0.07. (a). Contour map showing sta-
ble and unstable regions when varying the time constant τd
and pacing period T . (b). Stable and unstable regions when
varying the Hill coefficient h and T . (c). Stable and unsta-
ble regions when varying h and τd. (d). Stable and unstable
regions when varying the APD and DI time constants τa and
τd. (e). Stable and unstable regions of the modified AP
model using the τX modification in Eq. (22), with the fol-
lowing parameter modifications: gto = 0.21mS/cm2, Gsi =
0.1035mS/cm2, GK1 = 1.330 34mS/cm2, τx → 5τx, and the
yto steady state curved shifted by 8mV to more positive volt-
ages.

will ideally have little effect on AP morphology (in con-
trast to changing τa). We change the model formulation
of τX to equal a set value τd during the DI, as follows:

τX =

{

τd V < −75mV

τX otherwise
. (22)

τX is the original formulation of τX in the AP model, for
example that shown in Fig. 6(a). τd is now a new param-
eter in the AP model, and as before we vary τd as well
as the pacing period T for stability analysis. Fig. 11(e)
shows the results using the AP model with the same pa-
rameter and formulation modifications to generate Fig. 9,
including τX → 5τX . The figure shows a clear resem-
blance to Fig. 11(a), showing that increasing τd results
in a shift and expansion of the region of instability. The
theoretical prediction matches closely with the simula-
tion results.
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FIG. 12. EAD and APD dynamics in the LR1 model with
τX → 10τX and without Ito included. All other parameter
values are taken from the original model formulation. (a).
An S1S2 protocol resulting in an EAD on the S2 beat, with
TS1S1 = 1500ms, and DI = 1000ms before the S2 beat. (b).
Bifurcation diagram of the AP model. (c). Close up of the
bifurcation diagram around the first bifurcation point.

6. The memory effects on EAD-induced complex APD
dynamics

Short-term memory is also nontrivial for the excitation
dynamics in the setting of long QT syndrome. Long QT
syndrome is a cardiac disease with a high risk of syncope
and sudden death, caused by genetic mutations or drugs
that either decrease outward currents or increase inward
currents, prolonging the APD [51, 61]. One of the conse-
quences of APD prolongation is the occurrence of EADs
(Fig. 12(a)), which are abnormal depolarizations during
the AP. In previous studies [13, 62, 63], we have shown
that the presence of EADs can lead to chaotic excitation
dynamics. Fig. 12(b) is a bifurcation diagram against
the pacing period T from a simulation of the LR1 model,
showing a period-doubling bifurcation leading to com-
plex excitation patterns and chaos. Fig. 12(c) is a higher
resolution bifurcation diagram around the first bifurca-
tion point, demonstrating with more detail the period
doubling leading to chaos. The underlying mechanism of
chaos was attributed to steep and nonmonotonic APD
restitution functions [13]. However, a detailed compari-
son between the bifurcation from the AP model and that
from the iterated map model has not been carried out
until our recent study which showed that memory plays
a key role [38].

Following the same pacing protocol as we have done for
the case of Ito (there is no Ito presence in this case), we
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FIG. 13. EAD dynamics predicted by S1S2 APD restitution
curves. (a). S1S2 restitution curves for two S1 pacing periods
TS1S1 = 500ms (solid/black) and 1500ms (dashed/red). (b).
Bifurcation diagram using the APD-restitution map model
(Eq. (2)) and the restitution curve with S1 pacing period
TS1S1 = 500ms (solid/black curve in (a)). (c). Close up
of the bifurcation diagram around the first bifurcation point.
(d). Bifurcation diagram using the APD-restitution map
model (Eq. (2)) and the restitution curve with S1 pacing pe-
riod TS1S1 = 1500ms (dashed/red curve in (a)). Close up of
the bifurcation diagram around the first bifurcation point.

calculate the S1S2 APD restitution curves for two differ-
ent S1 pacing periods (Fig. 13(a)). The S1S2 APD resti-
tution curves exhibit a staircase type increase against DI,
with each higher step corresponding to an extra EAD
in the AP. Faster S1 pacing causes the APD restitution
curve to shift to the right (note that this is in contrast
to the case in the presence of Ito, in which the APD
restitution curve shifts to the left under faster S1 pacing,
as shown in Fig. 2(f) and Fig. 9(a). Fig. 13(b) and (d)
show the bifurcation diagrams obtained using the APD-
restitution map model (Eq. (2)) and the S1S2 APD resti-
tution curves. However, higher resolution bifurcation di-
agrams around the onset of instability (Figs. 13(c) and
(e)) show sudden transitions for stable APD to APD al-
ternans, completely missing the supercritical period dou-
bling bifurcation sequences of the AP model.

We then use the same method as in the case with
Ito and measure the X−dependence curve of APD.
Fig. 14(a) shows a staircase dependence of APD on xinit.
Using the X−memory map model (Eqs. (9)-(11)) with
the X−dependence curve of APD in Fig. 14(a), we gener-
ate a new bifurcation diagram (Fig. 14(b)), which shows
almost exactly the same bifurcation sequence as in the
AP model. Fig. 14(c) shows the bifurcation sequence
around the first instability point, which clearly demon-
strates period doubling leading to chaos in a very simi-
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FIG. 14. Bifurcation diagrams from the X−memory map
model (Eqs. (9)-(11)) in the presence of EADs. (a). The
dependence of APD on xinit. (b). Bifurcation of the
X−memory map model (Eqs. (9)-(11)), using the curve in
panel (a) for g and model parameters xa = 0.6, τa = 6000ms,
and τd = 2500ms. (c). Close-up of the bifurcation diagram
in (b) around the first bifurcation point.

lar manner as in the AP model (compare to Fig. 12(c)).
These results indicate that memory plays an important
role in generating the complex EAD-related excitation
dynamics.

B. Complex APD dynamics caused by memory
originating from intracellular ion concentration

accumulation

Besides slow recovery of ion channels, it also takes a
certain amount of time for intracellular ion (Na+, K+,
and Ca2+) concentrations to reach new steady states
after a change, such as after a sudden change in the
heart rate [64], causing memory in the system. Here,
we demonstrate the effects of memory caused by slow
[Ca2+]i accumulation. We use a human ventricular cell
model developed by ten Tusscher et al. [56], the TP04
model, to investigate the effects of memory originating
from intracellular ion concentration accumulation. For
consistency, we remove the original Ito (both fast and
slow Ito) and replace them with the same Ito formulation
as before from Mahajan et al. [57].

We use the TP04 model because all ionic gating vari-
ables have relatively fast time constants during the di-
astolic phase. In particular, the two slowly activating
potassium currents, IKr and IKs, rapidly deactivate dur-
ing the diastolic phase. The two gating variables of

IKr, Xr1 and Xr2, and the gating variable of IKs, Xs,
have time constants τxr1

< 130ms, τxr2
< 2ms, and

τxs
< 5ms at voltages lower than −75ms. And so,

while the gating variables of these currents do have long
time constants as high as 1200ms in the model for volt-
ages higher than −40mV, the gating variables deacti-
vate rapidly during the diastolic interval. In contrast,
[Ca2+]i as well as intracellular Na+ and K+ concentra-
tions ([Na+]i and [K+]i) accumulate very slowly.
Since [Na+]i and [K+]i accumulation is much slower

than [Ca2+]i accumulation, to avoid any confluent effects
we fixed the concentrations [Na+]i = 12mM and [K+]i =
138mM in the TP04 model so that the memory effect is
primarily driven by the accumulation of [Ca2+]i.

1. Memory and complex APD dynamics caused by ion
concentration accumulation

We begin our analysis as before, by examining the
APD restitution curves of the TP04 model with and with-
out Ito and comparing the bifurcation diagrams of the
APD-restitution map model (Eq. (2)) using the restitu-
tion curves with those of the AP model.
Fig. 15 shows the APD restitution curves of the AP

model with and without Ito, in each case using two dif-
ferent pacing periods. Without Ito (Fig. 15(a)), the resti-
tution curves using S1 pacing periods TS1S1 = 750ms
and TS1S1 = 3000ms are both monotonically increasing,
similar to the restitution curves generated from the LR1
model without Ito (Fig. 1(b)). There is an upward shift in
the curves by about 5ms for the larger S1 pacing period
(TS1S1 = 3000ms), indicative of some underlying source
of memory in the TP04 model but that has minimal effect
on restitution.
In the presence of Ito, with maximum conductance

gto = 0.18mS/cm2, the APD restitution curves show
some similarity to the restitution curves generated from
the LR1 model in the presence of Ito (Fig. 2(d)), namely
that they are nonmonotonic, have steep regions with a
sensitive dependence of APD on DI, and the larger S1
pacing period shifts the restitution curve to the right.
Here however, the shift in the two curves is substantial,
in which an S1 pacing period of TS1S1 = 9000ms leads
to a restitution curve that is about 6000ms right-shifted
from the restitution curve using an S1 pacing period of
TS1S1 = 250ms. Note that using an S1 pacing period as
large as TS1S1 = 9000ms is necessary in order to avoid
instability in the APs of the pre-paced beats.
Fig. 16(a) shows the bifurcation diagram of the AP

model in the absence of Ito. For almost all pacing pe-
riods the AP model shows stability, except for a brief
region around T = 275ms showing chaotic APD dynam-
ics where there is a transition between 1:1 and 2:1 block.
There is also a transition between 2:1 block and 3:1 block
around T = 125ms.
Now, we examine the stability of the APD-restitution

map model (Eq. (2)) using the APD restitutions in
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FIG. 16. Bifurcation diagrams of the AP model and of the
APD-restitution map model (Eq. (2)), without Ito. (a). Bi-
furcation diagram of the AP model without Ito. (b). Bifur-
cation diagrams of the APD-restitution map model (Eq. (2))
using the APD restitution curves in Fig. 15(a), with TS1S1 =
750ms (black) and TS1S1 = 3000ms (gray).

Fig. 15. Using the APD restitutions generated from
the AP model without Ito, the resulting bifurcation dia-
grams are shown in Fig. 16(b). Two bifurcation curves
are generated using the two APD restitution protocols
for the S1 pacing periods TS1S1 = 750ms (black) and
TS1S1 = 3000ms (gray). The gray points are shifted up-
ward from the black points due to the slight upward shift
seen in the APD restitution curves as in Fig. 15(a). For
the most part the two diagrams show stability with very
small instability occurring at the transitions between 1:1
and 2:1 block and between 2:1 block and 3:1 block. Over-
all, the two diagrams show very similar characteristics
with the bifurcation diagram of the AP model.

We now examine what happens in the presence of Ito.
The bifurcation diagram of the AP model is shown in
Fig. 17(a). Vastly different from the bifurcation dia-
gram of the model without Ito, there is a large instability
window with several chaotic windows, interspersed with
periodic windows. The first period-doubling bifurcation
point occurs around T = 330ms, and for even very slow
pacing periods up to T = 9000ms there is still APD al-
ternans and higher periodicity including chaos.

Using the APD-restitution map model (Eq. (2)), we
develop bifurcation diagrams generated from the APD
restitution curves in Fig. 15(b) with different S1 pac-
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FIG. 17. Bifurcation diagrams of the AP model and of the
APD-restitution map model (Eq. (2)), in the presence of Ito
with maximum conductance gto = 0.18mS/cm2. (a). Bifur-
cation diagram of the AP model. (b). Bifurcation diagram
of the APD-restitution map model using the solid/black trace
(TS1S1 = 250ms) in the APD restitution curves in Fig. 15(b).
(c). Bifurcation diagram of the APD-restitution map model
using the dashed/red trace (TS1S1 = 9000ms) in Fig. 15(b).

ing periods. The rightward shift in restitution by about
6000ms produces two bifurcation curves with very differ-
ent regions of APD instability, as seen in Figs. 17(b)-(c).
With the restitution curve generated from an S1 pacing
period TS1S1 = 250ms, the range of instability occurs
between pacing periods T = 400ms and 600ms, while
with the restitution curve generated from an S1 pacing
period TS1S1 = 9000ms, the range of instability is be-
tween T = 6650ms and 6850ms. The regions of chaos
and instability with periods greater than 2 are due to the
nonmonotonicity of the APD restitution curves, just as
in the case with the LR1 model in the presence of Ito (see
Fig. 4(c)-(d)).
The bifurcation diagrams generated from the APD-

restitution map model (Eq. (2)) in the presence of Ito re-
veal windows of instability about 200ms in length. How-
ever, the bifurcation diagram of the AP model reveals
an instability window that is much greater, with sev-
eral chaotic windows. It is clear in this case that the
APD-restitution model in Eq. (2) does not at all pre-
dict the APD dynamics of the AP model. The memory
in the TP04 model driven by the slow accumulation of
[Ca2+]i produces massive effects on the AP model dy-
namics, leading to a much greater window of instability
and chaos.

2. An iterated map model incorporating the memory effects

In the previous section, we discussed the role of the
X−gating variable of IK with a model formulation that
was fairly simple and purely voltage-dependent, and us-
ing a square wave approximation of the AP led to the
derivation of the iterated map in Eq. (9). However, the
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formulations of [Ca2+]i in the TP04 model are rather
complicated and depend on various other model variables
including the sarcoplasmic reticulum (SR) Ca2+ concen-
tration. A phenomenological model of the effects of ion
accumulation on APD was used in Schaeffer et al. [28],
but due to the complex effects of [Ca2+]i on APD dynam-
ics in the TP04 model, we must rely on further computer
simulation results, which are described in detail below.
We examine the interrelationship between APD and

cinit, the [Ca2+]i at the beginning of the AP. There are
two things to consider, one is the change in [Ca2+]i dur-
ing an AP with a known APD, and the other is the de-
pendence of APD on cinit. For the former, we fix square
wave APs with a given APD a1 with a pacing period T
until equilibrium has been reached, and then switch to
square wave APs with a given APD a2. A snapshot of
this protocol is shown in Fig. 18(a), where T = 1000ms,
a1 = 350ms, and a2 = 50ms. Before time 0, the sys-
tem is at equilibrium and the dynamics of [Ca2+]i (dash-
dotted/red) is exactly the same during each AP, with
cinit = 0.125µM.
After time 0, the APDs switch to the lower duration of

a2 = 50ms, and immediately there is a drop in cinit of the
successive APs (solid red dots of Fig. 18(a)). Fig. 18(b)
shows a time series of cinit as a function of beat number,
where cinit at time 0, in Fig. 18(a), corresponds to the
0th beat. After the APD switch, there is an exponential
trend of cinit towards a new equilibrium of approximately
0.04µM. Notice that it takes about 45 beats, or 45 s, for
the system to reach this new equilibrium, indicative of
very slow [Ca2+]i dynamics. This is in sharp contrast to
the slow X−gating variable dynamics in the LR1 model,
with a time constant on the order of about 1 s.
Assuming that the time series takes on an exponential

trend towards an equilibrium initial [Ca2+]i, c
∗, then we

have

cn+1 − c∗ = (cn − c∗) exp [f(an)] , (23)

where cn is the initial [Ca2+]i of the nth AP, an is the
APD of the nth AP, and f(an) is an APD-dependent
function dictating the rate at which the system reaches
equilibrium. c∗ is also APD-dependent, as shown in
Figs. 18(a) and (b). Rearranging Eq. (23) gives

cn+1 = cn exp [f(an)] + c∗ (1− exp [f(an)]) , (24)

and for simplicity we neglect the c∗ (1− exp [f(an)]) term
to remove the dependence of c∗. Our justification is that
this term is negligible so long as f(APD) ≪ 1, which
with very long time constants is the case as shown in
Fig. 18(b). This yields the following simplified iterated
map:

cn+1 = cn exp [f(an)] . (25)

We next analyze the function f(an) using computer
simulation results. We use the bifurcation diagram in
Fig. 17(c) to pick out pacing periods in chaotic regions
that result in multiple (ideally, infinite) APDs. For each

AP, we record the APD and initial [Ca2+]i of the cur-
rent AP (cinit) as well as of the succeeding AP (cinit+1).

Eq. (25) gives the relationship f(an) = log
(

cn+1

cn

)

, so we

perform a log-transform of the ratios of initial [Ca2+]i,

log
(

cinit+1

cinit

)

. This expression is a measurement of the

net cytosolic Ca2+ gain from and loss into the extracel-
lular space and the SR during an AP. A value greater
than zero is indicative of net [Ca2+]i gain, and a value
less than zero is indicative of net [Ca2+]i loss. If the value
equals zero, then there is no net gain or loss of [Ca2+]i
during an AP, and equilibrium is reached.
The results are shown in Fig. 18(c). The pacing peri-

ods T = 1704, 3600, 5602, and 7600ms give rise to chaotic
APD dynamics, resulting in hundreds of unique APD val-

ues and different values of log
(

cinit+1

cn

)

. The figure shows

that, generally speaking, log
(

cinit+1

cinit

)

increases as APD

increases. In addition, increasing the pacing period T re-

duces log
(

cinit+1

cinit

)

. These two results are not surprising.

A longer APD results in longer Ca2+ influx due to ICa,L,
and a longer pacing period, for a fixed APD, results in
a longer DI that allows for longer Ca2+ efflux due to

INCX. From observation, the dependence of log
(

cinit+1

cinit

)

is roughly linear with respect to both APD and T , hence
giving the relationship

log

(

cinit+1

cinit

)

= f(APD) ≈ γaAPD− γTT + δ, (26)

where γa and γT are the coupling coefficients for APD
and T respectively, and δ is a constant. Substituting this
expression for f in Eq. (25) gives

cn+1 = cn exp [f(an)] = cn exp [γaan − γTT + δ] (27)

We now switch our focus to the dependence of APD
on cinit. Again, we use the data used to generate the
bifurcation diagram in Fig. 17(c), where for each AP we
record the APD as well as cinit. For all data points with
T > 2000ms, we do a scatter plot of APD against cinit,
and the results are shown in Fig. 18(d). The restric-
tion T > 2000ms avoids any other memory effects and
assures that the APD is dependent only on cinit. Strik-
ingly, there is a clear one-to-one dependence of APD on
cinit in which any particular cinit gives rise to a unique
APD value, without ambiguity. Thus, we may write a
functional relationship between APD and cinit:

APD = g(cinit), (28)

so that in the nth AP, the APD an depends on the initial
[Ca2+]i cn via

an = g(cn). (29)

And together, Eqs. (27) and (29) give rise to a complete
iterated map model:

an = g(cn) (30)

cn+1 = cn exp [γaan − γTT + δ] . (31)
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FIG. 18. APD and [Ca2+]i dynamics of the AP model.
(a). Ca2+ transients responding to square-wave APs with
T = 1000ms, with durations switching from APD = 350ms
(for all times t < 0ms) to APD = 50ms (starting at time
t = 0ms). (b). Response of cinit after the APD switch.

(c). Dependence of log
[

cinit+1

cinit

]

on APD. The data points

were chosen from pacing periods T = 1704ms (open squares),
3600ms (filled squares), 5602ms (open triangles), 7600ms
(filled triangles), that result in chaotic behavior resulting in
APs with hundreds of unique APDs. (d). Dependence of
APD on cinit. Data chosen from all APs generating the bi-
furcation diagram in Fig. 17(c) for T > 2000ms.

We refer to this iterated map model as the
“Ca2+−memory map model.” The function g is
obtained by linearly interpolating the data in Fig. 18(d).
The constants γa, γT , and δ are obtained from ob-
serving the data in Fig. 18(c). We obtain the values
γa = 2× 10−4ms−1, γT = 3.625× 10−6ms−1, and
δ = −0.0275.
As usual, by varying T we create a bifurcation dia-

gram of the Ca2+−memory map model, and the result is
shown in Fig. 19. The diagram shows stunning similar-
ity to the bifurcation diagram of the AP model shown in
Fig. 17(c), revealing numerous period-doubling bifurca-
tion routes to chaos interspersed with periodic windows.
In addition, the complete region of instability ranges from
about 200ms to 8500ms, which is nearly the same as in
the AP model.
Fig. 20 compares return maps between the AP model

and the Ca2+−memory map model (Eqs. (30) and (31))
used to generate the bifurcation in Fig. 19. Fig. 20(a)
provides two return maps of the AP model undergoing
chaotic APD dynamics with T = 3250ms (black) and
6600ms (gray), and Fig. 20(b) are two return maps of
the Ca2+−memory map model using the same pacing
periods T = 3250ms and 6600ms. Matching the pacing
periods between the two graphs, the return maps in the
Ca2+−memory map model are very similar to the return
maps in the AP model. Panel (b) contains more infor-
mation due to the iterated map being continuous and
the chaotic dynamics in the AP model not attaining all
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FIG. 19. Bifurcation of the Ca2+−memory map model
(Eqs. (30) and (31)), with function g, the APD dependence on
cinit, the linear interpolant of the data in Fig. 18(d), and pa-
rameter values γa = 2× 10−4 ms−1, γT = 3.625 × 10−6 ms−1,
and δ = −0.0275.
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FIG. 20. Comparing return maps between the AP model and
Ca2+−memory map model (Eqs. (30) and (31)). (a). AP
model return maps in chaotic regimes for T = 3250ms (black)
and 6600ms (gray). (b). Return maps of the Ca2+−memory
map model for the same pacing periods T = 3250ms (black)
and 6600ms (gray), where the function g is the linear inter-
polant of the data in Fig. 18(d), and parameter values γa =
2× 10−4 ms−1, γT = 3.625 × 10−6 ms−1, and δ = −0.0275.

possible APDs. For example, for T = 6600ms (the gray
points in Fig. 20), in the AP model, APDs below about
an = 110ms and between an = 230ms and 280ms do not
occur. The return map shows only one discontinuity, or
jump between large and small APDs, occurring around
an = 300ms. However, the corresponding return map
from the Ca2+−memory map model shows two additional
discontinuities occurring at an = 100ms and 250ms.
Properties of the Ca2+−memory map model incorpo-

rating memory effects from [Ca2+]i accumulation closely
match those of the AP model. This provides clear ev-
idence that the Ca2+−memory map model sufficiently
matches the APD dynamics of the AP model.

3. Theoretical Analysis and predictions of the
Ca2+−memory map model

In the previous section we used the Ca2+−memory
map model (Eqs. (30) and (31)), in which Eq. (31) is
an explicit equation with parameters γa, γT , T , and δ,
but the function g in Eq. (30) was a linear interpolation
of data provided by simulations of the AP model. In this
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section, we do as before in the case of the X−memory
map model and set the function g in Eq. (28) as a Hill
function of the form APD = g(cinit) = amin+

amax−amin

1+( cinit

kc
)h

,

where amin and amax are the minimum and maximum
APDs attainable, kc is the half-max cinit, and h is the
Hill coefficient. This gives the following complete iter-
ated map model:

an = g(cn) = amin +
amax − amin

1 +
(

cn
kc

)h
(32)

cn+1 = f(cn, an) = cn exp (γaan − γTT + δ) = H(cn).
(33)

Eqs. (32) and (33) together give a complete 1-dimensional
map whose steady state stability is determined by the
derivative of the function H at steady state:

H ′(c∗) = [1 + c∗γag
′(c∗)] eγag(c

∗)−γTT+δ, (34)

where c∗ is the steady state of H (i.e. H(c∗) = c∗). For
the period-doubling bifurcation to occur (H ′(c∗) < −1),
it requires a steeply decreasing function g with respect
to cn, i.e., a large negative g′(c∗) is needed so that

c∗γag
′(c∗) < −2 (35)

can be satisfied. Increasing γa can also potentiate the
inequality in Eq. (35) and thus instability. Once Eq. (35)
is satisfied, increasing δ or decreasing γT will potentiate
the instability.
We now examine the model directly by iterating the

map in Eqs. (32) and (33) for specific parameter val-
ues. Based on simulation results from the AP model
shown in Fig. 18, we estimate the parameter values
γa = 2× 10−4ms−1, γT = 3.625× 10−6ms−1, and δ =
−0.0275. To model the function g in Eq. (33), we es-
timate a Hill function that closely matches the depen-
dence of APD on cinit from the AP model, as shown in
Fig. 18(d). No Hill function will perfectly fit it since
the graph is nonmonotonic with a jump discontinuity.
Our chosen parameter values are amin = 125ms, amax =
350ms, kc = 4.1456× 10−2

µM, and h = 500. The bi-
furcation diagram of this model is shown in Fig. 21(a),
and shows period-doubling bifurcation routes to enter
and exit chaos, similar to the bifurcation diagram of the
AP model (Fig. 17(c)) as well as the bifurcation diagram
of the X−memory map model in the previous section
(Fig. 9(f)). The region of instability is between pacing
periods T = 550ms and 10 500ms, which is roughly sim-
ilar to that seen in the AP model. In Fig. 21(b) we
provide four return maps with different pacing periods.
The return maps are very similar to the ones from the
X−memory map model, shown in Fig. 10(b). An in-
crease in T tends to shift the return map to the right,
shifting the fixed point of APD to more positive values.
To confirm our predictions of the effects of γT and δ on

the stability of the model, we modify these parameters
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FIG. 21. Dynamics of the Ca2+−memory map
model (Eqs. (32) and (33)), with parameters amin =
125ms, amax = 350ms, kc = 4.1456 × 10−2

µM, h = 500, γa =
2× 10−4 ms−1, γT = 3.625 × 10−6 ms−1, and δ = −0.0275.
(a). Bifurcation diagram. (b). Return maps for pacing
periods T = 250ms, 3000ms, 7000ms, and 11 000ms. The
dotted/black line is the fixed point line an+1 = an.

in the Ca2+−memory map model using the linear inter-
polant of the data in Fig. 18(d) to model the function
g in Eq. (32). We make the changes γT → 1.25γT and
δ → δ+0.005. The results are shown in Fig. 22. Indeed,
comparing Fig. 22(a) and (b), there is a shift in the re-
gion of instability by about 1380ms. The left bifurcation
points shifts from about 270ms to 1650ms, and the right
bifurcation point from about 8430ms to 9810ms. And
by increasing γT by 25% we expect the left and right
bifurcation points to decrease by 20%. Indeed, the left
bifurcation point shifts from about 270ms to 215ms and
the right bifurcation point shifts from about 8430ms to
6745ms.
Finally, we return back to the AP model and examine

the effects of changing parameters in the model on APD
dynamics. Two key regulators of [Ca2+]i are the L-type
Ca2+ current, ICa,L, and the Na-Ca exchanger, INCX.
Each have maximum conductance parameters gCa,L and
gNCX, which we change in the model. Fig. 23 shows bi-
furcation diagrams of (a) control conditions, (b) gCa,L

reduced by 2%, and (c) gNCX reduced by 10%. The di-
agrams show that the reduction of ICa,L and INCX con-
ductance shifts the bifurcation points significantly to the
right by about 3500ms. We currently ignore the left bi-
furcation point because, in the AP model, many sources
could contribute to APD dynamics besides [Ca2+]i accu-
mulation at such fast pacing periods.
To examine how reducing ICa,L and INCX can cause

a 3500ms shift in the right bifurcation point, we do as

before and compare the dependences of log
(

cinit+1

cinit

)

to

APD, which corresponds to the function f in Eq. (25). To
get as many data points as possible, we choose a pacing
period T = 3600ms that results in chaotic APD dynam-
ics in control and ICa,L × 0.98 conditions, and period-3
APD dynamics in the INCX × 0.9 condition. Fig. 23(d)
shows the results. Indeed, the data corresponding to
ICa,L and INCX reduction lie above the data points under
control conditions by about a value of 0.05, which corre-
sponds to an increase in −γTT + δ in Eq. (25), so that
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FIG. 22. The effects of δ and γT on APD dynamics in the
Ca2+−memory map model (Eqs. (30) and (31)). (a). Bifur-
cation under control conditions, using the linear interpolant
of the curve in Fig. 18(d) for g and other parameters γa =
2.4× 10−4 ms−1, γT = 3.625 × 10−6 ms−1, and δ = −0.0275.
(b). Bifurcation diagram with δ → δ+0.005 = −0.0225. (c).
Bifurcation diagram with γT → 2γT = 7.25× 10−6 ms−1.

either δ increases, γT decreases, or a combination of both.
In either case, the theoretical analysis suggests that de-
creasing ICa,L or INCX causes an increase in δ and/or a
decrease in γT , which shifts the right bifurcation point
to the right, just as we see in the simulation results.

4. EAD-induced complex APD dynamics in the presence of
[Ca2+]i accumulation

Similar to the case of the LR1 model, we also gen-
erate EADs in the TP04 model in the absence of
Ito (Fig. 24(a)). To do so, we set the maximum
conductances of ICa,L, IKr, and IKs to be gCa,L =
6× 10−4mS/cm2, gkr = 0.01mS/cm2, and gks =
0.036mS/cm2, and introduce a late Na+ current by per-
forming the following changes to the formulations of the
steady-state h− and j−gates in INa:

h∞ = γ + (1− γ)h∞

j∞ = γ + (1− γ)j∞, (36)

where h∞ and j∞ are the steady state formulations of
the two gates in the TP04 model, and γ is a “pedestal”
parameter that determines to what extent the h− and
j− gates deactivate. Here, we set γ = 0.01.
Fig. 24(b) is a bifurcation diagram against the pacing

period T from the simulation of the TP04 model. Be-
tween each transition leading to an extra EAD (i.e. 0
EADs to 1 EAD, 1 EAD to 2 EADs, etc.), there is a
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FIG. 23. The effects of changing ICa,L and INCX on the APD
dynamics of the AP model. (a). Bifurcation diagram under
control conditions. (b). Bifurcation diagram when gCa,L is
reduced by 2%. (c). Bifurcation diagram when gNCX is re-
duced by 10%. (d). The effects of reducing ICa,L by 2% and

INCX by 10% on the dependence of log
(

cinit+1

cinit

)

on APD. In

each case, simulations use a pacing period T = 3600ms, where
Control and ICa,L×0.98 conditions result in chaotic APD dy-
namics and the INCX × 0.9 condition results in period-3 APD
dynamics.

period doubling bifurcation route to enter chaos as T in-
creases. Fig. 24(c) shows a close-up of the bifurcation
diagram around the first transition between 0 EADs and
1 EAD, more clearly illustrating period doubling leading
to chaos.

We calculate the S1S2 APD restitution curves for two
different S1 pacing periods, TS1S1 = 2000ms and 6000ms
(Fig. 25(a)). Just as in the LR1 model with EADs,
the S1S2 restitution curves show staircase dependences
of APD against DI. The bifurcation diagrams obtained
using the S1S2 APD restitution curves and Eq. (2) are
given in Figs. 25(b) and (d), with corresponding close-ups
around the first bifurcation points in Figs. 25(c) and (e),
respectively. The bifurcation diagrams differ largely from
those from the AP model, indicating that APD restitu-
tion alone cannot capture the complex excitation dynam-
ics.

We then plot APD versus cinit and log
(

cinit+1

cinit

)

versus
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FIG. 24. Complex APD dynamics induced by EADs in
the TP04 model, with gCa,L = 6× 10−4 mS/cm2, gkr =
0.01mS/cm2, gks = 0.0036 mS/cm2, and γ = 0.01 in Eq. (36).
(a). APs showing EAD alternans, T = 7000ms. (b). Bifur-
cation diagram of the AP model. (c). Close-up of the bifurca-
tion diagram around the first bifurcation point, transitioning
from no EADs to one EAD in the AP.

APD from the AP model the same way as we did in
the Ito case (Figs. 26(a) and (b)). Using these functions
and the Ca2+−memory map model (Eqs. (30) and (31)),
we obtain a bifurcation diagram (Fig. 26(c)) which is
nearly identical to the one obtained from the AP model
(Fig. 24(c)). This shows that the memory from [Ca2+]i
accumulation plays an important role in generating the
complex APD dynamics induced by the occurrence of
EADs in the AP model.

IV. DISCUSSION AND CONCLUSIONS

In this study, we investigated the effects of short-term
cardiac memory on excitation dynamics under two dis-
eased conditions, early repolarization syndrome [47] and
long QT syndrome [51]. The memory originates from
two sources, slow ion channel recovery and slow [Ca2+]i
accumulation. We show that contrary to many previ-
ous studies which have shown that memory suppresses
dynamical instabilities [25–27, 29–37], under these dis-
eased conditions, memory can induce or potentiate com-
plex excitation dynamics, including chaos. In addition to
memory, the all-or-none behaviors (dome vs. no dome or
EAD vs. no EADs) in the diseased conditions, which re-
sult in steeply changing APD restitution curves, are also
key to the genesis of the complex APD dynamics. We
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FIG. 25. Bifurcation diagrams from the APD-restitution map
model (Eq. (2)) and S1S2 APD restitution curves from the
TP04 model in the context of long QT syndrome. (a). S1S2
restitution curves for S1 pacing periods TS1S1 = 2000ms
(solid/black) and 6000ms (dashed/red). (b). Bifurcation
diagram of the APD-restitution map model (Eq. (2)) using
the solid/black trace in (a). (c). Close-up of the bifurcation
diagram in (b) around the first bifurcation point. (d). Bi-
furcation of the APD-restitution map model (Eq. (2)) using
the dashed/red trace in (a). (e). Close-up of the bifurcation
diagram in (d) around the first bifurcation point.

developed new iterated map models that properly incor-
porate memory from the two different sources, which can
well describe the complex dynamics and recapitulate the
bifurcation sequences from the AP models. Using the
iterated map models, we unraveled the mechanisms un-
derlying memory-induced chaos and complex APD dy-
namics induced by Ito or EADs.
The role of chaos in the genesis and maintenance

of cardiac arrhythmias has been investigated previously
[13, 65, 66]. Different mechanisms of chaos and complex
excitation dynamics have been demonstrated in cardiac
myocytes. In this study, we reveal a novel mechanism of
chaos of cardiac excitation, which may provide further
understanding of the role of chaos in arrhythmogenesis
in the presence of short-term cardiac memory.
In this study, we investigated the effects of memory

originating from slow recovery of ion channels and slow
accumulation of [Ca2+]i. We fixed [Na+]i and [K+]i
in our simulations in order to avoid memory effects
from slow accumulation of these ions. However, it is
well known that, in particular, [Na+]i accumulates very
slowly, and thus it can impact the APD dynamics in an
even longer time scale, i.e., longer-term memory effect.
These effects have been already investigated in recent
simulation studies [67, 68]. It will be of importance to



19

800 1000 1200 1400

-0.04
-0.02
0.00
0.02
0.04
0.06

0.04 0.05 0.06 0.07
500

1000

1500

2000

2500

6400 6600 6800 7000 7200 7400

800

1000

1200

1400

(b)
lo

g(
c in

it+
1/c

in
it)

APD (ms)

(a)

(c)

AP
D

 (m
s)

cinit ( M)

AP
D

 (m
s)

T (ms)

FIG. 26. APD dynamics predicted by the Ca2+−memory
map model (Eqs. (30) and (31)) in the presence of EADs.

(a). Plots of log
(

cinit+1

cinit

)

vs. APD from the AP model for

4 different pacing periods leading to chaotic EAD dynam-
ics, T = 6430ms (open squares), 6805ms (filled squares),
7190ms (open triangles), and 7710ms (filled triangles). (b).
Plot of APD vs. cinit in the AP model. (c). Bifurcation
diagram of the Ca2+−memory map model (Eqs. (30) and
(31)). The paramters in Eq. (31) were chosen to be γa =
1.2× 10−4 ms−1, γT = 2.5× 10−5 ms−1, and δ = 0.05845,
based on approximating the data in panel (a). The func-
tion g in Eq. (31) is the linear interpolant of the data in panel
(b).

develop an improved iterated map model that incorpo-
rates the memory caused by slow [Na+]i accumulation,
which is our next task of revealing the mechanisms of
short-term cardiac memory on excitation dynamics.

Finally, we would like to point out that the mechanis-
tic insights gained from the present study may not only
be limited to complex ecitation dynamics in cardiac my-
ocytes, but also to those in other electrically excitable
cells. For example, the bursting dynamics in neurons
[69–72] and pancreatic β−cells [73] are irregular, which
can result from either random ion channel openings or
dynamical chaos. Since the bursting dynamics are also
governed by fast-slow dynamics [62, 73–76] similar to the
EAD dynamics in cardiac myocytes, the same mechanism
of memory-induced chaos may be applicable to irregular
bursting dynamics in these cases.
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