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We investigate the application of artificial neural networks to stabilize proper orthogonal decom-
position based reduced order models for quasi-stationary geophysical turbulent flows. An extreme
learning machine concept is introduced for computing an eddy-viscosity closure dynamically to take
into account the effects of the truncated modes. We consider a four-gyre wind-driven ocean cir-
culation problem as our prototype setting to assess the performance of the proposed data-driven
approach. Our framework provides a significant reduction in computational time and effectively re-
tains the dynamics of the full-order model during the forward simulation period beyond the training
data set. Furthermore, we show that the method is robust for larger choices of time steps and can
be used as an efficient and reliable tool for long time integration general circulation models.

I. INTRODUCTION

The spatiotemporal complexity of many applications in
the computational sciences leads to very large-scale dy-
namical systems whose simulations make overwhelming
and unmanageable demands on computational resources.
Indeed, many problems remain intractable when multi-
ple forward full-order numerical simulations are required.
Since the computational cost of these high fidelity simu-
lations is prohibitive, model order reduction approaches,
also known as reduced order models (or ROMs), are com-
monly used to reduce this computational burden in many
applications (e.g., see [I] for a review of closed-loop con-
trol applications in fluid turbulence, and [2H4] for a dis-
cussion of variational data assimilation applications in
weather and climate modeling). A number of recent
review articles have addressed the strengths of several
modal analysis, reduced basis and model reduction tech-
niques [5H7]. In their survey, dedicated primarily to the
reduced order modeling for fluid analysis and control,
Rowley and Dawson [6] have discussed several techniques
including proper orthogonal decomposition (POD), bal-
anced truncation and balanced POD, eigensystem real-
ization algorithms (ERA), dynamic mode decomposition
(DMD) and Koopman operator theory with attention
devoted to the similarities and analogies between these
methods. An excellent overview and introduction to such
techniques may also be found in [7].

In this study, we consider the POD framework in
combination with the Galerkin projection procedure [§],
which is one of the prominent approaches for generating
ROMs for nonlinear systems [9HII]. POD extracts the
most energetic modes (usually from high-fidelity experi-
mental or numerical data), which are expected to contain
the dominant statistical characteristics of these systems.
It is therefore possible to obtain good approximations to
the high-fidelity data with a few POD modes in which
fine scale details are embedded. The resulting systems
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are low dimensional (due to truncation) but dense and
provide robust surrogate models for forward simulations.
It has been widely used in various disciplines under a
variety of different names (e.g., see [12] for an excellent
historical discussion).

Although the standard Galerkin projection provides an
efficient way to generate ROMs, its applicability to com-
plex systems is limited primarily due to errors associated
with the truncation of POD modes. The limitation is
more prominent in turbulent flow systems where an in-
tense scale separation leads to insufficient embedding of
dynamics within a feasibly small number of modes. To
model the effects of the discarded modes, several closure
models are devised (see for instance [I3HIS]) which serve
a dual purpose: that of numerical stabilization as well
as statistical fidelity preservation. Following the large
eddy simulation (LES) ideas, it has been shown that the
eddy viscosity concept provides an efficient framework to
account the effect of the truncated modes [I9-21]. In
this study, we put forth a robust dynamic procedure for
computing the modal eddy viscosities in order to stabi-
lize the ROMs. The novelty of our approach stems from
the design of an artificial neural network (ANN) archi-
tecture to predict the magnitude of the mode dependent
eddy viscosity dynamically, thus removing the need for
an a-priori specification of an arbitrary value.

ANNs and other machine learning (ML) strategies have
engendered a revolution in data-driven prediction appli-
cations and are seeing widespread investigation in the
computational physics community. Previous studies into
the feasibility of similar ML techniques for ROMs of var-
ious nonlinear systems may be found in [22H25]. In par-
ticular, we have recently illustrated the ANN concept for
model order reduction of the one-dimensional Burgers
equation and the performance of several training algo-
rithms has been documented [25]. In the present study,
however, we put forth a modified ANN architecture since
it is more appropriate to turbulent flows. ML approaches
have also been developed for use in feedback flow con-
trol where they generate a direct mapping of flow mea-
surements to actuator control systems [26H29]. In our
investigation, information from the high fidelity evolu-
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tion of governing laws is leveraged to provide a super-
vised learning framework for a single layer ANN to stabi-
lize ROMs of the mesoscale forced-dissipative geophysical
turbulence system. In brief, an ANN estimates a non-
linear relationship between a desired set of inputs and
targets provided viable benchmark data for their under-
lying statistical relationship is available. This subset of
the ML field has seen wide application in function ap-
proximation, data classification, pattern recognition and
dynamic systems control applications [30, BI] and is gen-
erating great interest for its utility in the reproduction of
systems with pronounced nonlinear interactions [32].

Before its deployment as a prediction or regression
tool, an ANN is trained to accurately capture the nonlin-
ear relationship between its inputs and outputs through
some classical loss function (such as mean squared error).
A regularized training ensures that the framework avoids
overfitting any noise that may have been present in the
training data. For our supervised learning framework, we
utilize the extreme learning machine (ELM) [33] training
procedure, which stands out from other learning meth-
ods with extremely fast training, good generalization and
universal approximation capabilities. ELM is a kind of
regularized neural network where the weights connecting
inputs and hidden nodes are randomly assigned and never
updated. The output weights of hidden nodes are then
learned in a single step using a pseudoinverse approach,
which provides an extremely fast learning mechanism, in
the least squares sense, compared to the networks trained
using traditional backpropagation approaches [34]. For
our investigation it is seen that a single hidden layer
feed-forward ELM algorithm satisfies generalized train-
ing requirements with extremely reduced computational
cost yet substantially accurate reproductions of training
statistics.

For assessing our proposed framework, we utilize the
governing laws given by the barotropic vorticity equa-
tion (BVE) model. It is a commonly used simplified
two-dimensional mathematical framework to study the
forced-dissipative large scale ocean circulation problems,
also known as the single-layer quasigeostrophic (QG)
model [35]. While POD, along with other optimal bases
choices, has been used to derive computationally efficient
ROMs of the BVE (see, e.g., [36l B7]), the present work
represents an attempt to model the unrepresented scales
of the QG dynamics, mesoscale turbulence and their ef-
fect on mean circulation using an ANN based supervised
machine learning framework. The novelty of our ap-
proach is therefore adding modal dissipation that is cor-
related to modal amplitude via a neural net. Our method
can be considered as a hybrid approach (i.e., hybrid an-
alytics) combining machine learning and physics-based
modeling for QG dynamics. The decision to choice the
ELM training approach is to ensure robust generalization
for such noisy data.

II. FULL ORDER MODELING

Oceanic and atmospheric flows display an enormous
range of spatial and temporal scales, from seconds to
decades and from centimeters to thousands of kilometers.
Thus, a model incorporating all the relevant physics of
the ocean and atmosphere would be impractical for nu-
merical simulations. During the last decades, significant
advancements were made in developing simplified mod-
els for geophysical fluid dynamics [38], which have been
instrumental in providing relatively accurate numerical
results at a reasonable computational price. Although
these models have continued to produce increasingly ac-
curate results and therefore improved weather forecast-
ing, their use in long time integrations such as those re-
quired by climate modeling remains challenging [39, [40].
To illustrate our surrogote proposed framework, we con-
sider the BVE model, which has been extensively used to
study forced-dissipative QG dynamics [35]. The dimen-
sionless BVE may be given by [41] [42]
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o + J(w, ) — E% = §V2w + Esin(ﬂy), (1)
where w is the kinematic vorticity and 1 is the stream-
function. The nonlinear advection term is defined by the
Jacobian
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since we define the flow velocity components by
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u=30, v=-%. g

and the following kinematic relationship holds for satis-
fying the incompressibility constraint

V3 = —w, (4)

where V2 is the standard Laplacian operator. The di-
mensionless BVE given in Eq. 7 has two nondimen-
sional parameters, the Reynolds and Rossby numbers,
which are related to the characteristic length and veloc-
ity scales in the following way:
VL v

Re = _ RO—BLQ. (5)
where v is the horizontal eddy viscosity of the BVE model
and f is the gradient of the Coriolis parameter. We note
that Eq. uses the (-plane approximation, valid for
most oceanic basins, which accounts for the Earth’s ro-
tational effects by approximating the Coriolis parameter.
For the purpose of nondimensionalization, L represents a
characteristic horizontal length scale given by the basin
dimension in the z direction, and V is a characteristic ve-
locity scale (also known as the Sverdrup velocity) given
by

T0 T

= ﬁﬁy (6)



where 79 is the maximum amplitude of the double-gyre
wind stress, p is the mean fluid density, and H is the
mean depth of the ocean basin. Following [41H43], we
consider a four-gyre circulation problem, a benchmark
oceanic flow problem whose behavior is difficult to cap-
ture correctly in coarse grained models [42]. Indeed, as
shown in [21], the standard model order reduction ap-
proaches without stabilization are incapable of resolv-
ing the correct physics. In our full order model (FOM)
simulations we use a second-order accurate kinetic en-
ergy and enstrophy conserving Arakawa finite difference
scheme [44]. The derivatives in the linear terms are also
approximated using the standard second-order finite dif-
ferences. Our time advancement scheme is given by the
classical total variation diminishing third-order accurate
Runge-Kutta scheme. Details of the Poisson solver, nu-
merical schemes and boundary conditions used for this
study may be found in [42].

III. REDUCED ORDER MODELING

We build our reduced order modeling framework based
on a standard projection methodology using the method
of snapshots [45]. Solving the FOM given by Eq. (1)),
the nth record of the prognostic variable (vorticity field)
is denoted w(z,y,t,) for n = 1,2,..., N, where N is
the number of snapshots recorded for basis construc-
tion. Then we decompose the solution field into a time
invariant averaged w(z,y) and a fluctuating component
w'(z,y,t) through [8 1T,
z,ye, (1)

w(z,y,t) = w(z,y) + ' (2,y,1)

where () is the two-dimensional domain and the mean of
the snapshot data is

| X
=~ Zw(x,y,tn). (8)

In order to obtain the POD basis functions, a correlation
matrix of the fluctuating part is constructed by

aij Z/w'(a?,y,ti) "(z,y,t;)dzdy, (9)
Q

where the subscripts i and j refer to snapshot indexes.
We must note that the data correlation matrix A = [a;;]
is a non-negative Hermitian matrix. We further define
the inner product of two functions f and g as

= / fgdxdy, (10)
Q

such that Eq. @[) yields a;; = (W' (z,y,t:),w' (2, y,t;)).
The optimal POD basis functions may then be obtained
by solving the following eigenvalue problem [46]

AT =TA, (11)

where A = diag[A1, ..., Ay] is the diagonal eigenvalue ma-
trix and T' = [y, ..., Yn] refers to right eigenvector matrix
whose columns are eigenvectors of the correlation matrix
A. The eigenvalues are usually stored in descending or-
der for practical purposes i.e., A\ > Ay > ... > Ay. Then
the orthogonal POD basis functions of the vorticity field
can be obtained as

N
or(2,y) = \/% > vk (2, ), (12)
n=1

where Ay is the kth eigenvalue, 7, is the nth component
of the kth eigenvector, and ¢k (x, y) is the kth POD mode.
The kinematic relationship between streamfunction and
vorticity given by Eq. may be utilized to obtain the
kth basis function for the streamfunction, ¢g(x,y), by
solving a Poisson equation

VQ(pk = —p. (13)

Now we can span our field variables into the POD
modes as follows

M
=o(z,y)+ Y axt)ge(z,y),  (14)

w(z,y,1)

M
Y@y, t) =@, y) + > ar(er(zy),  (15)
k=1

where we have decomposed w’(x,y,t) using time depen-
dent modal coefficient oy, and the POD modes ¢ (x,y).
We note that the kinematic relationship given by Eq. (13))
implies that the same «j accounts for the streamfunc-
tion as well. A ROM can be generated by a truncation
of the N total bases to only M retained modes where
M < N. These largest energy containing modes corre-
spond to the M largest eigenvalues, A1, Ao, ..., Apr. To
obtain our standard ROM, an orthogonal Galerkin pro-
jection is performed by multiplying Eq. with the POD
basis functions and integrating over the domain 2. The
resulting dynamical system for «y can be written as

% —%k—i—zskal—i—zzfﬁz a;aj, (16)

=1 j=1
where
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m;cj = (= J(¢i,%5), Pk)- (17)

The ROM given by Eq. consists of M coupled ordi-
nary differential equations and can be solved by a stan-
dard time integrator (a third-order Runge-Kutta scheme
is used in this study). We note that the resulting ROM



is highly computationally efficient since all the POD ba-
sis functions and corresponding model coefficients given
by Eq. are precomputed from the data provided by
snapshots. A complete specification of the dynamical sys-
tem given by Eq. may be obtained by the following
projection of the initial condition:

ak(tO) = <w($7y7t0) - a}(xvy)v¢k>7 (18)

where w(z, y, to) is the vorticity field specified at time ¢g.

The standard ROM given by Eq. usually works
well for a periodic or quasi-periodic system for which the
largest M modes adequately capture the system’s dy-
namics. However, one of the main sources of inaccuracy
in a truncated ROM framework is the potential for in-
stability due to neglecting the contributions of the higher
POD modes. Therefore, many stabilization schemes are
utilized in order to improve the performance of the ROMs
[13HI8]). Using an eddy viscosity approach, the stabiliza-
tion of the ROM can be achieved by [20] 21]

o ) Mo M M
= Bt Bty (GtLait Yy Y My, (19)
i=1 i=1j=1

where, using the Smagorinsky model and the analogy
between ROM and LES, two additional terms can be
written as

%k = <Vliv2®7 ¢k>’
S = (VEiV2i, b1, (20)

where vf; is the modal eddy viscosity parameter. This
free stabilization parameter may be simply considered as
a global constant for all the modes [16, [47]. The global
constant eddy viscosity idea may improved by suppos-
ing that the amount of dissipation is not identical for
all the POD modes. It has been shown that finding an
optimal value for this parameter significantly improves
the predictive performance of ROMs [20] 2I]. Therefore,
the chief novelty of the present study is the utilization
of a novel ML framework to estimate these modal eddy
viscosity coefficients to stabilize and overcome errors due
to the finite truncation in ROMs. We determine v; dy-
namically from our ML framework during the evolution
of each temporal mode aj at each time step.

IV. ARTIFICIAL NEURAL NETWORK
ARCHITECTURE

In this section, we introduce a single hidden layer feed-
forward ANN architecture for predicting modal eddy vis-
cosity coefficients for stabilization of ROMs. Figure
illustrates our ANN architecture which consists of an in-
put layer, a hidden layer and an output layer. Each layer
possesses a predefined number of nodes called neurons.
Except for the input neurons, each neuron has an associ-
ated bias and activation function. The main goal in any

supervised learning framework is to find a mapping be-
tween input nodes and output nodes. Mathematically, we
are looking for a mapping 91 to establish a relationship
between input nodes x, and output nodes y; as follows:

Y1 =g,

FIG. 1. A schematic of the single hidden layer feedforward
ANN utilized for the stabilization framework in this study.
Our inputs are resolved ROM variables (P = 3) and our pre-
diction is a mode dependent eddy-viscosity (J = 1).

M : {1’17372, ...,CEP} € RP — {y17y2a "'ayJ} € RJ’ (21)

where P is the number of input neurons and J is the
number of output neurons. If @ refers to the number of
hidden layer neurons, the jth output node can be com-
puted as

Q P
Yj = G<dj + z wjqF (bg + Z qul'p)) (22)
p=1

q=1

where ¢4y, € RO*F are the connection weights between
the neurons in input and hidden layers, and w;4 € R <@
are the weights between the neurons in hidden and out-
put layers. Here, F and G are neurons’ activation func-
tions; and b, € R® and d; € R7 are called biases oper-
ating as thresholds for hidden and output layers, respec-
tively. In this study, we have utilized the tan-sigmoid
activation function for the hidden layer neurons, which
can be expressed as

2

F(s) = 1+ exp(—2s)

—1, (23)

and a linear activation function for the output layer neu-
rons given by

G(s) = s. (24)

While it has been reported that sigmoidal activation
functions saturate across a large portion of their domain
[48], our reasoning behind the use of the classical tan-
sigmoid activation was to leverage the benefit of the sat-
uration behavior to obtain a bounded prediction from the
network.



A. Extreme learning machine

Introducing N sample training data examples (i.e.,
input-output pairs), the weights and biases can be com-
puted in a supervised learning framework using either
well established iterative back propagation methods [49)
or pseudoinverse approaches [34]. As mentioned previ-
ously, the ANN architecture is trained by utilizing an
extreme learning machine (ELM) approach proposed in
[33] for extremely fast training of a single hidden layer
feedforward network. The ELM approach requires no
biases in the output layer (i.e., d; = 0). In the ELM
method, the weights ¢4, and biases b, are initialized ran-
domly from a uniform distribution (i.e., between -1 and 1
in our study) and no longer modified. Therefore the only
unknowns to be determined are w;, weights. Using the
linear activation function for the output layer, Eq.
can be written for N sample examples

where z,,, € RPN and y;,, € R7*¥ refer to the training
input-output data pairs. Using a more convenient matrix
notation (i.e., X = [zpn], Y = [yjn], C = [cgp), W =
[wjq), and b = [by]), our learning problem can be written
as

Y = WHT (26)
where HT € RO*N is given by
H™ = F(B + CX) (27)

where the vector b is repeated across N columns as shown
in Eq. (ie., B = [b,b,...,b] € RY*N). By taking
the transpose of both side of Eq. we can write

HWT =YT (28)
and the solution for the weights can be computed by
WT=HIYT (29)

where HY € Re*N ig the pseudoinverse of H € RV*@,
In order to compute the pseudoinverse, we apply the fol-
lowing singular value decomposition (SVD) to the matrix
H since its number of rows is greater than its number of
columns in typical ML applications (i.e., N > Q)

H=UZVT (30)

where U € RV*? and V € R?*? are column-orthogonal
and orthogonal matrices, and ¥ € RP*? is a diagonal
matrix whose elements (i.e., 049 = 04) are non-negative
and called singular values. Using the SVD, the pseudoin-
verse of H becomes

HI = VvXiUT (31)

where Xt can be computed from ¥ by taking the recipro-
cal of each non-zero element (i.e., o} = 1/0,). However,
the presence of tiny singular values can cause numeri-
cal instability. Therefore, a well-known Tikhonov type
regularization is often introduced by

9q

t= 32
Tq oZte (32)

where A controls the trade off between the least-squares
error and the penalty term for regularization (e.g., see
[34]). In the present study we set ¢ = 1072, Finally,
using Eq. , unknown weights can be computed by

W=YUXZVT, (33)

B. Training data

Our architecture is devised to take inputs accessible to
us during the time integration of the ROM and estimate
the modal eddy viscosity coefficient. Our high fidelity
snapshot data (from which POD bases are constructed)
are also used to train our architecture. First, we denote
the right hand side of Eq. as

M M M
R{P =B+ Shai+ > > Naja;,  (34)
i=1

i=1 j=1

and then apply the Galerkin projection to FOM given by
Eq. , which yields the true solution

1 1 0
RkFOM = <EV2w + ﬁ(SIH(T{'y) + %) - J(wa 1/})7 Qz’;g)

The ideal stabilization would thus conform to the differ-
ences between these quantities i.e.,

Ry, = RFOM — RGP, (36)

We know from Eq. that

M
Ric = v ((V2@.00) + Y (V20 0n)os),  (87)

=1

where we redefine

STAB _
Ry =

M
(V2@,¢5) + Y (Vi dr)ai,  (38)

i=1
and therefore we compare Eq. and Eq. to obtain

the modal eddy viscosity coefficients

FOM GP
Rk — Rk

as the eddy viscosity stabilization for each mode within
the training data set. Although Eq. is an exact



relationship, we use a clipping procedure for numerical
stability by discarding negative entries of v}, in our train-
ing data set. Therefore, our training data is generated
by considering the following bounds
c v

— =,
Re VL
where c is the upper bound of the relative ratio between
the stabilized viscosity and physical model viscosity. In
the present study, we set ¢ = 6, which provides six times
larger stabilization viscosity than the specified v of the
original model. We have also verified that the proposed
ROM-ANN approach is robust to the selection of ¢ (i.e.,
similar statistical results have been observed for ¢ = 4
and ¢ = 10 sets). The clipping approach presented by
Eq. can be considered as a physical realizability
bounds of ROM training data. With this realizable calcu-
lation of the stabilization viscosity, we hypothesize that
a mode dependent nonlinear (but unknown) relationship
exists between the resolved modes in the ROM that esti-
mates vy dynamically. To conclude, our ANN framework
is trained between inputs given by the modal index k,
RkGP, and oy, (i.e., they are all available during the ROM
time stepping) and to predict an approximation for vf.
We thus have 3 inputs to our network with @ hidden
layer neurons to obtain 1 output (which is the modal
eddy viscosity coefficient). The architecture of our ANN
is shown in Figure [Il We emphasize that this simplified
ANN is basically a non-linear regression or a curve fitting
between input and target states. As we will show in next
section, however, its generalization is quite remarkable
for both in-sample data and out-of-sample data predic-
tions.

e=10"12 < < (40)

V. RESULTS

To validate our proposed ANN framework, we con-
sider the four-gyre barotropic circulation problem [41}-
43]). This test problem yields four gyres circulation pat-
terns in the time mean in a shallow ocean basin and repre-
sents an ideal test for the viability of the proposed ROM.
Indeed it was shown that ROMSs without stabilization are
incapable of resolving the mean dynamics [21].

The dimensionless form of the BVE describing the QG
problem is evolved from ¢t = 0 to ¢ = 100 using a fixed
time step At = 2.5 x 107° on a Munk layer resolving
256 x 512 computational grid resolution. The dimen-
sionless parameters of the BVE system are chosen as
Re = 450 and Ro = 3.6 x 1072, We must note that ¢t = 10
to t = 100 is our data collection window (for the purpose
of POD basis generation as well as ANN training) due
to a statistically steady state reached after the initial
transient period. 900 snapshots are collected during this
period which are equally distributed in time. The ideal
eddy viscosity is also computed at these snapshots for the
use of training our machine learning framework. We note
here that our ROM (whether purely truncated or stabi-
lized by ANN) is utilized for predictions upto ¢ = 200

TABLE I. Lo-norm errors of the reduced order models (with
respect to FOM) for the mean vorticity and streamfunction
fields. Note that the ROM-ANN retains only M = 10 modes.

Vorticity Streamfunction
No stabilization
ROM (M = 10) 6.89 x 107 1.50 x 10°
ROM (M = 20) 2.85 x 10° 5.69 x 107
ROM (M = 30) 1.07 x 10® 1.14 x 10°
With stabilization
ROM-ANN (Q = 20) 1.20 x 10® 9.45 x 107"
ROM-ANN (Q = 40) 6.54 x 107 1.22 x 1071
ROM-ANN (Q = 60) 4.31 x 102 3.09 x 107*

utilizing the POD modes obtained from our previously
mentioned data collection window. This may be consid-
ered to be a challenging validation of our dual data-driven
methodology for the QG problem. For both our standard
ROM and stabilized ROM-ANN computations, the same
time step with At = 2.5 x 107° is used for time inte-
gration of the dynamical system. Sensitivity studies for
varying time steps will be also presented later.

Figure[2|shows the accumulation of energies in the form
of eigenvalue magnitudes where it can be seen that a large
majority (close to 75%) of the energies are accumulated
in the first 30 modes of the transformed space. Figure
shows the gradual convergence of the ROM (i.e., without
stabilization) to the four-gyre circulation pattern with
increasing M. Indeed, non-physical two-gyre pattern is
observed for the case of M = 10 and M = 20.

Figure {4| shows the performance of the proposed frame-
work (i.e., ROM-ANN) against the standard Galerkin
projection based ROM with M = 10. Full order model
(FOM) projections to reduced space are also shown for
the purpose of comparison. It can easily be seen that the
ELM stabilization reproduces the four-gyre pattern ac-
curately as against the standard implementation of the
ROM which fails to capture the pattern. This is ob-
served for both streamfunction and vorticity contours.
Figure |p| shows a qualitative comparison of the effect of
the number of neurons @@ where similar performance im-
provements are obtained for our choice of @ = 20,40, 60
neurons. Table I shows a quantitative comparison of the
improvement obtained by the proposed stabilization (for
different neurons as well) against the standard ROM im-
plementations with different number of modes. It is eas-
ily observed that the stabilization acts adequately in re-
producing excellent agreement with full-order statistics
at a very low number of retained modes. Note that these
plots and tabulated statistics are all for the statistically
steady state behavior of the QG problem in our assess-
ment window (i.e., t = 10 to ¢t = 200), which is beyond
the training data window.

Figure [6] shows a comparison for the evolution of ay
through nondimensional time for both ROM and ROM-
ANN implementations in comparison to the FOM pro-
jection. The ROM-ANN has a default @ = 40 neurons
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FIG. 2. POD analysis by the snapshot data for Re = 450 and
Ro = 3.6 x 1072, (a) The distribution of eigenvalues; and (b)
their energy levels with k denoting the modal index.

in this example. It can clearly be seen that the use of
the stabilization prevents the explosion of numerical in-
stability in the coarse truncated ROMs with M = 10 and
M = 20. At M = 30 however, the first modal evolution
shows a stable statistical steady state for the ROM.

Another benefit of the ROM-ANN mechanism over the
standard ROM implementation is the possibility of us-
ing large time steps in the ordinary differential equa-
tion integrator. In the present study, a time step of
At = 2.5x107° was chosen for the FOM simulation to en-
sure a CFL criterion of less than 1.0 was always respected
(as observed in the time series plot in Figure (7)) due to
the numerical stability of the numerical schemes. Figure
shows the vorticity and streamfunction contours when
our stabilized method (i.e., the ROM-ANN with M = 10
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modes; (d) w with M = 10 modes; (e) w with M = 20 modes;
and (f) w with M = 30 modes.
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FIG. 4. A comparison of the standard Galerkin approach
(ROM) and the proposed ANN based stabilized approach
(ROM-ANN) for M = 10 modes. (a) ¢ by FOM; (b) ¢ by
ROM,; (¢) ¥ by ROM-ANN; (d) w by FOM; (e) w by ROM;
and (f) w by ROM-ANN.
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FIG. 5. A sensitivity analysis with respect to the number of
neurons in ELM using M = 10 modes. (a) ¢ with Q = 20
nodes; (b) ¢ with @ = 40 nodes; (c) ¥ with @ = 60 nodes;
(d) w with @ = 20 nodes; (e) w with @ = 40 nodes; and (f)
w with @ = 60 nodes.
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FIG. 6. Time series for the first temporal coefficient a (t).

and @ = 40) is used with different time steps. It can
be seen that a much larger time step of At = 1072 can
be effectively used to obtain statistically accurate results
without any divergence. Thus our proposed ANN based
eddy viscosity stabilization is ideally suited to a fast pre-
diction of the underlying dynamics. Figure [9] shows the
evolution of the first temporal coefficient a;(t) for the
aforementioned ROM-ANN framework where it is seen
that very high values of the time step do not affect the
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FIG. 7. Time series for the CFL criterion assuming a fixed
time step of At = 2.5 x 1075 for the FOM simulation.
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FIG. 8. Mean streamfunction and vorticity contours obtained
by the proposed ROM-ANN with various time steps. (a) v
with At = 5 x 107% (b) ¢ with At = 2.5 x 107%; (c) ¥
with At = 1072; (d) w with At = 5 x 107%; (e) w with
At = 2.5 x 1073; and (f) w with At = 1072, Note that our
ROM-ANN implementation uses M = 10 and @ = 40.

statistical viability of the stabilized ROM and leads to an
excellent reduction in computational expense (the largest
time step provides excellent results at a CPU time of 1.61
seconds in comparison to approximately 700 seconds for
the default time step which is required for the FOM). We
also note that the FOM required 195.4 hours CPU time
to complete the forward simulation between ¢ = 10 and
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FIG. 9. Temporal mode evolution of «; for various time steps.

t = 100.

Finally, we perform an out-of-sample a-posteriori anal-
ysis considering different physical parameters than those
used in the training data. As explained earlier the physi-
cal model parameters are Re = 450 and Ro = 3.6 x 103
to generate our data snapshots (therefore POD basis
functions) and the supervised training data set for ELM.
Using the same ELM network and POD basis functions,
Figure compares the predictive performance of the
models at Re = 200 and Ro = 1.6 x 1073, a distinct
test set-up from the training data. A new FOM sim-
ulation is performed for our assessments (i.e., required
about 200.6 hours CPU time). It is clear that the ROM-
ANN captures the main dynamics requiring only the
order of seconds CPU time for the simulation. Time
series of oy are also illustrated in Figure Similar
to the in-sample case, the standard Galerkin ROM ap-
proach cannot capture the correct dynamics for M = 10
or M = 20 modes. On the other hand, the proposed
stabilized ROM-ANN approach captures the underlying
four-gyre dynamics and provides significantly accurate
results for using M = 10 modes. Our assessments con-
clude that the proposed architecture is robust to provide
a reliable mode dependant damping coefficient for the
out-of-sample forecasting.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied the feasibility of using a
machine learning framework to stabilize projection based
ROMs for solving a forced-dissipative general circulation
problem. We construct a single hidden layer feedforward
ANN to predict modal eddy viscosity coefficients dynami-
cally. Our approach can be considered semi non-intrusive
(without the need for an online access to the FOM for
the ROM prediction), since the ANN architecture only
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FIG. 10. A comparison of the standard Galerkin approach
(ROM) and the proposed ANN based stabilized approach
(ROM-ANN) for M = 10 modes at Re = 200 and Ro =
1.6 x 1072 where the training data has been extracted from
the snapshots at Re = 450 and Ro = 3.6 x 1073. (a) % by
FOM; (b) ¥ by ROM; (c) ¢ by ROM-ANN; (d) w by FOM,;
(e) w by ROM; and (f) w by ROM-ANN. Note that the ROM-
ANN uses @ = 40 hidden nodes.
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FIG. 11. Time series for of first temporal coefficient a(t) for
the out-of-sample forecast. Predictive performance is shown
for Re = 200 and Ro = 1.6 x 1072 while the training has
been performed using the data generated at Re = 450 and
Ro=3.6x10"%.



requires reduced order space quantities to predict the sta-
bilization term. A regularized ELM approach is used for
training where we use the same data snapshots as we used
for generating the POD basis functions. In that sense,
there are two data-driven components to this research:
high fidelity snapshots of data from DNS are utilized not
just for POD basis synthesis but also for training our
machine learning framework utilized for a-posteriori sta-
bilization of the ROM-ANN. Both in-sample and out-of-
sample simulation results indicate that the utilization of
the proposed framework lets the user deploy an extremely
truncated system without losing any statistical fidelity.
Also, time steps much larger than those necessary for
FOM forward simulations may be utilized in the ROM-

10

ANN thus leading to exceptional computational perfor-
mance. We conclude that the method presented in this
paper is robust enough to stabilize ROMs dynamically
and satisfies the dual demands of statistical accuracy as
well as low computational expense in surrogate forward
predictions in long-term evolution of geophysical turbu-
lent flows.

ACKNOWLEDGMENT

The computing for this project was performed by using
resources from the High Performance Computing Center
(HPCCQC) at Oklahoma State University.

[1] S. L. Brunton and B. R. Noack, “Closed-loop turbulence
control: Progress and challenges,” Applied Mechanics
Reviews 67, 050801 (2015).

[2] D. N. Daescu and I. M. Navon, “Efficiency of a POD-
based reduced second-order adjoint model in 4D-Var data
assimilation,” International Journal for Numerical Meth-
ods in Fluids 53, 985 (2007).

[3] Y. Cao, J. Zhu, I. M. Navon, and Z. Luo, “A reduced-
order approach to four-dimensional variational data as-
similation using proper orthogonal decomposition,” In-
ternational Journal for Numerical Methods in Fluids 53,
1571 (2007).

[4] D. Daescu and I. Navon, “A dual-weighted approach to
order reduction in 4DVAR data assimilation,” Monthly
Weather Review 136, 1026 (2008).

[5] P. Benner, S. Gugercin, and K. Willcox, “A survey of
projection-based model reduction methods for paramet-
ric dynamical systems,” SIAM Review 57, 483 (2015).

[6] C. W. Rowley and S. T. Dawson, “Model reduction for
flow analysis and control,” Annual Review of Fluid Me-
chanics 49, 387 (2017).

[7] K. Taira, S. L. Brunton, S. Dawson, C. W. Rowley,
T. Colonius, B. J. McKeon, O. T. Schmidt, S. Gordeyev,
V. Theofilis, and L. S. Ukeiley, “Modal analysis of fluid
flows: An overview,” AIAA Journal 55, 4013 (2017).

[8] P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence,
coherent structures, dynamical systems and symmetry
(Cambridge University Press, 1998).

[9] K. Ito and S. Ravindran, “A reduced-order method for
simulation and control of fluid flows,” Journal of Com-
putational Physics 143, 403 (1998).

[10] A. Iollo, S. Lanteri, and J.-A. Désidéri, “Stability proper-
ties of POD—Galerkin approximations for the compress-
ible Navier—Stokes equations,” Theoretical and Compu-
tational Fluid Dynamics 13, 377 (2000).

[11] B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor,
and F. Thiele, “A hierarchy of low-dimensional models
for the transient and post-transient cylinder wake,” Jour-
nal of Fluid Mechanics 497, 335 (2003).

[12] R. Narasimha, “Kosambi and proper orthogonal decom-
position,” Resonance 16, 574 (2011).

[13] M. Couplet, P. Sagaut, and C. Basdevant, “Intermodal
energy transfers in a proper orthogonal decomposition-
Galerkin representation of a turbulent separated flow,”

Journal of Fluid Mechanics 491, 275 (2003).

[14] V. L. Kalb and A. E. Deane, “An intrinsic stabilization
scheme for proper orthogonal decomposition based low-
dimensional models,” Physics of fluids 19, 054106 (2007).

[15] M. Bergmann, C.-H. Bruneau, and A. Iollo, “Enablers for
robust POD models,” Journal of Computational Physics
228, 516 (2009).

[16] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, “Proper
orthogonal decomposition closure models for turbulent
flows: a numerical comparison,” Computer Methods in
Applied Mechanics and Engineering 237—240, 10 (2012).

[17] J. Baiges, R. Codina, and S. Idelsohn, “Reduced-order
subscales for POD models,” Computer Methods in Ap-
plied Mechanics and Engineering 291, 173 (2015).

[18] X. Xie, D. Wells, Z. Wang, and T. Iliescu, “Approxi-
mate deconvolution reduced order modeling,” Computer
Methods in Applied Mechanics and Engineering 313, 512
(2017).

[19] 1. Akhtar, Z. Wang, J. Borggaard, and T. Iliescu, “A
new closure strategy for proper orthogonal decomposition
reduced-order models,” Journal of Computational and
Nonlinear Dynamics 7, 034503 (2012).

[20] O. San and T. Iliescu, “Proper orthogonal decomposition
closure models for fluid flows: Burgers equation,” Inter-
national Journal of Numerical Analysis and Modeling,
Series B 5, 217 (2014).

[21] O. San and T. Iliescu, “A stabilized proper orthogonal
decomposition reduced-order model for large scale quasi-
geostrophic ocean circulation,” Advances in Computa-
tional Mathematics 41, 1289 (2015).

[22] S. Narayanan, A. Khibnik, C. Jacobson, Y. Kevrekedis,
R. Rico-Martinez, and K. Lust, in Control Applications,
1999. Proceedings of the 1999 IEEE International Con-
ference on (IEEE, 1999), vol. 2, pp. 1151-1156.

[23] R. Sahan, N. Koc-Sahan, D. Albin, and A. Liakopoulos,
in Proceedings of the 1997 IEEE International Confer-
ence on Control Applications, (IEEE, 1997), pp. 359-364.

[24] A. Moosavi, R. Stefanescu, and A. Sandu, “Efficient
Construction of Local Parametric Reduced Order Mod-
els Using Machine Learning Techniques,” arXiv preprint
arXiv:1511.02909 (2015).

[25] O. San and R. Maulik, “Neural network closures for
nonlinear model order reduction,” Advances in Com-
putational Mathematics, DOI:10.1007/s10444-018-9590-



z (2018).

[26] E. Gillies, “Low-dimensional control of the circular cylin-
der wake,” Journal of Fluid Mechanics 371, 157 (1998).

[27) W. E. Faller and S. J. Schreck, “Unsteady fluid mechanics
applications of neural networks,” Journal of Aircraft 34,
48 (1997).

[28] M. O. Efe, M. Debiasi, H. Ozbay, and M. Samimy, in
Proceedings of the International Conference on Mecha-
tronics, 2004. (IEEE, 2004), pp. 560-565.

[29] C. Lee, J. Kim, D. Babcock, and R. Goodman, “Appli-
cation of neural networks to turbulence control for drag
reduction,” Phys. Fluids 9, 1740 (1997).

[30] B. Widrow, D. E. Rumelhart, and M. A. Lehr, “Neural
networks: applications in industry, business and science,”
Communications of the ACM 37, 93 (1994).

[31] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan,
Neural Network Design (Martin Hagan, 2014).

[32] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics
Informed Deep Learning (Part I): Data-driven Solu-
tions of Nonlinear Partial Differential Equations,” arXiv
preprint arXiv:1711.10561 (2017).

[33] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme
learning machine: theory and applications,” Neurocom-
puting 70, 489 (2006).

[34] R. Cancelliere, R. Deluca, M. Gai, P. Gallinari, and
L. Rubini, “An analysis of numerical issues in neural
training by pseudoinversion,” Computational and Ap-
plied Mathematics 36, 599 (2017).

[35] A. Majda and X. Wang, Nonlinear dynamics and sta-
tistical theories for basic geophysical flows (Cambridge
University Press, 2006).

[36] F. M. Selten, “An efficient description of the dynamics
of barotropic flow,” Journal of the Atmospheric Sciences
52, 915 (1995).

[37] D. T. Crommelin and A. J. Majda, “Strategies for model
reduction: comparing different optimal bases,” Journal
of the Atmospheric Sciences 61, 2206 (2004).

[38] J. C. McWilliams, Fundamentals of geophysical fluid dy-
namics (Cambridge University Press, 2006).

11

[39] M. Ghil, M. D. Chekroun, and E. Simonnet, “Climate
dynamics and fluid mechanics: Natural variability and
related uncertainties,” Physica D: Nonlinear Phenomena
237, 2111 (2008).

[40] P. Lynch, “The origins of computer weather predic-
tion and climate modeling,” Journal of Computational
Physics 227, 3431 (2008).

[41] R. J. Greatbatch and B. Nadiga, “Four-gyre circulation
in a barotropic model with double-gyre wind forcing,”
Journal of Physical Oceanography 30, 1461 (2000).

[42] O. San, A. E. Staples, Z. Wang, and T. Iliescu, “Approxi-
mate deconvolution large eddy simulation of a barotropic
ocean circulation model,” Ocean Modelling 40, 120
(2011).

[43] B. T. Nadiga and L. G. Margolin, “Dispersive-dissipative
eddy parameterization in a barotropic model,” Journal of
Physical Oceanography 31, 2525 (2001).

[44] A. Arakawa, “Computational design for long-term nu-
merical integration of the equations of fluid motion:
Two-dimensional incompressible flow. Part I,” Journal
of Computational Physics 1, 119 (1966).

[45] L. Sirovich, “Turbulence and the dynamics of coherent
structures. I. Coherent structures,” Quarterly of Applied
Mathematics 45, 561 (1987).

[46] S. Ravindran, “A reduced-order approach for optimal
control of fluids using proper orthogonal decomposition,”
International Journal for Numerical Methods in Fluids
34, 425 (2000).

[47] N. Aubry, P. Holmes, J. L. Lumley, and E. Stone, “The
dynamics of coherent structures in the wall region of a
turbulent boundary layer,” Journal of Fluid Mechanics
192, 115 (1988).

[48] 1. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio,
Deep learning, vol. 1 (MIT press Cambridge, 2016).

[49] M. Carrillo, U. Que, and J. A. Gonzélez, “Estimation
of Reynolds number for flows around cylinders with lat-
tice Boltzmann methods and artificial neural networks,”
Physical Review E 94, 063304 (2016).



	Extreme learning machine for reduced order modeling of turbulent geophysical flows
	Abstract
	Introduction
	Full Order Modeling
	Reduced order modeling
	Artificial Neural Network Architecture
	Extreme learning machine
	Training data

	Results
	Summary and Conclusions
	Acknowledgment
	References


