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The amphibian sacculus (AS) is an end organ that specializes in the detection of low-frequency
auditory and vestibular signals. In this paper, we propose a model for the AS in the form of
an array of phase oscillators with long-range coupling, subject to a steady load that suppresses
spontaneous oscillations. The array is exposed to significant levels of frequency dispersion and
intrinsic noise. We show that such an array can be a sensitive and robust sub-treshold detector of
low-frequency stimuli, though without significant frequency selectivity. The effects of intrinsic noise
and frequency dispersion are contrasted. Intermediate levels of intrinsic noise greatly enhance the
sensitivity through stochastic resonance. Frequency dispersion, on the other hand, only degrades
detection sensitivity. However, frequency dispersion can play a useful role in terms of the suppression
of spontaneous activity. As a model for the AS, the array parameters are such that the system is
poised near a saddle-node bifurcation on an invariant circle bifurcation. However, by a change of
array parameters, the same system also can be poised near an emergent Andronov-Hopf bifurcation
and thereby function as a frequency-selective detector.

I. INTRODUCTION

The sense of hearing constitutes a remarkable exam-
ple of a biological system that operates near the physi-
cal limits of detection [1, 2]. Hair cells of the inner ear
detect air-borne or ground-borne vibrations through the
induced deflection of stereociliary bundles on their apical
surface. Displacement of these hair bundles away from
their resting positions are transduced into electrical sig-
nals by mechanically sensitive ion channels [3]. Thermal
noise induces fluctuations in the bundle position on the
order of a few nanometers; the hair cells nevertheless dis-
play sensitivity to signals of smaller amplitude, reaching
into the sub-thermal range [4]. Moreover, the sensory ep-
ithelium is immersed in a dissipative fluid environment,
ruling out passive mechanical resonance as an explana-
tion for the frequency selectivity of hearing [5]. In 1948,
Thomas Gold proposed that the auditory system must
contain an internal energy-consuming amplifier that al-
lows it to sustain its sensitivity of detection under over-
damped conditions [6].

The phenomenology of active hearing has been ana-
lyzed using the mathematics of bifurcation theory [7–
10]. Specifically, the sensitivity and frequency selectiv-
ity of the mammalian cochlea has been described as a
dynamical system operating at or near the critical point
of an Andronov-Hopf bifurcation. Crossing of this bi-
furcation is characterized by the amplitude of a stable
limit cycle decreasing continuously to zero, at a constant
frequency [11]. The Normal Form Equation (NFE) of
the Andronov-Hopf bifurcation was found to reproduce
a number of in vivo phenomena [7, 10], as well as mea-
surements performed in vitro on individual hair bundles,

including compressive nonlinearity and two-tone interfer-
ence [12, 13].

A second bifurcation type that has been applied to
describe hair cell dynamics is the SNIC bifurcation

(”saddle-node on an invariant circle”). This bifurcation
is characterized by a limit cycle of fixed amplitude whose
frequency vanishes at the critical point. In this case, the
normal form equation takes the form of the Adler equa-

tion for phase oscillators [11]. The SNIC bifurcation was
introduced to describe the in vitro response of individual
hair cell bundles of the amphibian sacculus (AS), exposed
to a weak mechanical stimulus [14].

The AS – the focus of this paper – is an end organ
that specializes in the detection of low-frequency (20-
120Hz) auditory and vestibular signals. It is sensitive
to extremely weak stimuli, but in contrast to the mam-
malian cochlea, it displays only broad frequency selectiv-
ity [15]. The AS has been an important model system for
in vitro studies of hair bundle dynamics, because its ro-
bustness allows extensive mechanical measurements. In-
dividual, unconstrained hair bundles of AS cells exhibit
noisy spontaneous oscillations with amplitudes in the 50
nm range [16]. Nevertheless, periodic stimuli of much
smaller amplitude are capable of mode-locking the noisy
active motility [12, 17]. Under these conditions, AS hair
cells are not poised in the vicinity of an Andronov-Hopf
bifurcation, but rather in the limit cycle regime. The
phase entrainment of hair cells adopts the form of an
Arnold tongue, the region of synchronization to a pe-
riodic stimulus of varying stimulus amplitude and fre-
quency [18].

Stimulus detection by the AS may be based on phase
entrainment of innately active oscillators. However,
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spontaneous oscillations have only been observed in vitro
in preparations that include a significant perturbation of
the natural conditions: the overlying otolithic membrane
– a gelatinous layer attached to the tips of the stereocilia
– is removed to allow access to individual cells. Under
in vivo conditions of the AS, the otolithic membrane im-
poses coupling between the bundles [19]. Removal of the
membrane therefore decouples the cells, and also changes
their natural mechanical loading. In semi-intact prepara-
tions that maintained the natural loading of the AS, hair
bundles were imaged through an intact overlying mem-
brane, and found to be quiescent. Upon removal of the
membrane, the same hair bundles displayed robust spon-
taneous activity [20, 21]. These findings indicate that
the in vivo signal detection mechanism of the AS is more
likely to operate from the quiescent state. In an earlier
study, we modeled a hair cell with the noisy Adler equa-
tion, with the control parameter poising it in the quies-
cent regime, and showed that it could act as a sensitive
sub-threshold detector. Weak external signals were found
to increase the probability that the system is activated
above the threshold to perform one or more limit cycles
[22].

Another important property of the AS that is not cap-
tured by studies of isolated hair cells is that of frequency
dispersion. Experimental studies have shown that there
is a broad distribution of natural frequencies of spon-
taneous oscillation, spread uniformly across the epithe-
lium [23]. Neighboring hair bundles thus may exhibit
quite disparate natural frequencies. This frequency dis-
persion seems consistent with the empirical observation
that the frequency selectivity of the AS in vivo is very
broad. One would expect, however, that in the absence of
coupling, the ability of an array of noisy Adler oscillators
to perform subthreshold detection would be degraded by
frequency dispersion (see Section II). This consideration
indicates that coupling likely plays an important role in
achieving the sensitive signal detection displayed by the
AS.

Several studies have addressed the effects of coupling
on the response characteristics of hair cells. An exper-
imental study that imposed coupling on a single oscil-
lating hair bundle to its “cyber clone” encountered syn-
chronization between the two [24]. A theoretical study
of an array of hair cells reported that coupling leads to
an enhanced sensitivity and frequency selectivity of the
system [25]. Another study showed that while the criti-
cal point of an individual Hopf oscillator is concealed by
intrinsic noise, a large array of coupled Hopf oscillators
exhibits a well-defined phase transition separating the
quiescent and active states [26]. Numerical simulations
also demonstrated that systems of coupled hair cells with
a large frequency disparity can exhibit amplitude death

[27]. This is a phenomenon in which the limit cycles ex-
hibited by two or more nonlinear oscillators with different
frequencies are “quenched” by coupling. The quiescence
of the AS was proposed to be a manifestation of ampli-
tude death, leading to a state that could improve the
signal-to-noise ratio (SNR) of detection by suppression
of the noisy innate activity.

The aim of this paper is to study the response of a
coupled array of sub-threshold phase oscillators subject
to intrinsic noise and exhibiting frequency dispersion, to
evaluate it as a possible model for stimulus detection by
the AS.

The model is defined in Section II. In the absence of
a stimulus or intrinsic noise, this model reduces to the
forced Kuramoto model with frequency dispersion [28].
The latter is, in turn, an extension of the well-known
Kuramoto model for phase synchronization of coupled
oscillators, which includes a steady load that can sup-
press the spontaneous oscillations. The Arnold Tongue
diagram of the forced Kuramoto model has been estab-
lished analytically [28] in the absence of intrinsic noise. In
the thermodynamic limit, where the number of coupled
oscillators goes to infinity, this coupled-oscillator array
can collectively exhibit the SNIC and Andronov-Hopf bi-
furcations, similar to those observed in single nonlinear
oscillators. Note that in this case, the Andronov-Hopf
bifurcation is an emergent property of the array, while
individual phase oscillators do not exhibit the Andronov-
Hopf bifurcation.

In Section III, we apply Dynamical Mean Field The-
ory (DMFT) to establish the bifurcation diagram of the
forced Kuramoto model with both intrinsic noise and fre-
quency dispersion and compare the results with numer-
ical simulations of a finite array of 400 oscillators. We
show that within the DMFT, the intrinsic noise and fre-
quency dispersion exert similar effects.

In Section IV, we focus on the response of the model to
a periodic stimulus. Over the range of parameters where
the SNIC dominates, the array functions as a broadband
low-frequency “seismic” detector with a large SNR. We
find that the effects of intrinsic noise and frequency dis-
persion on the dynamical response are highly asymmet-
ric. Intermediate levels of intrinsic noise can strongly en-
hance detection sensitivity through the Stochastic Res-

onance mechanism (SR) [29]. On the other hand, the
model does not exhibit SR-type effects upon the intro-
duction of frequency dispersion. However, we do observe
that increasing levels of frequency dispersion can sup-
press the autonomous activity and thereby enhance de-
tection sensitivity, consistent with the proposed ampli-
tude death [27].

In short, the model array acts as a sensitive but robust
subthreshold signal detector over intermediate levels of
noise intensity and over intermediate levels of coupling,
thus providing a viable model for the AS. For higher nat-
ural frequencies and for higher forcing amplitudes, the ar-
ray exhibits an Andronov-Hopf bifurcation, rather than
the SNIC. Near this bifurcation, the array can function
as a sensitive frequency-selective detector. Though this
is not a viable model for the AS, the ability of the array
to shift from SNIC to an Andronov-Hopf bifurcation by a
simple change of parameter values suggests that similar
models may also capture the dynamics of auditory end
organs.
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II. ARRAY OF STOCHASTIC ADLER
OSCILLATORS

We begin in this section by defining the equation of
motion of a single phase oscillator and then extend it to
a coupled array. Next, we introduce the Kuramoto order
parameter and use it to interpret the results of numerical
simulations for the response of the array.

A. Driven Stochastic Adler Equation

A number of models, of varying complexity, have been
proposed to describe the motion of a hair bundle (see for
example [30], [31]). One simple theoretical model of the
auditory response is based on the Andronov-Hopf bifur-
cation [7]. In this model, the spontaneously oscillating
system exhibits an amplitude that is determined by an in-
ternal control parameter. In this paper, we focus on the
regime of oscillation far from the bifurcation, in which
the amplitude can be treated as a constant, and the in-
dividual oscillator can be described by an equation for
the time evolution of the phase. This simplification of
the normal form equation yields a driven version of the
well-known stochastic Adler equation (see Appendix A).
The equation of motion for the phase degree of freedom
θ, in dimensionless units, is given by:

dθ

dτ
= ω0 − f0 sin θ + fΩ sin(θ − Ωτ) + ξ(τ) (1)

The dimensionless time τ denotes the actual time multi-
plied by the mean angular frequency of the hair bundles
of the AS (about 190 rad/sec). The dimensionless natural
frequency ω0 is the natural angular frequency of a partic-
ular hair bundle, divided by the mean angular frequency
(the mean value of ω0 thus equals one). Next, f0 is a
steady force exerted on the hair bundle (“load’) – which
may be ramped in time – divided by the typical hydro-
dynamic drag force exerted on an unconstrained, sponta-
neously oscillating hair bundle (about 25 pN). Likewise,
fΩ is a force exerted by a periodic external drive divided
by the typical drag force. The angular frequency of the
drive equals Ω times the mean angular frequency. In
micromechanical experiments performed in vitro, both
f0 and fΩ are typically imposed by a piezoelectrically-
driven fiber attached to the hair bundle. Under in vivo

conditions, f0 is the force exerted by the otolithic mem-
brane [19], while fΩ is the force exerted by an acoustic
or seismic stimulus. Finally, ξ(τ) is a dimensionless vari-
able that represents the noise to which a hair bundle is
exposed. It is assumed, for mathematical convenience,
to be a Gaussian random variable with autocorrelation
function 〈ξ(τ)ξ(0)〉 = 2Dθδ(τ), where Dθ has the physi-
cal meaning of the phase diffusion coefficient. In an ear-
lier study [17], we showed that a number of measured
characteristics of single hair bundle dynamics, such as
phase diffusion, phase entrainment, and phase slips, are
reproduced satisfactorily by this equation, with Dθ of the
order of one.

FIG. 1. Solutions of Eq.1, with ω0 = 5 and with a load
f0(τ ) = 0.044 τ that is slowly ramped in time, obtained
without noise (a, Dθ = 0) and with noise (b, Dθ = 1).
The red arrow indicates the saddle-node bifurcation threshold
f0 = ω0 = 5.

.

The Adler equation itself (i.e., Eq. 1 with Dθ = fΩ =
0) is familiar from the physics of Josephson Junctions
and the driven pendulum [11]. It describes the transi-
tion from a quiescent to a dynamical state, characterized
by a periodic train of spikes (i.e., phase slips of 2π, oc-
curring from the quiescent state). The spike frequency
goes continuously to zero at the threshold f0 = |ω0|. In
dynamical systems theory, the Adler equation is the stan-
dard equation that illustrates the saddle-node bifurcation
[11]. If the oscillator is exposed to a periodic stimulus,
so if fΩ 6= 0, then for Dθ = f0 = 0, the bifurcation oc-
curs at fΩ = |ω0|, in the form of a transition between
a state in which the phase precesses with frequency Ω
(θ(τ) = Ωτ + constant) to a state in which a train of
periodic phase-slips is superimposed on the phase pre-
cession.
Figure 1 compares examples of numerical solutions of

Eq.1 for the noise-free case (a, Dθ = 0) and for the case
with noise (b, Dθ = 1). The load f0(τ) = 0.044 τ is
slowly ramped in time, while fΩ = 0 in both cases. The
red arrow indicates the bifurcation threshold f0 = ω0 =
5. In the above-threshold regime, the system undergoes
nonlinear oscillations whose frequency is reduced to zero
at the threshold f0 = 5 (red arrow). Below threshold
the system is quasi-static. In the presence of noise, there
is no clear bifurcation threshold. Importantly, stochastic
spike events persist below threshold.

B. Array of Decoupled Oscillators

We previously showed that, in the absence of coupling,
an ensemble of noisy, sub-threshold Adler oscillators can
function as a remarkably sensitive broadband detector
[22]. A stimulus that is too weak to activate the os-
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cillator in the absence of noise still can modulate the
statistical probability for a noise-triggered spike. This
is illustrated in Fig. 2(a), which shows the result of su-
perimposing 400 separate realizations of the numerical
solutions of the subthreshold, driven, noisy Adler equa-
tion, in the presence of a weak stimulus (with a frequency
Ω = ω0/4). Though individual oscillators only rarely un-

FIG. 2. Superposition of 400 sub-threshold, uncoupled hair
bundles that obey Eq.1 with Dθ = 0.05, ω0 = 1, f0 =
1.15, Ω = 0.25, and fΩ = 0.1. The bottom panels show the
number of oscillators N that undergo a phase slip event in
a fixed time window. Blue line: stimulus. (a) No frequency
dispersion is introduced (∆ = 0). (b) The oscillators exhibit
frequency dispersion (∆ = 0.5).

dergo a phase-slip event, when it occurs, it does so at a
preferred phase of the stimulus. It follows that for a suf-
ficiently large array, there is always a subset of oscillators
that spikes at the preferred phase of each stimulus cycle.
The spiking of a large array of decoupled noisy Adler os-
cillators, exhibiting the same natural frequency, is thus
synchronized with respect to the stimulus. The presence
of intrinsic noise is essential here, as there would be no
phase-slip events in the absence of fluctuations. When
the noise amplitude, determined by Dθ, was varied, the
signal-to-noise ratio (SNR) exhibited a maximum at in-
termediate values of Dθ, an example of the stochastic
resonance phenomenon.
In order to examine the effects of introducing a fre-

quency dispersion among the hair bundles, we assumed a
Lorentzian probability distribution g(ω0) for the natural
frequencies, with a mean equal to one:

g(ω0) =
∆

π

1

(ω0 − 1)2 +∆2
(2)

The (dimensionless) width ∆ is a measure of the fre-
quency dispersion. For the case of the AS, ∆ is esti-
mated to be of the order of 0.5. The top panel of Fig.
2(b) shows the superimposed time traces of the oscilla-
tor phases for ∆ = 0.5. In this case, there is in general
a fraction of oscillators with natural frequencies above
threshold. This corresponds to the phase trajectories
that steeply increase in time. The bottom panel, showing
the spike histogram, indicates that the detection sensi-
tivity has been significantly degraded in comparison with
the dispersion-free case in Figure 2(a). In the presence of
strong frequency dispersion, an array of decoupled noisy
Adler oscillators could not be a sensitive detector of weak
stimuli. In the subsequent sections, we will explore the
effects of coupling the hair bundles.

C. Driven Noisy Kuramoto-Adler Model (DNKA)

The equations of motion for a coupled array of noisy
driven Adler phase oscillators are:

dθi
dτ

=ω0i − f0 sin θi + fΩ sin(θi − Ωτ) + ξi(τ)

− 1

N

N
∑

j=1

Ki,j sin(θi − θj)
(3)

which we will refer to as the Driven Noisy Kuramoto-
Adler Model (DNKA) model. Here, θi=1..N are the phase
degrees of freedom of N hair bundles, while the Ki,j/N
are dimensionless coupling constants between hair bun-
dles i and j such that Ki,j/N is the force exerted by hair
bundle i on hair bundle j in units of the typical drag
force. The physical origin of the coupling is as follows.
As already mentioned, hair cells of the sacculus are cou-
pled by an overlying otolithic membrane [19]. The sim-
plest continuum theory model for the membrane treats it
as a uniform, two dimensional elastic sheet. In Appendix
A, we show that in that case, the coupling constant Ki,j



5

decays very slowly with the separation |ri,j | between the
oscillators, following 1/ log(ri,j/a) dependence, where a
denotes the mean spacing between the hair bundles of the
AS. When applied to the AS, ri,j/a does not exceed 103

so as a reasonable approximation, we replace the coeffi-
cients Ki,j with a single constant K (estimated to be of
the order of 10 for the AS [32]). Finally, the same load f0
and sinusoidal stimulus fΩ is exerted on each oscillator
of the system.

D. Order parameter

In the thermodynamic limit N → ∞, many-body sys-
tems with infinite-range coupling, such as the DNKA
model with Ki,j = K, can be treated exactly by mean-
field theory. The response of a system in this limit can
be characterized in terms of an order parameter. For the
DNKA model, this is the Kuramoto order parameter:

r(τ)eiψ(τ) =
1

N

∑

j

eiθj(τ). (4)

In the absence of applied forces or stimuli (i.e., f0 =
fΩ = 0), the dynamical mean-field theory (DMFT) for
the Kuramoto order parameter can be shown to describe
a separate bifurcation transition, at a critical coupling
constant Kc, from an incoherent state with r = 0 to
a coherent state with non-zero r. For the Lorentzian
frequency distribution, the critical coupling constant is
Kc = 2(Dθ + ∆). The transition has the character of a
second-order phase transition with the order parameter
going to zero continuously as ρ =

√

1−Kc/K [33, 34].
Note, from the expression for Kc, that intrinsic noise and
frequency dispersion appear to combine in an additive
manner. It would seem that frequency dispersion simply
provides a second source of noise, with an effective phase
diffusion coefficient ∆.
Figure 3 shows the superimposed trajectories of a sys-

tem of 400 phase-oscillators with a coupling constant
K = 15 for increasing noise levels Dθ. The remaining
parameters are the same as in Fig. 2(b) with a frequency
dispersion ∆ = 0.5, load f0 = 1.15, stimulus amplitude
fΩ = 0.1, and stimulus frequency Ω = 0.25. The sys-
tem is thus on average below threshold. The phase ψ
of the order parameter is shown in Figure 3 as a light
blue line (thick light gray line in print). For Dθ = 0.5,
the noise level is already sufficiently high to allow for
the occurrence of sporadic, incoherent phase-slip events.
For Dθ = 2.5, a sequence of collective phase-slip events
is triggered at a specific phase of the stimulus. The or-
der parameter now rotates in the complex plane in phase
with the periodic stimulus. Up to this point, K was
larger than the critical value Kc = 2(Dθ +∆) for phase
synchronization. If the noise level is increased to Dθ = 8,
which means that K is less than Kc, then the noise trig-
gers an avalanche of phase slips. Phase coherence with
the stimulus is lost. The time-averaged amplitude rave
of the order parameter steadily decreases to zero as the
noise level increases (Figure 3(d)).

FIG. 3. Superposition of 400 coupled hair bundles that obey
Eq.3 with ∆ = 0.5, f0 = 1.15, Ω = 0.25, fΩ = 0.1, and K =
15. The noise intensity increases: (a) Dθ = 0.5, (b)Dθ = 2.5,
and (c) Dθ = 8. Light blue (thick light gray) lines show
the phase of the order parameter. Blue (black) lines indicate
the sinusoidal stimulus. The time-averaged order parameter
amplitude rave is shown separately in (d). The solid line
indicates a numerical fit of the data.

III. DYNAMICAL MEAN-FIELD THEORY

In this section, we discuss the dynamical mean field
theory (DMFT) phase diagram of the DNKA model for
non-zero steady load f0 with both intrinsic noise and
frequency dispersion. No stimulus is introduced in this
section. We define ρω0,τ (θ) to be the probability dis-
tribution of the phase degrees of oscillators with nat-
ural frequency ω0. The full probability distribution is
ρω0,τ (θ)g(ω0), where g(ω0) is the Lorentzian frequency
distribution. The time-dependent order parameter is ob-
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(d) Ω0 = 1 HSimulationL (e) Ω0 = 1.8 HSimulationL (f) Ω0 = 3.5 HSimulationL

(a) Ω0 = 1 HDMFTL (b) Ω0 = 1.8 HDMFTL (c) Ω0 = 3.5 HDMFTL

FIG. 4. Solutions of the DMFT equations in the absence of frequency dispersion by the spectral method (top row), as
compared with numerical solution of the equations of motion for 400 coupled noisy Adler phase-oscillators (bottom row).
System parameters: K = 4, Dθ = 1, and fΩ = 0. The load f0(τ ) slowly increases in time ( df0/ dτ = 1/100). The natural
frequency is (a) ω0 = 1, (b) ω0 = 1.8, and (c) ω0 = 3.5. Depending on the value of the parameter, the system undergoes
different types of bifurcation: (a) and (d) show a SNIC bifurcation, (c) and (f) show an Andronov-Hopf bifurcation, and (b)
and (e) show a Bogdanov-Takens bifurcation. The three bifurcation points described here are also indicated in Figure 6.

tained from the distribution ρω0
(θ, τ)g(ω0) through

reiψ =

2π
∫

0

∞
∫

−∞

eiθρω0
(θ, τ)g(ω0) dθ dω0 (5)

The probability distribution ρω0
(θ, τ) is the solution of

the Fokker-Planck (FP) equation for the DNKA model
given by:

∂ρ

∂τ
= Dθ

∂2ρ

∂θ2
− ∂

∂θ
[(ω0−f0 sin θ+Kr(τ) sin(ψ(τ)−θ))ρ]

(6)
Equations 5 and 6 are a pair of self-consistent equations
that define the DMFT: the FP equation depends on the
time-dependent order parameter, while the order param-
eter is determined by the solution of the FP equation.
Taking the time derivative of Eq.4, and using the FP
equation, we obtain the following equations for the order
parameter:

dr

dτ
= −(Dθ +∆)r + (1− σ2

r )(Kr + f0 cosψ) + β2f0 sinψ

(7a)

dψ

dτ
= ω0 − f0(σ

2
r/r) sinψ − β2(K + (f0/r)) cosψ

(7b)

Here, σ2
r =

〈

cos2(θ − ψ)
〉

is a measure of the fluctu-
ations of the phase angle of individual oscillators with

respect to that of the order parameter, while β2 =
〈cos(θ − ψ) sin(θ − ψ)〉 is a measure of the asymmetry of
the angle distribution function around the mean. Note
that the combination (Dθ + ∆) appearing in the first
equation again suggests that intrinsic noise and frequency
dispersion contribute in a similar fashion, in this case to
the decay rate of the order parameter amplitude. The
averages < ... > must be computed with respect to the
full probability distribution ρω0

(θ, τ)g(ω0). In the next
sections, we will discuss solutions for the pair of coupled
equations by two different methods.

A. Spectral Method

The “spectral method” [34] focuses on the time-
dependent complex Fourier amplitudes of the probability
distribution:

zn(τ) =

2π
∫

0

dθ

∞
∫

−∞

dω0 e
inθρω0

(θ, τ)g(ω0) (8)

Note that z0 = 1, while z1 is the order parameter with
z−1 its complex conjugate. Taking the derivative with
respect to time, and using the FP equation, we obtain a
hierarchy of coupled first-order differential equations

dzn
dτ

= (inω0 − n2Dθ − n∆)zn+

+
n

2
(Kz1 + f0)zn−1 −

n

2
(Kz−1 + f0)zn+1

(9)
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The hierarchy can be truncated for larger n, since the
decay rate of the high-frequency modes increases as n2,
due to the intrinsic noise. Note that intrinsic noise
and frequency dispersion here act in a different man-
ner: the contribution due to the frequency dispersion
grows only linearly with n. This set of equations is sol-
uble for Dθ = 0 [28], but for non-zero Dθ, one must
seek numerical solutions. To that purpose, we treat the

array ~Z(τ) ≡ (z1, z−1, z2, z−2.......zM , z−M ) as a time-
dependent vector in a 2M -dimensional space, where we
set the zk with |k| > M to be equal to zero. In the fig-
ures in this paper, k = 80; higher k values show same

results. The trajectory of ~Z(τ) can then be obtained by
numerical integration, starting from a given initial state
~Z(τ = 0), and continuing the integration until a steady
state is reached that is independent of the initial condi-
tions.
The solution of the DMFT is simplest in the absence

of frequency dispersion (∆ = 0), when the natural fre-
quency ω0 can be treated as a fixed parameter. Fig-
ure 4 compares the predictions of DMFT with a simu-
lation of 400 coupled oscillators, for K = 4, Dθ = 1,
and different values of the natural frequency ω0. The
stimulus amplitude fΩ was set to zero, while the load
was slowly increased as a function of time, as in Figure
1. DMFT adequately reproduces the numerical results
for ω0 = 1. The appearance of spontaneous oscillations
has, in DMFT, the character of a saddle-node bifurca-
tion, with the frequency going to zero at the bifurcation
point. In fact, because the phase of the order parameter
and the amplitude of the order parameter are separate
dynamical variables, it is more accurate to call this a
SNIC bifurcation.
For ω0 = 1.8, both the frequency and amplitude go to

zero at the onset of spontaneous oscillations in DMFT.
This is a characteristic of a Bogdanov-Takens (BT) bi-
furcation. When compared to numerical simulations,
DMFT misses the higher harmonics. For ω0 = 3.5, the
frequency remains constant, and the onset of spontaneous
oscillations has the character of an Andronov-Hopf bi-
furcation. The “finite-N fluctuations” appear to have a
stronger smearing effect on the Andronov-Hopf bifurca-
tion than on the SNIC bifurctation.

B. Stationary States and Linear Stability

A second method of solving the DMFT starts from the
FP equation with a time-independent order parameter:

Dθ
∂2ρ

∂θ2
− ∂

∂θ
[(ω0 − f0 sin θ +Kr sin(ψ − θ))ρ] = 0 (10)

This equation can be solved analytically [35], yielding ex-
plicit expressions for quantities σ2

r and β2 in terms of r
and ψ (see the Appendix B). The static order parame-
ter is then obtained self-consistently from Eq. 7, with
the left side set to zero. The stability limits are estab-
lished by linearizing Eq. 7 around the static solutions.
The nature of the bifurcation is determined from the lin-
ear stability analysis of these static solutions, which was

FIG. 5. Arnold Tongue: Order parameter obtained by the
spectral method for Dθ = 1 in the absence of frequency dis-
persion. (a) K = 1.8 and (b) K = 4. The horizontal axis is
the natural frequency ω0, and the vertical axis is the steady
load f0. The color scale represents the amplitude of the static
order parameter. Red (bright): high amplitude; blue (dark):
low amplitude. Inside the yellow-red colored (gray) wedge,
the static order parameter is stable. The black line in the (a)
represents the bifurcation line of a single Adler equation. For
K < Kc, the order parameter undergoes an Andronov-Hopf
bifurcation. The lines in (b) represent the different bifurca-
tions obtained from the linear response theory with the sta-
tionary solution of the mean-field Fokker-Planck equation. H
indicates an Andronov-Hopf bifurcation (red (dotted line)),
SN a SNIC bifurcation (black), and BT a Bogdanov-Takens
bifurcation. The three arrows correspond to the three time-
traces in Figure 4.

performed using MatCont. The result is shown in Figure
5(b) and Figure 6. As before, we set the frequency dis-
persion to zero (∆ = 0). The horizontal axis in Figure
5 is the average natural frequency ω0, while the vertical
axis is the steady load f0. The color scale represents the
amplitude of the zero-frequency component of the order
parameter, with red (darker) shades representing higher
amplitudes. For larger ω0, the system enters the static
state at progressively higher values of the imposed offset.
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Solid lines represent the loci of bifurcations obtained from
the linear stability analysis of Eq. 7. Black solid lines in
Figure 5(a) denote SNIC bifurcations of a single Adler
equation and mark the stability limits of the static solu-
tion. The delineated region of phase space is an example
of an Arnold Tongue and the boundaries of the Arnold
Tongue are aligned with the loci of bifurcations.

The bifurcation dynamics of the full system depends
on the coupling strength. A single Adler equation under-
goes a SNIC bifurcation. However, forK < Kc, the order
parameter of the coupled array undergoes an Andronov-
Hopf bifurcation, since the oscillators are in an incoher-
ent state. In Figure 5(a)(K = 1.8 < Kc), the Arnold
Tongue shows a gradual increase of the order parameter,
so the boundaries of the Arnold tongue are not aligned
with the SNIC bifurcation lines (solid black lines). This
indicates that the bifurcation is not a SNIC bifurcation
when the coupling strength is below the critical coupling
constant. For K = 4 (Figure 5(b)), the bifurcation di-
agram is more complex than in Figure 5(a). For small
ω0, the stability limit of the static solution remains a
SNIC bifurcation, while for larger values of |ω0|, the sta-
bility limit of the static solution is an Andronov-Hopf
bifurcation, shown as red dotted lines. Accordingly, for
smaller ω0, the frequency of the spontaneous oscillation
goes to zero at the bifurcation, while for larger ω0, it is
the amplitude of the oscillation that goes to zero at the
bifurcation. The crossover regime is more complex and
includes a Bogdanov-Takens bifurcation, where both am-
plitude and frequency go to zero. Increasing the coupling
between the phase oscillators thus not only enhances the
phase coherence, it also alters the dynamics of mode-
locking by introducing Hopf and BT bifurcations.

This mode-locking diagram is very similar to that
obtained for a single oscillator using the Normal-Form
Equation of the Andronov-Hopf bifurcation [36], which
has two degrees of freedom. In the mean-field limit of
large N, the many-oscillator model thus has a mode-
locking bifurcation diagram that is similar to that of a
dynamical system with only two coupled degrees of free-
dom.

We can combine the results of the spectral and linear-
response methods. The three arrows in Figure 6, marked
“SN”, “BT”, and “H”, correspond to the three time
traces obtained from the spectral method shown in Fig-
ure 4. The three time traces indeed correspond to the
three amplitude-frequency signatures predicted by the
linear response theory. In Figure 6, we show the aver-
age decay rate of the amplitude of the order parameter
〈dr/ dτ〉, as computed by the spectral method forK = 4,
starting from r = 1. Dark blue (gray) region in Figure 6
denotes 〈dr/ dτ〉 = 0, indicating that the order parame-
ter is time independent, while the light blue (light gray)
region, 〈dr/ dτ〉 6= 0, shows that the order parameter is
oscillating. The color map of the order-parameter decay
rate 〈dr/ dτ〉 displays the precise limits of the Arnold
Tongue that are bounded by the bifurcation lines from
the analysis of DMFT.

FIG. 6. Mode-locking diagram for K = 4 and Dθ = 1 in the
absence of frequency dispersion, as obtained by the spectral
method. The horizontal axis is the mean natural frequency,
and the vertical axis is the steady load. The color map rep-
resents time average of the time derivative (〈 dr/dτ 〉) of the
order parameter amplitude r, starting from r = 1. Dark blue
(dark gray) indicates that the order parameter does not de-
cay with time, while lighter shades indicate increasing rates
of decay of the order parameter. The lines indicate the bi-
furcations obtained by the linear-response theory, while the
three arrows correspond to the three time traces of Figure 4.

C. Frequency Dispersion

With these preliminaries, we can now compare the ef-
fects of intrinsic noise and dispersion on coherent oscil-
lations of the order parameter. One might expect that
the bifurcation diagrams will be smeared out if ω0 is a
random variable. However, the sequence of SNIC, BT,
and Andronov-Hopf bifurcations in DMFT we found for
∆ = 0 resembles that found for Dθ = 0 but finite ∆ in
ref. [28].

We will compare the two cases by focusing on the av-
erage decay rate of the order parameter. We first do this
for the case with negligible frequency dispersion. Figure
7 shows the average decay rate of the amplitude of the
order parameter as a function of f0 and Dθ (Figure 7(a)),
and as a function of f0 and ∆ (Figure 7(b)). Dark blue
(dark gray) indicates that the order parameter is inde-
pendent of time, while lighter shades indicate a non-zero
time derivative associated with order-parameter oscilla-
tions. The top figure shows the case of varying noise lev-
els and negligible frequency dispersion. The horizontal
axis is the noise level and the vertical axis the static off-
set f0. For f0 = 0 and varying Dθ, the order-parameter
is time-dependent for Dθ less than ∼ 2.0. This is the
location of the Kuramoto synchronization transition for
K = 4. For Dθ = 0 and varying f0, this transition oc-
curs around f0 = 1, which is the location of the SNIC
bifurcation for ω0 = 1. As Dθ increases, the location of
the onset of coherent oscillations does not change signif-
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Dθ

FIG. 7. Kuramoto Synchronization in the presence of noise
(a) and frequency dispersion (b). The color map represents
the time derivative of the order parameter amplitude. Dark
blue (dark gray) indicates that the order parameter is time-
independent, while lighter shades indicate that the order pa-
rameter is increasingly time dependent. Red (gray curves
between two regions) lines indicate instability onset regions
where 0 < 〈 dr/dτ 〉 < 0.08. K=4 in both cases. (a) No fre-
quency dispersion with ω0 = 1. Horizontal axis: noise level
Dθ. Vertical axis: steady load f0. (b) No noise. Horizontal
axis: frequency dispersion ∆. Vertical axis: steady load f0.

icantly, as long as Dθ is less than one. However, for Dθ

greater than one, the threshold static offset for the oc-
currence of coherent oscillations rapidly decreases below
ω0 = 1 with increasing Dθ, until it approaches the Ku-
ramoto synchronization at f0 = 0. The onset of coherent
oscillations for f0 less than ω0 = 1 has the character of
an Andronov-Hopf bifurcation and can be viewed as a
form of the Kuramoto synchronization threshold.

Next, Fig. 7(b) shows the case of varying frequency
dispersion and negligible intrinsic phase noise. Two di-
agrams have some differences when Dθ < 1 and ∆ < 1.
The static offset for the bifurcation point slightly in-
creases as Dθ increases, when Dθ < 1. This implies that
higher offset is required to reach the bifurcation point,
because the system shows more robust coherent oscil-

lations when an intermediate level of noise (Dθ < 1) is
introduced into the system. On the other hand, the offset
point for the bifurcation decreases slightly as ∆ decreases
in Figure 7(b). This indicates that the spontaneous co-
herent oscillations degrade as the frequency dispersion
increases. However, when Dθ > 1 and ∆ > 1, the transi-
tion regions of the two figures are essentially similar and
can be interpreted in the same manner. We conclude
that, within DMFT and the spectral method, the effects
of intrinsic noise and frequency dispersion are closely sim-
ilar. Similar conclusions were drawn previously in refs.
[33] and [37].

IV. STIMULUS DETECTION BY A COUPLED
DNKA ARRAY

We now introduce the external stimulus into the cou-
pled equations of motion in order to explore the detection
sensitivity of the array. The equations of motion are now:

dθi
dτ

= ωi +Kr sin(θi − ψ)− f0 sin θi

− fΩ sin(θi − Ωτ) + ξi(τ)
(11)

The parameters f0, K, ∆, and Dθ are chosen so that in
the absence of stimulus (fΩ = 0), the system is poised
in the quiescent region of the Arnold Tongue, but close
to a bifurcation. The response of the array to an im-
posed stimulus is quantified by the power spectral density
(PSD) of the order parameter S(ω), defined as:

S(ω) = | 1√
T

T
∫

0

r(τ)eiψ(τ)e−iωτ dτ |2 (12)

with T the measurement duration (in dimensionless
units). The PSD has a peak at ω = 0 with a width
1/T . The signal-to-noise ratio (SNR) can be defined as

SNR =
S(ω = Ω)fΩ 6=0

S(ω = Ω)fΩ=0
(13)

A. Stimulus detection near the SNIC bifurcation

We first consider a system that is poised on the qui-
escent side of a SNIC bifurcation, and compute its re-
sponse to a periodic stimulus. Figure 8 shows the re-
sults, obtained for the case with no dispersion (∆ = 0).
Panels (a)- (f) of the figure show the order parameter
with stimulus, computed at different phase diffusion co-
efficients Dθ. After a brief transient, the order parameter
amplitude r decreases with increasing Dθ. The order pa-
rameter phase is zero in all cases. For Dθ = 0.5, the
order parameter oscillates with a low amplitude at the
drive frequency (Figure 8 (a)). Since f0 + fΩ = 1.25 ex-
ceeds ω0 = 1, the system remains below threshold in the
presence of the stimulus. The power spectrum has two
small peaks, near Ω/2 and Ω (Figure 8 (d)). If the noise
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FIG. 8. Stochastic resonance near a SNIC bifurcation point in the absence of frequency dispersion. The response of a coupled
DNKA array, poised near a saddle-node bifurcation, and subject to a sinusoidal stimulus. The system parameters are K = 15,
ω0 = 1.0, and f0 = 1.15. The stimulus frequency is Ω = 0.25, and the stimulus amplitude is fΩ = 0.1. The top panels, (a)-(c),
represent time-dependent real part of the order parameter, computed at three different values of the phase diffusion coefficient
Dθ: (a) Dθ = 0.5, (b) Dθ = 3, and (c) Dθ = 8. The bottom panels, (d)-(f), show the corresponding power spectra. (g) Power
output S(ω = Ω) as a function of the noise level Dθ and coupling constant K. Red (gray) dots in this panel represent K and
Dθ values of plots shown in (a)-(f), as indicated by the arrows. The black line in (g) represents the Kuramoto transition line.
The system exhibits clear stochastic resonance.

intensity is increased to Dθ = 3, then the order parame-
ter (Figure 8 (b)) exhibits a regular train of high ampli-
tude limit-cycle spikes. The power spectrum (Figure 8
(e)) shows a harmonic series at integral multiples of the
drive frequency Ω, which indicates 1 : 1 mode-locking of
the array to the drive. The response is, however, highly
non-linear: the spike train bears little resemblance to the
stimulus. The different amplitudes reflect the Fourier
components of a single limit cycle at the harmonics of
the fundamental frequency Ω. In this regime, the SNR
is very large. Finally, when the noise level is raised to
Dθ = 8, the spike train collapses, and the response to
the stimulus is negligibly small compared to Dθ = 3.

The final panel, Figure 8 (g), shows the power output
at the drive frequency, S(ω = Ω), as a function of the
noise level Dθ and coupling constant K. The power out-
put shows a noise-induced enhancement, for intermediate
levels of noise levels, a signature feature of stochastic res-
onance (SR). Increasing the coupling increases the range
of Dθ values over which SR is effective and shifts it to

higher values of Dθ. For fixed Dθ, the enhancement of
the output power as a function of K is also restricted to
a range of intermediate values of K. As K is increased,
one encounters first a lower threshold value where the
output power rapidly increases. The power output then
continues to increase with K until an upper threshold
is reached, where the power output precipitously drops
to zero. The threshold for Kuramoto synchronization at
Kc = 2(Dθ + ∆) is indicated in Figure 8 with a solid
black line. Hence, stimulus detection occurs only if the
Kuramoto order parameter is well developed; however,
if the coupling is too strong, the stimulus detection col-
lapses.

Figure 9 shows a plot of the output power at the drive
frequency (S(ω = Ω)), as a function of the drive ampli-
tude fΩ and the drive frequency Ω. Stimulus detection
is restricted to lower frequencies. However, as the fre-
quency is reduced, the output power diminishes, initially
slowly, but then quite strongly at very low frequencies.
However, the SNR remains large even when the frequency
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FIG. 9. Frequency selectivity near the SNIC bifurcation. (a)
Power output S(ω = Ω) as a function of the stimulus fre-
quency Ω and stimulus amplitude fΩ, for Dθ = 1, ∆ = 0,
K = 15, f0 = 1.15. (b) Power output S(ω = Ω) as a func-
tion of the stimulus frequency Ω, for various values of fΩ
(0.001, 0.01, 0.1), and with K = 15, Dθ = 2.5, and f0 = 1.15.
For ∆ = 0, the results are shown in bright green, bright
magenta, and bright blue (light shades of gray, curves with
slightly higher S(Ω) values for a given stimulus amplitude).
For ∆ = 1.5, the curves are shown in dark green, dark ma-
genta, and dark blue (dark shades of gray, curves with slightly
lower S(Ω) values for a given stimulus amplitude ). The cou-
pled DNKA array clearly shows high SNR at low-frequency
range. The frequency dispersion degrades the responsiveness,
but the stochastic resonance is still present at low frequency.

approaches Ω = 0. Note that there is no maximum at
Ω/ω0, so the array exhibits no frequency selectivity. As
the stimulus amplitude fΩ is decreased, the interval of
stimulus frequencies over which the array responds to
the drive decreases in size. There is a rapid decrease of
the output power at low frequencies around fΩ = 0.1,
when the stimulus amplitude drops below the activation
threshold of the detector. The linear response regime
fΩ < 0.1 is shown in more detail in Figure 9(b).

Next, we computed the response in the presence of a
moderate level of frequency dispersion (∆ = 1.5). The
first row of the Figure 9(b) shows that the frequency
dispersion degrades the responsiveness, but the enhance-
ment of the signal by SR is still present at low frequencies.

The time trace of the order parameter shows clear SR
even with frequency dispersion. Figure 10 shows the time

FIG. 10. Stochastic resonance in the numerical simulation of
a 400-element coupled DNKA array and comparison to the
mean-field DNKA array. Response of a coupled DNKA array
to a sinusoidal stimulus of amplitude fΩ = 0.1 and frequency
Ω = 0.25. The parameters of the array are: Dθ = 1, ∆ = 0.5,
K = 15, f0 = 1.15. Left column, parts (a), (c), and (e):
the time-dependent real part of the order parameter (verti-
cal axis) vs τ/2π. The noise levels are: (a) Dθ = 0.5, (c)
Dθ = 3, and (e) Dθ = 8. Red (thin light gray) lines show the
DMFT result, and the blue (thick dark gray) lines show the
numerically computed order parameter, for an array of 400 os-
cillators. Right column, parts (b), (d), and (f): corresponding
power spectra of the order parameter.

trace of the order parameter with ∆ = 0.5. The first row
((a), (b)) shows the effects of introducing a low level of
intrinsic noise (Dθ = 0.5). The DMFT order parame-
ter (Figure 10(a), red line(light gray)) shows sinusoidal
oscillation. The order parameter of the finite array of
400 oscillators, though noisy, is also roughly sinusoidal
(Figure 10(a)), as indicated by the blue (dark gray) line.
Interestingly, the oscillation amplitude of the finite ar-
ray exceeds that of the DMFT. The large “central” peak
in the power spectrum (Figure 10(b)) for small ω is the
noise-broadened ω = 0 delta function associated with a
static order parameter. The response to the applied sig-
nal is given by the small peak at 0.25. When the intrinsic
noise level is increased to Dθ = 2.5 (Figure 10(c),(d)),
the system responds to the stimulus with a regular, high
amplitude spike train. The numerically computed order
parameter shows similar spikes, though with a lag with
respect to the DMFT spike train (Figure 10(c)). The cor-
responding power spectrum (Figure 10(d)) is a harmonic
series, showing integral multiples of the drive frequency.
The SNR is very large, about ≈ 10. Finally, for Dθ = 8
(Figure 10(e),(f)), the system again no longer responds to
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the stimulus. The introduction of a moderate frequency
dispersion thus has affected neither the output power nor
the SR signal amplification in a significant manner. Un-
like the decoupled system, the coupled array can function
as a sensitive stimulus detector that is robust against the
introduction of a significant amount of frequency disper-
sion.
Could frequency dispersion actually enhance the detec-

tion sensitivity analogously to the effect of phase noise?
The dependence of the output power S(Ω) at the drive
frequency on the dispersion ∆ is shown in Figure 11,
for different values of the coupling constant K. In the

FIG. 11. Power output vs. frequency dispersion, computed
using the spectral method. Power at the drive frequency (Ω =
0.25) is plotted as a function of the frequency dispersion ∆,
for fΩ = 0.1, Dθ = 0.5, and f0 = 1.15, for different values
of the coupling constant K. The system does not exhibit
stochastic resonance with varying frequency dispersion.

DMFT limit, the power output decreases monotonically
as a function of ∆ for all values of K, showing no indi-
cation of stochastic resonance. However, numerical solu-
tions of the equations of motion for 400 oscillators show
examples of stochastic resonance effects induced by fre-
quency dispersion. The effect is, however, not consistent:
different sets of randomly chosen frequencies, drawn from
the same statistical distribution, may or may not show
stochastic resonance effects. The effect disappears in the
thermodynamic limit.

B. Stimulus detection and the Hopf-Kuramoto
transition

The response of the array undergoes a drastic change
when it is poised near the line of Hopf-Kuramoto tran-
sitions, which occurs at larger values of the static offset
and natural frequency (see Figure 5). Parameters were
chosen so that the system is in the regime of coherent
oscillations for Dθ = 0, with f0 below ω0. The line of
bifurcations is crossed by increasing the level of phase
noise Dθ (see Figure 12).
At the lowest noise level (Dθ = 0.02), the spontaneous

oscillations exhibit a large amplitude, and hence, the or-

der parameter is non-zero. Imposing a stimulus intro-
duces two weak side bands into the power spectrum, po-
sitioned on opposite sides of the peak at the drive fre-
quency Ω (Figure 12(g)). If the noise level is increased
to Dθ = 0.9, then the amplitude of the spontaneous os-
cillations slowly damps to zero, indicating that the sys-
tem is poised on the quiescent side of a Hopf-Kuramoto
bifurcation (Figure 12(b)). When the stimulus is intro-
duced (Figure 12(e)), the power spectrum shows a robust
response at the drive frequency (Figure 12(h)). The re-
sponse is harmonic, unlike the SNIC case, with only a
single peak in the power spectrum. When the noise level
is further increased to Dθ = 8 (Figure 12(c), (f), (i)),
the amplitude of the response strongly diminishes. The
optimal detection sensitivity at intermediate noise levels
could be viewed as a remnant of the SR effect.
Figure 12(j) is a plot of the output power at the drive

frequency as a function of the coupling constant and Dθ.
For increasing Dθ, there is an initial steep rise of the out-
put power. The output power diminishes continuously
to zero and vanishes at the Kuramoto synchronization
threshold (black line); this transition could be called a
Kuramoto-Hopf bifurcation.
Figure 13 shows the output power as a function of the

drive frequency and amplitude.It has the shape of a clas-
sical Arnold Tongue that extends down to the natural fre-
quency at the lowest drive amplitudes. The array is most
sensitive to the stimulus when the stimulus frequency
matches the natural frequency ω0. The detector array
now has a reasonable level of frequency resolution. It
should be recalled however that the individual elements
of the array are phase oscillators that do not show an
Andronov-Hopf bifurcation: the Andronov-Hopf bifurca-
tion is a collective (or emergent) property of the coupled
array.
The observed frequency dependence is similar to a con-

ventional resonance peak. Note that the peak width nar-
rows when the drive amplitude is decreased. This reso-
nance peak of the array of coupled phase-oscillators re-
sembles that of a single Hopf oscillator [7]. However, in
this instance, the “quiescent” state of the system is com-
posed of an array of active but mutually incoherent phase
oscillators.

V. CONCLUSION

We examined the forced Kuramoto model for an array
of coupled phase oscillators in an environment with a sub-
stantial level of phase noise and with a substantial level
of frequency dispersion between the oscillators. Stim-
ulus detection requires the Kuramoto order-parameter
to be finite. We found the impact of phase noise and
frequency dispersion on the Kuramoto order parameter
to be quite similar. In both cases, there is a thresh-
old where the order-parameter vanishes continuously. In
both cases, the onset of quiescence under the application
of a steady load is described by an Arnold Tongue, with
the quiescent state separated from the oscillatory one by
lines of SNIC and Andronov-Hopf bifurcations, joined at
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FIG. 12. Response of the coupled DNKA model near a Hopf bifurcation. An array of coupled oscillators, with large frequency
dispersion, is subject to a stimulus of frequency Ω = 0.9 and amplitude fΩ = 0.02. The system parameters are f0 = 0.5, and
∆ = 0.16. For panels (a)-(i), the coupling constant is fixed at K = 0.8; in panel (j), it is varied. First row: time-dependent real
part of the order parameter, without stimulus. Second row: time-dependent real part of the order parameter, with stimulus.
Third row: corresponding power spectra, with stimulus. The columns correspond to different phase diffusion coefficients; (a),
(d), and (g): Dθ = 0.02; (b), (e), and (h): Dθ = 0.2; (c), (f), and (i): Dθ = 1. Arrows in (g), (h), and (i) indicate the
spontaneous frequency of the system. (j) Power output S(ω = Ω) as a function of the noise level Dθ and coupling constant
K. The black line denotes the Kuramoto-Hopf bifurcation line. The red (gray) dots show the K values used in top panels, as
indicated by the arrows.

a Bogdanov-Takens bifurcation point. We further showed
that the SNIC bifurcation dominates for larger coupling
coefficients while the Andronov-Hopf bifurcation domi-
nates for weaker coupling coefficients.

In contrast, the effects of phase noise and frequency
dispersion on stimulus detection are quite different. Near
a SNIC bifurcation, with the array functioning as a
subtreshold detector, phase noise produces a very pro-
nounced stochastic resonance (SR) effect, for an inter-
mediate range of noise intensities. The coupling between
the oscillators greatly enhances the sensitivity, but only
for an intermediate range of coupling constants, depen-
dent on the noise intensity. Frequency dispersion, on the
other hand, only degrades the sensitivity. In summary,
the quiescent array poised near a SNIC bifurcation can
function as a very sensitive signal detector in the presence
of substantial levels of phase noise and frequency disper-
sion. The amplification is highly nonlinear and shows
poor frequency selectivity.

When the array is “tuned” by the applied steady load
and noise levelDθ to be poised near the line of Andronov-
Hopf bifurcations, a very different form of stimulus de-
tection is encountered. The response of the array has a
resonance when the drive frequency equals that of the
natural frequency, reminiscent of that of a single Hopf
oscillator in the absence of noise. This feature is an emer-
gent property of the array, since the individual oscillators
do not exhibit an Andronov-Hopf bifurcation. The stimu-
lus detection of the coupled array near a Hopf-Kuramoto
bifurcation transition is robust against the introduction
of frequency dispersion and of phase noise.

It was already well known from the work of Kuramoto
and others that the decohering effects of both phase noise
and frequency dispersion are counteracted by coupling
oscillators into an array. It had also been shown earlier
[38] that SR is enhanced for a coupled array. The new
result of our work is that the ability of the coupled array
to function as a sensitive stimulus detector is restricted to
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FIG. 13. Frequency selectivity near the Kuramoto-Hopf bifur-
cation. (a) Power output S(ω = Ω) as a function of the stim-
ulus frequency Ω and stimulus amplitude fΩ, for Dθ = 0.2,
∆ = 0.16, K = 0.8, and f0 = 0.5. (b) Power output S(ω = Ω)
as a function of the stimulus frequency Ω, for various values
of fΩ (0.0001, 0.001, 0.01), computed with K = 0.8, Dθ = 0.2,
f0 = 0.5, and ∆ = 0.16.

an intermediate range of coupling constants. An overly

rigid array does not detect weak stimulus signals.

Another interesting aspect is the relaxation time of the
array. Studies of hair cells in the context of the mam-
malian cochlea normally assume that the oscillators are
poised near an Andronov-Hopf bifurcation, where fre-
quency selectivity and sensitivity are maximized. How-
ever, the array is intrinsically very slow near the Hopf
critical point, which could lead to a form of critical slow-
ing down. Figure 12(b) shows that critical slowing down
is also a feature of the present system for the case that
the array is poised near the line of Hopf-Kuramoto tran-
sitions. However, when the coupled oscillators are poised
near the SNIC line, then the response is fast, as shown
in Figure 8. The array is a very sensitive and very fast
detector of low frequency signals, which would seem con-
sistent with the biological function of the AS. Future
quantitative tests could focus on the question whether
signal detection by the AS is based on SR, which could
be tested by adding synthetic noise and measuring the
dependence of the SNR on the noise intensity.

An interesting outcome of our study is that the same
array can operate either as a SNIC or as a Hopf based
stimulus detector. Low-frequency detection of seismic
signals could be based on a coupled array of phase os-
cillators poised near a SNIC bifurcation. A comparable
model, with different frequency dispersion and coupling
characteristics, could be poised near the Andronov-Hopf
bifurcation, and hence exhibit frequency selectivity. Dif-
ferent versions of the current model could therefore repro-
duce a rich array of phenomenology exhibited by different
vestibular and auditory end organs of different species.
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APPENDIX

A. Coupling constant estimation from 2D Green’s
function

FIG. 14. Schematic diagram of 2D membrane

We can model the AS as a system of nonlinear oscilla-
tors coupled by a 2D elastic sheet. 2D Green’s function
for the homogeneous medium is given by [39]

Gx,x(r, θ) =
γ2 − 1

4πγ2µ

{

−γ
2 + 1

γ2 − 1
log(r) + cos2 θ

}

(14)

Gx,y(r, θ) =
γ2 − 1

4πγ2µ

sin(2θ)

2
(15)

Gy,y(r, θ) =
γ2 − 1

4πγ2µ

{

−γ
2 + 1

γ2 − 1
log(r) − cos2 θ

}

(16)

where γ2 = λ+2µ
µ , and λ and µ are Lame’s constants.

The displacement at ith site due to all the forces is,

ui,x =
∑

k

[Gx,x(ri,k, θi,k)fk,x +Gx,y(rk, θk)fk,y] (17)

ui,y =
∑

k

[Gy,y(ri,k, θi,k)fk,y +Gy,x(rk, θk)fk,x] (18)

We assume that the forces are exerted only in the x di-

rection,

ui,x =
∑

k

Gx,x(ri,k, θi,k)fk,x (19)

ui,y =
∑

k

Gy,x(ri,k, θi,k)fk,x (20)

Moreover, we are interested in the bundle motion in x-
direction only. As a result, the equation looks similar to
predictions based on the scalar elasticity theory:

ui,x =
∑

k

Gx,x(ri,k, θi,k)fk,x (21)

=

2π
∫

0

dθGx,x(ri,i, θi,i)fi,x +
∑

k,k 6=i

< Gx,x(ri,k, θi,k) > fk,x

(22)
Then, the difference between the scalar Green’s Func-
tion and the 2D Green’s function is given by the angle
dependence of the latter. Here, we can define hair bundle
density function such that

ρ =

{

N/(πr2) if a < r < r

0 if r < r < R
(23)

Then the average Green’s function is,

1

N

∫

d2rGx,x(r, 0)ρ (24)

=

2π
∫

0

r
∫

a

r dr dθ
γ2 − 1

4πγ2µ

{

−γ
2 + 1

γ2 − 1
log(r) + cos2 θ

}

1

πr2

=
−1

4πr2µ
[r2 log r− a2 log a− r

2 + a2]

+
−1

4πγ2r2µ
[r2 log r− a2 log a]

< G > ≈ −1

4πµ
[log r− 1] +

−1

4πγ2µ
[log r] (25)

G0 =
1

2π

2π
∫

0

dθGx,x(ri,i, θi,i)

=
γ2 − 1

4πγ2µ

{

−γ
2 + 1

γ2 − 1
log(a) +

1

2

}

(26)

Then, we can find the force in terms of displacements by
inverting the matrix.
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fi =
1

N





1

< Gx,x(ri,j , θi,j) > −G0

∑

j

(uj,x − ui,x)





=
1

N





1

−1
4πµ [

1
2 log r− 1] + −1

4πγ2µ [
1
2 log r]−

γ2−1
4πγ2µ

{

− γ2+1
γ2−1 log(a) +

1
2

}

∑

j

(uj,x − ui,x)





≈ 1

N

−4πγµ

(12 − log r

a)(γ + 1
γ )

∑

j

(uj,x − ui,x)

≈ 1

N

−4πµ(κ+ µ)

κ+ 2µ

1

(12 − log r

a )

∑

j

(uj,x − ui,x) (27)

where κ is bulk modulus, and µ is shear modulus for
2-D(κ = λ+ µ). Define C to be:

C =
−4πµ(κ+ µ)

κ+ 2µ

1

(12 − log r

a )
(28)

The final answer obtained is hence similar to the scalar
case.

1. Conversion to the Adler equation

Fourier Transform of the equation (27) yields:

fi(ω) =
1

N
C
∑

j

(uj,x(ω)− ui,x(ω)) (29)

We then substitute the force into the linear response
equation:

ui,x(ω) = χ(ω)fi(ω) (30)

ui,x(ω) = χ(ω)
1

N
C
∑

j

(uj,x(ω)− ui,x(ω))

=
Γ

i(ω − ωi)− ν

C

N

∑

j

(uj,x(ω)− ui,x(ω)) (31)

ui,x(ω)(1−
CΓ

i(ω − ωi)− µ
)

=
Γ

i(ω − ωi)− ν

−C
N

∑

j

(uj,x(ω)) (32)

ui,x(ω)((i(ω − ωi)− ν) + CΓ)

=
CΓ

N

∑

j

(uj,x(ω)) (33)

ui,x(ω)(i(ω − ωi)− (ν − CΓ))

=
CΓ

N

∑

j

(uj,x(ω)) (34)

We obtain the equation for ui,x by inverse Fourier trans-
form:

u̇i,x(t) = (i(ωi)+(ν−CΓ))ui,x(t)+
CΓ

N

∑

j

(uj,x(t)) (35)

Let ui,x = Aeiθi . Then,

θ̇ = ((ωi)− i(ν − CΓ)) − i
CΓ

N

∑

j

(ei(θj−θi)) (36)

θ̇ = ωi +
CΓ

N

∑

j

sin(θj − θi) (37)

0 = −(ν − CΓ) +
CΓ

N

∑

j

cos(θj − θi) (38)

Thus, the coupling constant for the Kuramoto model is

K =
−4πµ(κ+ µ)Γ

κ+ 2µ

1

(12 − log r

a )

.

B. stationary state solution

The stationary solution of eq.10 can be written as fol-
lows:

ρst = e(ω0θ+Kr cos(ψ−θ)+f0 cos θ)/Dθ (39)

[N − S

Dθ

θ
∫

0

e−(ω0x+Kr cos(ψ−x)+f0 cos x)/Dθ dx]

where S is the probability current, and N is the nor-
malization constant. S and N can be found from the
normalization condition and the periodicity of ρ.

2π
∫

0

ρst dθ = 1

ρst(θ) = ρst(θ + 2π)
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The result is:

N =



I− − 1

I+

2π
∫

0

θ
∫

0

e−(V (θ)−V (x))/Dθ dxdθ





−1

(40)

S =
Dθ

I+
(1− e−2πω0/Dθ ) (41)



I− − 1

I+
(1 − e−2πω0/Dθ )

2π
∫

0

θ
∫

0

e−(V (θ)−V (x))/Dθ dxdθ





−1

where V (θ) = −ω0θ − Kr cos(ψ − θ) − f0 cos θ and

I± =
2π
∫

0

e±V (x)/Dθ dx. Substituting N and S into the ρst

and simplifying the equation, we obtain the final form:

ρst(θ, ω0) =

A(θ)
2π
∫

0

B(θ, x) dx

Z
(42)

where A(θ) = e(Kr cos(ψ−θ)+f0 cos θ)/Dθ , B(θ, x) =
e−(ω0x+Kr cos(ψ−θ−x)+f0 cos(θ+x))/Dθ , and Z =
2π
∫

0

A(θ)
2π
∫

0

B(θ, x) dxdθ. Here, we can redefine gen-

erating function Z,

Z =

2π
∫

0

e(σ cos(ψ−φ)−η cos θ)

2π
∫

0

e−(ω0x+Kr cos(ψ−θ−x)+f0 cos(θ+x))/Dθ dxdθ (43)

which can be written in terms of a series of Modified Bessel functions of the first kind:

Z = (1− e2πω0/Dθ )

[−π
2

∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(η)Il(σ)H(ψ, φ,−f0/Dθ, ω0)

]

(44)

H = Il+p−m(−f0/Dθ)

−ω0

Dθ
cos(lφ−mψ) + (l + p) sin(lφ−mψ)

( ω0

Dθ
)2 + (l + p)2

(45)

+ Il−p−m(−f0/Dθ)

−ω0

Dθ
cos(lφ−mψ) + (l − p) sin(lφ−mψ)

( ω0

Dθ
)2 + (l − p)2

+ Il+p+m(−f0/Dθ)
−ω0

Dθ
cos(lφ+mψ) + (l + p) sin(lφ+mψ)

( ω0

Dθ
)2 + (l + p)2

+ Il−p+m(−f0/Dθ)

−ω0

Dθ
cos(lφ+mψ) + (l − p) sin(lφ+mψ)

( ω0

Dθ
)2 + (l − p)2

Then, the order parameter r and higher order terms can be written in terms of the generating functional:

r =

〈

∂ logZ

∂σ
|σ=Kr/Dθ,η=−f0/Dθ,φ=ψ

〉

(46)

=

∫ ∫
∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il+1(Kr/Dθ)H(ψ,−f0/Dθ, ω0)
∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il(Kr/Dθ)H(ψ,−f0/Dθ, ω0)
g(ω0)F (f0) dω0 df0

σ2 =

〈

1

Z

∂2Z

∂σ2
|σ=Kr/Dθ,η=−f0/Dθ,φ=ψ

〉

(47)

=
1

2
+

∫ ∫

1

2

∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il+2(Kr/Dθ)H(ψ,−f0/Dθ, ω0)
∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il(Kr/Dθ)H(ψ,−f0/Dθ, ω0)
g(ω0)F (f0) dω df0
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< sin η > =
1

σZ

∂Z

∂φ
|σ=Kr/Dθ,η=h/Dθ,φ=ψ (48)

=
Dθ

Kr

∫ ∫

∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il(Kr/Dθ)
∂H(ψ,−f0/Dθ,ω0)

∂φ
∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il(Kr/Dθ)H(ψ,−f0/Dθ, ω0)
g(ω0)F (f0) dω0 df0

< sin η cos η > =
1

σ
(
1

Z

∂2Z

∂φ∂σ
− 1

σZ

∂Z

∂φ
)|σ=Kr/Dθ,η=h/Dθ,φ=ψ (49)

=
Dθ

Kr
(

∫ ∫

∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il+1(Kr/Dθ)
∂H(ψ,−f0/Dθ,ω0)

∂φ
∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il(Kr/Dθ)H(ψ,−f0/Dθ, ω0)
g(ω0)F (f0) dω0 df0

− Dθ

Kr

∫ ∫

∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il(Kr/Dθ)
∂H(ψ,−f0/Dθ,ω0)

∂φ
∑∑∑

(−1)m+pIm(Kr/Dθ)Ip(−f0/Dθ)Il(Kr/Dθ)H(ψ,−f0/Dθ, ω0)
g(ω0)F (f0) dω0 df0)

For further calculations, we assume g(ω0) to be
Lorentzian. Since G is the only frequency dependent

term, the frequency integration is performed only on G,
yielding

∫

g(ω0)Gdω = Il+p−m(−f0/Dθ)

{

[

(
ω0

Dθ
)2 + (

∆

Dθ
)2 + (l + p)2

]2

− 4(l + p)2(
∆

Dθ
)2

}−1

(50)

{−ω0

Dθ
cos(lφ−mψ)

[

(
ω0

Dθ
)2 + (

∆

Dθ
)2 + (l + p)2 − 2

∆

Dθ
(l + p)

]

+ (l + p) sin(lφ−mψ)

[

(
ω0

Dθ
)2 − (

∆

Dθ
)2 + (l + p)2

]

+
∆

Dθ
sin(lφ−mψ)

[

(
ω0

Dθ
)2 + (

∆

Dθ
)2 − (l + p)2

]

}

....

When the solution is solved numerically, the series needs
to be truncated. In this paper, terms with l > 10, p > 10,

and m > 10 are set to zero, when the linear stability
analysis is performed using MatCont.


