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Complex systems arise as a result of inter-dependencies between multiple variables, whose causal
interactions can be visualized in a time series graph. Transfer entropy and information partitioning
approaches have been used to characterize such dependencies. However, these approaches capture
net information transfer occurring through a multitude of pathways involved in the interaction, and
as a result mask our ability to discern the causal interaction within a subgraph of interest through
specific pathways. We build on recent developments of momentary information transfer along causal
paths proposed by Runge [Phys.Rev.E. 92, 062829 (2015)] to develop a framework for quantifying
information partitioning along separable causal paths. Momentary information transfer along causal
paths captures the amount of information transfer between any two variables lagged at two specific
points in time. Our approach expands this concept to characterize the causal interaction in terms
of synergistic, unique and redundant information transfer through separable causal paths. Through
a graphical model, we analyze the impact of the separable and non-separable causal paths and the
causality structure embedded in the graph as well as the noise effect on information partitioning by
using synthetic data generated from two coupled logistic equation models. Our approach can provide
a valuable reference for an autonomous information partitioning along separable causal paths which
form a causal subgraph influencing a target.

Keywords: causal paths, information transfer, momentary partial information decomposition, time series
graph

I. INTRODUCTION

Complex natural and human systems, such as ecosys-
tems and financial markets, emerge as a result of causal
and/or self-organized feedback interactions among mul-
tiple variables. Lagged feedback of one variable on an-
other can also be interpreted as a causal outcome at the
time scale of the feedback dependence. Causality can
also be characterized as the outcome of the interaction
of information transfer [1, 2] among the variables in the
system. Therefore, the amount and quality of informa-
tion transfer can be used to quantify the degree and na-
ture of causality. Our goal in this paper is to develop a
framework for quantifying causal interaction arising from
information transferred along separable paths that affect
a target.
In this study, causality is interpreted as strong Granger

causality [3]. Different from the causality from an in-
terventional perspective [4], Granger causality [5] is an-
chored on the predictability of a target from one or more
sources by measuring the variance of the target given the
sources. Strong Granger causality takes a further step by
investigating the predictability from sources based on the
entire joint distribution of the variables involved [3]. It is
extremely useful in detecting the relationships among the
variables in a complex system where only observational
data is available and intervention in system is hard or
impossible as in natural systems which comprise a mul-
titude of interactions. In the rest of the paper, we refer
causality to indicate strong Granger causality for conve-
nience.

∗ kumar1@illinois.edu

When a source variable influences a target directly, or
indirectly through a path comprising of nodes and links,
it is called a causal path [6]. For example, consider a
three-variable process network [7, 8] shown in Fig. 1a,
where the dynamical linkages between these components
of the system are assumed to be time-invariant and con-
structed such that: (1) X drives both Y and Z with
a lag of one time step, (2) Y drives Z at a lag of two
time steps, and (3) both X and Z have a self-feedback
at a lag of one time step. By representing the dynamics
of the process network in a time series graph [9], X af-
fects Z lagged at two time steps through a causal path
(Fig. 1b), denoted as CXt−2→Zt

, containing two path-
ways: Xt−2 → Xt−1 → Zt and Xt−2 → Zt−1 → Zt. Fur-
thermore, considering the contribution of multiple source
variables on the target, the target can be affected by dif-
ferent sources each having its own causal path, which
can be separable or non-separable. For the non-separable
case, the causal path from one source contains the causal
paths of the remaining sources. For instance, the causal
path CXt−2→Zt

includes the causal path from Xt−1 (i.e.,
CXt−1→Zt

) (Fig. 1c). CXt−2→Zt
and CXt−1→Zt

are non-
separable because the node Xt−1 lies in the causal path
CXt−2→Zt

. Also, the causal paths can be separable such
that no source is enslaved to the causal path of another.
The separability of causal paths can be either totally
independent, such as the causal paths CXt−1→Zt

and
CYt−3→Zt

(Fig. 1d), or partially independent, such as
the causal paths CXt−2→Zt

and CYt−3→Zt
which share

the pathway Zt−1 → Zt (Fig. 1e). We call the causal
paths, which transmit the information to the same tar-
get from different sources but are not enslaved to the
pathways of other sources, as separable causal paths. To-
gether, the causal paths from all source nodes of interest
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FIG. 1. The illustration of a three-variable dynamical system: (a) the process network graph illustrating the lagged interaction
of three variables X,Y and Z, where the numbers on the directed links represent the lagged time step; (b) the time series graph
corresponding to the process graph, with the causal path CXt−2→Zt

whose directed links are highlighted in brown arrows; (c)
the non-separable causal paths CXt−1→Zt

and CXt−2→Zt
; (d) the separable causal paths with independent pathways CXt−1→Zt

and CYt−3→Zt
; and (e) the separable causal paths with overlapping pathways CXt−2→Zt

and CYt−3→Zt
(brown and blue nodes:

source nodes; black nodes: target nodes; brown and blue links: the corresponding causal paths from the sources to the target;
and nodes with black circles: nodes affecting the two separable causal paths and the target node).

that affect a target node comprise a causal subgraph.

An emerging approach for characterizing the nature
of dependency between multiple interacting variables is
based on partial information decomposition (PID) [10,
11], also called as information partitioning, which is ca-
pable of providing insights from large amounts of ob-
servational or model datasets that are becoming avail-
able [12, 13]. PID provides estimation of the information
transfer from the sources to the target variable in terms
of: (1) redundant information R, which captures overlap-
ping information content that both sources provide to the
target; (2) synergistic information S, which is only avail-
able due to the joint interaction of sources as they affect
the target; and (3) unique information U that each source
shares with the target. In the case of two sources (i.e.,
Xt−τX and Yt−τY ) driving Zt, PID is given as [10, 11]

I(Xt−τX , Yt−τY ;Zt) =UX + UY + S +R (1)

I(Xt−τX ;Zt) =UX +R (2)

I(Yt−τY ;Zt) =UY +R, (3)

where UX and UY are unique information from Xt−τX

and Yt−τY , respectively; I(a; b) is the mutual in-
formation [14] between a and b; and especially,
I(Xt−τX , Yt−τY ;Zt) represents the mutual information
between Zt and the union of Xt−τX and Yt−τY . Eqs.(1)-
(3) further give rise to the expression of S and R in terms

of interaction information II [14] such that

II(Xt−τX ;Yt−τY ;Zt) =I(Xt−τX , Yt−τY ;Zt)− I(Xt−τX ;Zt)

− I(Yt−τY ;Zt)

=S −R, (4)

which quantifies the amount of information bound up in
{Xt−τX , Yt−τY , Zt}, also called as net synergy [11].
PID captures the net information transfer occurring

through a multitude of causal paths involved in the in-
teraction. But due to the high level of dependencies in a
complex system, it also masks our ability to discern the
causal interaction within a causal subgraph consisting
of specific pathways, or possible separable causal paths.
For example, as illustrated in Fig. 1d, the information
partitioning associated with the interaction of Xt−1 and
Yt−3 on Zt will be influenced by the external factors af-
fecting the intermediate nodes, through their own causal
paths, called as complementary causal subgraph. Some of
the nodes in the complementary causal subgraph, that
are outside of the nodes of interest (e.g., CXt−1→Zt

,
CYt−3→Zt

, and Zt) but have influences on them, are high-
lighted as nodes with black circles, including Xt−4, Xt−2,
Yt−2 and Zt−2.
Therefore, in this paper we quantify the partial in-

formation decomposition arising from the information
transfer along separable causal paths in a manner that
excludes the influence of complementary causal subgraph
thereby eliminating the effects of external factors. Also,
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we explore (1) how the PID varies between separable and
non-separable causal paths; (2) how the structure of the
separable causal paths affects the information partition-
ing; and (3) how the noise in a complex system affects
these estimates. We use the recently-proposed momen-
tary information transfer along causal paths (MITP) [6],
which allows us to isolate the information transfer be-
tween two variables along their causal path from that
associated with its complementary causal subgraph. We
extend this concept to characterize the causal interaction
in terms of synergistic, unique and redundant informa-
tion transfer through separable causal paths by using a
PID framework anchored on a rescaled approach for com-
puting the redundancy [12] and also provide formulations
associated with other prevalent measures of redundancy.
This will be termed as momentary partial information

decomposition (MPID).
This paper is organized as follows. First, we pro-

vide a brief review of the momentary information in Sec-
tion II. Then, in Section III we develop the details of
the mathematical framework for MPID by adopting the
rescaled approach for computing redundancy. In Sec-
tion IV, we show that under some conditions, the pro-
posed MPID is entirely determined by the interactions
of the nodes of interest in the causal subgraph, and au-
tonomous of how these nodes are affected by the com-
plementary causal subgraph. This property is called the
coupling strength autonomy (CSA) [2]. We utilize both
a linear and a nonlinear common driver model to ver-
ify the coupling strength autonomy property analytically
and numerically, respectively. Moreover, in Section V,
we define the MPID frameworks based on three alterna-
tive redundancy measures, and discuss their properties.
In Section VI, based on the rescaled redundancy mea-
sure, we analyze MPID and PID under both separable
and non-separable causal paths by using synthetic data
generated from two models of coupled logistic equations
with varying noise strengths. Finally, we provide sum-
mary and conclusions in Section VII. Appendix A pro-
vides definitions of abbreviations and a list of symbols,
and Appendices B to D provide mathematical proofs of
several formulations.

II. A REVIEW OF MOMENTARY
INFORMATION

In this section, we briefly review the concept of momen-
tary information first proposed by Pompe and Runge [1],
which provides the basis for quantifying information par-
titioning along separable causal paths presented in the
next section. This concept originates from the idea that
to assess the impact of some variable X on another vari-
able Y at time t with a specific time lag τ , the history
of both Xt−τ and Yt should be accounted for through
conditioning so that the response of Yt to a disturbance
on Xt−τ accounts for the causal interaction between the
two variables at the specific lag τ [1]. Therefore, the

momentary information quantifies the causal interaction
between two lagged nodes of interest, in a time-series
graph. To condition at the history of the nodes of inter-
est, a network describing the causal relationships among
the variables in the whole system is required [3].
Consider a complex system with a multivariate pro-

cess ~X = {V,X, Y, Z, . . .}N , where N is the number of
component processes. We assume that the causal depen-
dence between the component processes are temporally
invariant. The process can be represented in a time series
graph G, as illustrated in Figs. 1c-1e for a three variable
system, of which the basic elements include:

• Node Zt: a subprocess Z at a specific time t.

• All the nodes at time step t: ~Xt ≡
{Vt, Xt, Yt, Zt, . . . }N .

• The past or history of Zt: ~X−
t ≡ { ~Xt−1, ~Xt−2, . . . }.

• Directed link (or causal link) Xt−τ → Zt: implying
Xt−τ (τ > 0 is the time lag) has causal influence
on Zt.

• Parents of Zt: PZt
≡ {Xt−τ : X ∈ ~X, τ >

0, Xt−τ → Zt}. A node Xt−τ is a parent of Zt if
and only if there is a directed link/edge from Xt−τ

to Zt (i.e., Xt−τ → Zt).

• Causal path from Xt−τ to Zt: CXt−τ→Zt
≡

{Vt−τV : V ∈ ~X, τV > 0, Xt−τ → · → Vt−τV →
· → Zt−τZ} ∪ {Xt−τ}.

In this study, we assume that all the causal links are
identified from the criteria that only the past affects the
future. The causality in this study is defined in the con-
text of strong Granger causality [3, 5], that is, a pair of
nodes Xt−τ ∈ G (τ > 0) and Zt ∈ G are connected by a
directed link Xt−τ → Zt if and only if:

Xt−τ 6⊥⊥ Zt | [ ~Xt\{Xt−τ}], (5)

where 6⊥⊥, | and \ are the dependent, conditioning and
subtraction symbols, respectively. It is anchored on the
idea that Xt−τ Granger-causes Zt if the two are still de-
pendent on each other when conditioned on the remain-
ing process.
Furthermore, because the directionality of the causal

relationship between two contemporaneous nodes (e.g.,
Xt and Yt) is ambiguous, we do not consider the undi-
rected contemporaneous link (a link connecting two
nodes at the same time step, e.g., Xt − Yt) in this study.
Thus, it allows the time series graph to be a directed
acyclic graph (DAG), where no directed loops exists [15].
To connect the DAG with the joint probability implied
by the graph, we assume causal Markov property [15] that

given the parents , PZt
, of any Zt ∈ ~X , Zt is independent

of its non-descendants ~X−
t \PZt

in the graph, which are
the earlier dynamics excluding the direct causes of Zt.
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FIG. 2. Illustration of the Markovian conditions for the causal subgraphs comprising one causal path and two separable
causal paths shown in Figs. 1b and 1d, respectively. (a) The conditions for the causal path CXt−2→Zt

(brown solid circles:
PZt

\CXt−2→Zt
where \ represents the subtraction operation for sets; the brown dashed circles: PCXt−2→Zt

). (b) The conditions

for the separable causal paths CXt−1→Zt
and CYt−3→Zt

(the black dashed circle: ~W1; the brown solid circle: ~W2; the blue solid

circles: ~W3).

By drawing upon the causal Markov property, the po-
tential infinite number of conditions in Eq.(5) from the
past can be reduced to a finite number of conditions cor-
responding to the parents of the nodes of interest [9].
Hence, the condition in Eq.(5) can be reduced into the
parents of the two nodes such that

Xt−τ 6⊥⊥ Zt | [PXt−τ
∪ (PZt

\{Xt−τ})], (6)

where PXt−τ
represents the parents of the source node

Xt−τ , and PZt
\{Xt−τ} denotes the parents of Zt exclud-

ing the node Xt−τ if Xt−τ ∈ PZt
.

Based on Eq.(6), momentary information transfer
IMIT
Xt−τ→Zt

quantifies the coupling strength between two

nodes (e.g., Xt−τ and Zt), and is estimated as a condi-
tional mutual information as follows [14]:

IMIT
Xt−τ→Zt

= I(Xt−τ ;Zt | [PXt−τ
∪ (PZt

\{Xt−τ})]). (7)

Similarly, to account for the amount of information trans-
ferred from Xt−τ to Zt via their causal path CXt−τ→Zt

,
the momentary information transfer along the causal
path (MITP) is expressed as [6]:

IMITP
Xt−τ→Zt

= I(Xt−τ ;Zt |

[PCXt−τ→Zt
∪ (PZt

\CXt−τ→Zt
)]). (8)

IMITP
Xt−τ→Zt

is a conditional mutual information [14], where

PCXt−τ→Zt
represents the parents of the causal path

CXt−τ→Zt
and PZt

\CXt−τ→Zt
denotes the parents of Zt

excluding the nodes on the causal path CXt−τ→Zt
. Con-

sider Fig. 2a as an example. The conditions for IMITP
Xt−2→Zt

are {Xt−3, Zt−2, Yt−2, Yt−3}. By conditioning on the par-
ents of the nodes involved (i.e., {Zt} ∪ CXt−τ→Zt

), the
calculated interaction information prevents the informa-
tion of the complementary causal graph from entering
into the calculation.
The idea of momentary information is further ex-

tended to analyze how one node (i.e., Yt−τY ) in the

causal path CXt−τX
→Zt

affects the information transfer
in CXt−τX

→Zt
through momentary interaction informa-

tion (MII) [6]. Similar to MITP, by conditioning on the
parents of the causal path, MII is given by:

∆IMXt−τX
→Zt|Yt−τY

= II(Xt−τX ;Yt−τY ;Zt |

[PCXt−τX
→Zt

∪ (PZt
\CXt−τX

→Zt
)]),

(9)

which is a conditional interaction information [14].
The utilization of a time series graph not only allows

the visualization of the interactions among several nodes,
but also facilitates the quantification of these interactions
across different time points through different momentary
information measures. Especially, MITP and MII [6] are
the first attempts to quantify the information transfer
between two nodes through a causal path and the casual
interactions among three nodes in a causal path, which
provides a starting point to develop the momentary par-
tial information decomposition (MPID) described in the
next section.

III. MOMENTARY PARTIAL INFORMATION
DECOMPOSITION

In general, a target node Zt is not only influenced
by one lagged source node Xt−τ through either a di-
rect link or a causal path, but also driven by mul-

tiple lagged source nodes ~V through a multitude of
causal paths, which forms a causal subgraph C~V ⇒Zt

≡
∪Xt−τ∈~V CXt−τ→Zt

. Also, it is clear that the dynamics

within a causal subgraph are affected by the remaining

graph preceding the target, ~X−
t \C~V⇒Zt

, called as com-

plementary causal subgraph. The interaction among mul-
tiple nodes in a time series graph poses a question of
how to characterize the different contents of information
transfer through a causal subgraph consisting of multiple
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causal paths, while at the same time, with the influence
of its complementary causal subgraph eliminated.
In this section, we describe the mathematical frame-

work of the momentary partial information decomposi-

tion (MPID) for quantifying and categorizing the infor-
mation transfer to a target from a preceding causal sub-
graph starting with two sources with separable causal
paths. First, we build on the momentary interaction in-
formation, which only considers one causal path, to for-
mulate the momentary interaction information for sepa-

rable causal paths (MII-SCP). Then, we review the recent
advancements in PID, including the rescaled redundancy
approach for estimating PID [12]. Lastly, based on the
chosen PID framework, MPID is developed for partition-
ing the interaction of information transfer arising from
separable causal paths into synergistic, redundant and
unique components.

A. Momentary Interaction Information for
Separable Causal Paths

From a time series graph perspective, the PID of a
three-variable interaction at specific lagged times is in-
duced by the information transfer from a subgraph con-
taining two separable causal paths of the sources to-
wards the target, such as the case shown in Fig. 1e.
The separability of the two causal paths emphasizes the
fact that neither source lies in the causal path of the
other. That is, two causal paths (i.e., CXt−τX

→Zt
and

CYt−τY
→Zt

) are separable if (Yt−τY 6∈ CXt−τX
→Zt

) ∧
(Xt−τX 6∈ CYt−τY

→Zt
), where ∧ is the logical AND sym-

bol. However, it should be noted that the two causal
paths can also be non-separable if one source belongs to
the causal path of the other (such as the case in Fig. 1c),
in which case, as shown below, the formulation reduces
to that in Eq.(9).
To compute MPID, the calculated interaction infor-

mation along two separable causal paths in Eq.(4) is re-
quired to be isolated from complementary causal sub-
graph containing the historical information of the dy-
namics. Nevertheless, MII is not an appropriate option
to use as it is formulated for the situation of one causal
path as shown in Eq.(9). Hence, the momentary interac-
tion information for separable causal paths (MII-SCP) is
given as

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

= II(Xt−τX ;Yt−τY ;Zt | ~W ), (10)

where

~W = ~W1 ∪ ~W2 ∪ ~W3 (11a)

with

~W1 = PZt
\(CXt−τX

→Zt
∪ CYt−τY

→Zt
) (11b)

~W2 = PCXt−τX
→Zt

\CYt−τY
→Zt

(11c)

~W3 = PCYt−τY
→Zt

\CXt−τX
→Zt

. (11d)

The condition set, ~W , for the MII-SCP represents the
parents of the union set of both the target Zt and the
causal paths from the two sources to the target (i.e.
CXt−τX

→Zt
, CYt−τY

→Zt
). It consists of three parts: (1)

~W1, the parents of the target node PZt
excluding those

in the two causal paths; (2) ~W2, the parents of the causal
path CXt−τX

→Zt
(i.e., PCXt−τX

→Zt
) excluding the nodes

in CYt−τY
→Zt

, and (3) ~W3, the parents of CYt−τY
→Zt

(i.e.,

PCYt−τY
→Zt

) excluding those in CXt−τX
→Zt

. It is noted

that when the causal paths of the two sources are non-
separable, MII-SCP is reduced to MII in Eq.(9).

In the example of the three-variable system in Fig.

2b, the condition ~W for MII-SCP between the target Zt

and two sourcesXt−1 and Yt−3 (i.e., ∆IMII−SCP
{Xt−τ1 ,Yt−τ2}→Zt

)

includes (1) ~W1 = {Yt−2} (black dashed circle), (2)
~W2 = {Xt−2} (brown solid circle) and (3) ~W3 =

{Xt−4, Xt−2, Zt−2} (blue solid circle). Therefore, ~W =
{Xt−2, Xt−4, Yt−2, Zt−2}.
Furthermore, when two causal paths are non-separable

(i.e., one source lies in the causal path of the
other source), MII-SCP collapses into MII. Suppose
the source Yt−τY ∈ CXt−τX

→Zt
, then CYt−τY

→Zt
∈

CXt−τX
→Zt

)). The first term in the condition ~W ,

i.e., PZt
\(CXt−τX

→Zt
∪ CYt−τY

→Zt
), is reduced to

PZt
\CXt−τX

→Zt
. Also, the remaining terms in ~W , i.e.,

~W2 ∪ ~W3, can be simplified to PCXt−τX
→Zt

, since the

purpose of the two terms is to choose all the par-
ents of the union of two causal paths which is now

CXt−τX
→Zt

. Therefore, the condition set ~W is reduced

to PCXt−τX
→Zt

∪ (PZt
\CXt−τX

→Zt
), the same condition

as in MII in (Eq.(9)).

B. Framework for Partial Information
Decomposition

Besides MII-SCP, MPID needs to provide a further
characterization of the information transfer from Xt−τX

and Yt−τY to Zt through the corresponding causal paths
in terms of the synergistic, unique and redundant in-
formation. Nevertheless, to compute the four compo-
nents UY , UX , R and S in the PID from three equations
Eqs.(1)-(3), one more condition is needed. To that end,
various approaches for quantifying one of the components
in PID, that is, redundancy, synergy and unique informa-
tion, have been proposed. In addition to propose the PID
framework, Williams and Beers [10] were also the first to
propose a redundancy measure (see Section ) based on
the minimum specific information for the target at the
outcome of a source value. However, this measure over-
estimates the redundancy [16, 17], because it assumes
that the amount of information shared between the two
variables is also the same as the impact of the two vari-
ables on the target variable. In fact, it represents the
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upper bound of the information that can be redundantly
shared with the target variable. Despite this drawback,
it emphasizes the idea that the redundancy and unique
information are dependent on the marginal joint distribu-
tion between each source variable and the target, which
enables a series of further measures for unique [18], syn-
ergistic [19, 20] and redundant [11, 21] information. Bar-
rett [11] defined the redundancy as the minimum mu-
tual information between each source and the target,
which is equivalent to some of the early PID frame-
works [10, 18, 19] in Gaussian systems. Furthermore,
in computing the redundancy, besides anchoring the re-
dundancy upon the marginal joint distributions between
the sources and the target, there is also a trend to uti-
lize other aspects in the joint distribution of all the con-
sidered variables in computing the redundancy. Harder
et al. [16] quantified the redundant information based
on the distance between the conditional distribution of
the target given each source by using Kullback-Leibler
divergence. Ince [17] computed the redundancy as the
expected pointwise change of the surprisal of the target
given the sources from the local interaction information
based on an entropy-maximized joint distribution, thus
distinguishing the redundancy-related elements in inter-
action information. Goodwell and Kumar [12] put for-
ward a rescaled redundancy which considers the mutual
information between the sources in accounting for the
minimum mutual information-based redundancy.
In this study, to formulate the momentary partial in-

formation decomposition (MPID), we adopt the PID
framework based on the rescaled redundancy, RS , [12],
which is given by:

RS = Rmin + Is(RMMI −Rmin), (12a)

where

RMMI = min[I(Xt−τX ;Zt), I(Yt−τY ;Zt)] (12b)

Is =
I(Xt−τX ;Yt−τY )

min[H(Xt−τX ), H(Yt−τY )]
(12c)

Rmin =

{

0, if II ≥ 0

−II, otherwise.
(12d)

RMMI represents the minimum mutual information,
originating from the fact that the redundant information
should not be larger than the smallest value of the mutual
information between any source and target variables [11].
We choose the rescaled approach in computing the re-
dundancy because it is able to reduce the overestimation
from RMMI as well as guarantee non-negativity of PID,
and it is also empirically computable from time series ob-
servational data. To ensure a non-negative PID, RMMI

and Rmin are used for providing the upper and lower
bounds, respectively, for the redundant information. It
is noted that we assume the non-negativity of PID in
this study, which is termed as “local positivity” property
in [22], because the non-negative partitioning is essen-
tial in illustrating physical phenomenon in a meaningful

way, though there exist considerations for dropping the
non-negativity condition for PID [17]. Furthermore, the
rescaling coefficient Is is used to scaleRMMI (which over-
estimates the redundancy) based on the mutual informa-
tion between the sources. Besides, many proposed PID
frameworks are computationally difficult or costly when
using observational time series data due to the require-
ment of an optimization procedure for computing a met-
ric based on marginal distributions [17, 18, 21]. Mean-
while, the rescaled redundancy approach, which has been
applied in ecohydrological time series data [12, 13], is em-
pirically computable and thus may have a broader appli-
cations associated with empirical analysis across many
physical domains. Also, it is noted that the rescaled ap-
proach, as formulated in Eq.(12) [12], is applicable to the
interaction between two sources similar to other redun-
dancy measures [16, 18, 19].
Nonetheless, recognizing that there is no universal

agreement on the additional condition for quantifying
PID so far, we also provide the formulations for the
MPIDs based on three other redundancy measures in Sec-
tion V.

C. Framework for Momentary Partial Information
Decomposition

Based on the rescaled redundancy in Eq.(12), in a man-
ner similar to MII-SCP, we propose the momentary par-
tial information decomposition (MPID) by conditioning
all the components in the original PID (Eqs.(1)-(3)) on
~W such that:

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

= Sc −Rc (13a)

Rc = Rmin,c + Is,c(RMMI,c −Rmin,c) (13b)

UX,c = I(Zt;Xt−τX | ~W )−Rc (13c)

UY,c = I(Zt;Yt−τY | ~W )− Rc, (13d)

where

RMMI,c = min[I(Xt−τX ;Zt| ~W ), I(Yt−τY ;Zt| ~W )] (13e)

Is,c =
I(Xt−τX ;Yt−τY | ~W )

min[H(Xt−τX | ~W ), H(Yt−τY | ~W )]
(13f)

Rmin,c =

{

0, if ∆IMSCP ≥ 0

−∆IMSCP , otherwise.
(13g)

The subscript c stands for “conditional”. We note that
the original suggestion of forming conditional redundan-
cies was given by Bertschinger et al. [22] [23].

IV. COUPLING STRENGTH AUTONOMY FOR
MOMENTARY PARTIAL INFORMATION

DECOMPOSITION

The causal Markov property of the time series graph
ensures the momentary information approaches (e.g.,
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MII, MITP and MII-SCP) exclude the influence of the
complementary causal subgraph. This allows us to ap-
proximate the causal interactions among variables of in-
terest. However, these metrics are still dependent on the

Markovian conditions, such as ~W in MII-SCP. Neverthe-
less, Runge [6] showed that under some conditions, MII
and MITP are autonomous of how the nodes of inter-
est interact with the nodes in the complementary causal
subgraph, a property described as coupling strength au-

tonomy. In this section, we generalize this property
to MPID. Two conditions (i.e., additivity and linearity)
used for the verification of coupling strength autonomy
property in MII are also adopted here, with one more con-
dition, separability, which allows the analysis of MPID
when the causal paths of the two source nodes are sep-
arable. Then, the coupling strength autonomy property
of MPID is shown for two common driver models. In
the first model, the interaction among the variables of
interest is linear, and nonlinear in the second model. For
the former, the analytical solution of MPID is derived
and compared with the interaction information without
conditioning. For the latter, a numerical simulation is
conducted to estimate both MPID and PID.

A. Coupling strength autonomy in MPID

Consider a multivariate stationary discrete-time pro-

cess ~X = {X,Y, Z, . . .}N , where X , Y , Z, etc. are sub-

processes. The process ~X satisfies the causal Markov
property with its corresponding time series graph G as
described in Section II. We assume that for τX , τY ≥
0, both the source nodes Xt−τX and Yt−τY are con-
nected with the target node Zt through two causal paths
CXt−τX

→Zt
and CYt−τY

→Zt
, respectively. Also, the union

of the two causal paths and the target node is represented

as ~B, that is

~B = CXt−τX
→Zt

∪ CYt−τY
→Zt

∪ Zt. (14)

For the dependencies of each node Kt−τ ∈ ~B (τ ≥ 0),
the following conditions are defined:
(i) Additivity: Dependencies of Kt−τ in the following

are additive:

• its parents belonging to ~B (denoted as P
~B
Kt−τ

≡

PKt−τ
∩ ~B),

• its remaining parents (denoted as PKt−τ
\P

~B
Kt−τ

),

and

• the noise term representing the modelling uncer-
tainty.

Therefore, any Kt−τ ∈ ~B (τ ≥ 0) can be written as

Kt−τ =fK(P
~B
Kt−τ

) + gK(PKt−τ
\P

~B
Kt−τ

) + ηKt−τ , (15)

where fK , gK are the arbitrary functions for Kt−τ , and
ηKt−τ is the noise term which is assumed as independent
and identically distributed (i.i.d.). It can be observed

that P
~B
Kt−τ

(i.e., the dependencies in fK) belongs to ~B,

while PKt−τ
\P

~B
Kt−τ

(i.e., the dependencies in gK) belongs

to ~W defined in Eq.(10).
(ii) Linearity in fK : The function fK for each node

Kt−τ ∈ ~B is linear. It means the dependence of Kt−τ

on the part of its parents belonging to ~B (i.e., P
~B
Kt−τ

),

is linear. The linearity also implies that the nodes in ~B
(Eq.(14)) linearly depend on each other.
(iii) Separability of the causal paths CXt−τX

→Zt
and

CYt−τY
→Zt

: Neither of the two sources lies in the causal
path from the other source to the target. That is, two
causal paths (i.e., CXt−τX

→Zt
and CYt−τY

→Zt
) are sepa-

rable if (Yt−τY 6∈ CXt−τX
→Zt

) ∧ (Xt−τX 6∈ CYt−τY
→Zt

).
Theorem: Coupling strength autonomy for momen-

tary partial information decomposition. In a station-

ary discrete-time multivariate process ~X , which meets
the causal Markov property in its time series graph, the
MPID for the contribution from two sources Xt−τX and
Yt−τY (τX , τY ≥ 0) to the target Zt have the following
properties (proof is given in the Appendices B & C):
(a) If all the three conditions (i.e., additivity, linearity

and separability) hold, MPID defined in Eqs.(13a)-(13b)
can be written as:

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

= I(ηXt−τX ; η
Y
t−τY | f̃Z( ) + ηZt ) (16a)

Rc = Rmin,c (16b)

Sc = ∆IMSCP +Rc (16c)

UX,c = I(ηXt−τX ; f̃Z( ) + ηZt )−Rc (16d)

UY,c = I(ηYt−τY ; f̃Z( ) + ηZt )−Rc, (16e)

where Rmin,c is given in Eq.(13b) and f̃Z( ) is a linear

combination of all the noise terms ηt of the nodes in ~B,
which are simplified as the symbol . In brief, additivity

allows the exclusion of the dependencies not in ~B (i.e.,

gK(PKt−τ
\P

~B
Kt−τ

)) in the calculation of the information

partitioning due to the translational invariance property
of both entropy and mutual information (see Appendix B
for details). Furthermore, separability ensures both the
minimum redundancy and the zeros of fX and fY , be-
cause Xt−τX and Yt−τY now do not depend on any nodes
in the two separable causal paths. Also, linearity con-

verts the dependencies in the ~B (i.e., fK(P
~B
Kt−τ

)) to be

linear functions f̃ of all the noise terms in ~B after the ex-

clusion of the non-linear dependencies gK(PKt−τ
\P

~B
Kt−τ

).

Therefore, the condition set ~W is cancelled out since the
calculations are now only determined by the nodes in

the causal paths and the target node (i.e., ~B) due to the
linearity and additivity conditions.
(b) If only additivity and linearity hold, both fX and
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fY can be converted into linear functions of the noise

terms of the nodes in ~B (similar to how fZ is converted

into f̃Z in (a)). However, since separability does not hold,
the redundancy Rc is not the minimum and fX and fY
can be nonzero. Hence, we can express the corresponding
MPID as

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

= II(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )

(17a)

Rc = Rmin,c + Is,c(RMMI,c −Rmin,c) (17b)

Sc = ∆IMSCP +Rc (17c)

UX,c = I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt )−Rc (17d)

UY,c = I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )−Rc, (17e)

where both f̃X( ) and f̃Y ( ) are the linear functions of

all the noise terms ηt of the nodes in ~B for Xt−τX and
Yt−τY , respectively, and

RMMI,c =min[I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt ),

I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )] (18a)

and

Is,c =
I(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τY )

min[H(f̃X( ) + ηXt−τX ), H(f̃Y ( ) + ηYt−τY )]
.

(18b)

(c) If only additivity and separability hold, the redun-
dancy Rc is minimized with fX and fY vanishing. How-
ever, because of the nonlinearity in f , the condition set
~W cannot be cancelled out. Thus, the MPID is reduced
to

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

= I(ηXt−τX ; η
Y
t−τY | {fZ(P

~B
Zt
) + ηZt } ∪ ~W ) (19a)

UX,c = I(ηXt−τX ; fZ(P
~B
Zt
) + ηZt | ~W )−Rc (19b)

UY,c = I(ηYt−τY ; fZ(P
~B
Zt
) + ηZt | ~W )−Rc. (19c)

It can be observed that the additivity and linearity con-
ditions allow MPID to be dependent only on the nodes
in the union of the two causal paths and the target node
(see Eqs.(16) and (17)).
Furthermore, under the separability condition, the re-

dundant information Rc achieves the minimum value
Rmin,c (see Eq.(16b)). It is intuitive that without the in-
fluence of other factors (e.g., a common driver), the two
separable source variables are independent, and therefore,
the redundant information is minimized.

B. A Common Driver model

Now we verify the coupling strength autonomy prop-
erty for MPID in both a linear and a nonlinear model

solved analytically and numerically, respectively. Let’s
consider a common driver model involving four sub-
processes (i.e., V X , Y and Z). V is the common driver
of X and Y , both of which cause Z. All the causal rela-
tionships are delayed at one time step. Fig. 3 illustrates
the process network graph and the time series graph of
the model. We show that by adopting MPID, the effect
of the common driver V in the PID ofX , Y and Z is elim-
inated completely in the linear model and significantly in
the nonlinear model.

1. A linear common driver model

The linear common driver model can be written as

Vt = ηVt

Xt = cV X Vt−1 + ηXt

Yt = cV Y Vt−1 + ηYt

Zt = cXZ Xt−1 + cY Z Yt−1 + ηZt . (20)

The i.i.d. noise terms for each variable are represented
as ηVt , ηXt , ηYt and ηZt , following normal distributions
N (0, σ2

V ), N (0, σ2
X), N (0, σ2

Y ) and N (0, σ2
Z), respec-

tively. The coefficients, cV X , cV Y , cXZ and cY Z , are the
coupling strengths between variables. Especially, cVX

and cV Y quantify the effect of the common driver of Vt−1

on Xt and Yt, respectively. In the following, the analyti-
cal solutions of both MPID and PID for quantifying the
information transfer from two sourcesXt−1 and Yt−1 and
the target Zt are shown sequentially.
MPID for Xt−1, Yt−1 and Zt: According to the defini-

tion of the condition in Eq.(10), the condition set ~W for
∆IMSCP

{Xt−1,Yt−1}→Zt
is {Vt−2} as shown in Fig. 3b. There-

fore, the analytical solutions of ~W for ∆IMSCP
{Xt−1,Yt−1}→Zt

,

Rc and Sc are given as:

∆IMSCP
{Xt−1,Yt−1}→Zt

=
1

2
ln
{

1 +
c2XZ c2Y Z σ2

X σ2
Y

σ2
Z(σ

2
Z + c2XZ σ2

X + c2Y Z σ2
Y )

}

(21a)

Rc = 0 (21b)

Sc = ∆IMSCP
{Xt−1,Yt−1}→Zt

. (21c)

The derivation is available in Appendix D. It is easy
to verify that the linear common driver model exam-
ple fulfills all the three conditions (linearity, additivity

and separability), thus the corresponding MPID follows
the results in Eqs.(16a)-(16e). Obviously, MPID is au-
tonomous such that it is independent of cV X and cV Y –
the impact from the common driver Vt−2. Moreover, in
this case, because ∆IMSCP

{Xt−1,Yt−1}→Zt
> 0, the redundant

information Rc achieves the minimum value Rmin = 0 in
MPID. It implies that there is only synergistic informa-
tion in the contribution of Xt−1 and Yt−1 in generating
Zt.
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PID for Xt−1, Yt−1 and Zt: The analytical solution
of the interaction information II(Xt−1;Yt−1;Zt) is given
by

II(Xt−1;Yt−1;Zt) =

1

2
ln
{ (c2XZ b+ ΓX σ2

Z)(c
2
Y Z b+ ΓY σ2

Z)

σ2
Z ΓX ΓY (σ2

Z + c2XZ Γ2
X + c2Y Z Γ2

Y + d)

}

,

(22)

where b = c2V Y σ2
V σ2

X + c2VX σ2
V σ2

Y + σ2
Y σ2

X , d =
2 cXZ cY Z cV Y cVX σ2

V , ΓX = c2V X σ2
V + σ2

X , ΓY =
c2V Y σ2

V + σ2
Y and d = c2Y Z Γ2

Y + 2 cXZ cY Z cV Y cVX σ2
V .

For a full derivation, see Appendix D.
Eq.(22) shows that II(Xt−1;Yt−1;Zt) depends on cVX

and cV Y through b, d, ΓX and ΓY . The dependence
implies that the common driver V plays a role in de-
termining II(Xt−1;Yt−1;Zt), which is in contrast to
∆IMSCP

{Xt−1,Yt−1}→Zt
which exhibits the coupling strength

autonomy property. It demonstrates that in this lin-
ear system, by conditioning on the common driver
Vt−2, the proposed momentary information measure,
∆IMSCP

{Xt−1,Yt−1}→Zt
, is able to eliminate the influence from

the complementary causal subgraph.
To explore this further, the coupling strength coeffi-

cients cVX and cV Y are altered to see how V affect S
and R. Suppose X and Y are strongly driven by V such
that cVX and cV Y are much larger than other coefficients
in Eq.(20). Also, assume both the coupling coefficients
cVX and cV Y are in the same order of magnitude, that
is:

cVX ≈ cV Y ≈ h, and

h ≫ c, ∀c ∈ {cXZ , cY Z , σV , σX , σY , σZ}.

Therefore, II(Xt−1;Yt−1;Zt) in Eq.(22) can be reduced
to

II(Xt−1;Yt−1;Zt) ≈
1

2
ln

1

h2
. (23)

Especially, when |h| > 1, II(Xt−1;Yt−1;Zt) < 0, imply-
ing that S < R according to the relationship among II,
S and R in Eq.(4). It means a strong coupling strength
from the common driver Vt−2 would result in more re-
dundant information from Xt−1 and Yt−1, even though
the dynamics among Xt−1, Yt−1 and Zt alone do not
suggest any redundancy from the two sources as shown
in Eq.(21c). This is crucial in that the empirically es-
timated PID without an appropriate conditioning as in
∆IMSCP would probably be influenced by other factors
(e.g., the common driver in this example), thus hiding
the true dynamics of the variables of interest.

2. A nonlinear common driver model

Next, we examine the coupling strength autonomy of
MPID for a nonlinear model. The nonlinear model still
follows the same causality structure of the common driver

V Z

Y

X
1 1

1 1

(a) The process network
graph

source nodes

target node

links in the 
causal paths

23X*���5�*
\ C

Y
t-3

->Z
t

P
CY

t-3
->Z

t

 \ C
X

t-1
->Z

t

X

Z

Y

t-3 t-2 t-1 t

V

(b) The time series graph

FIG. 3. The common driver model. (a) is the process net-
work graph representation, where the numbers on the directed
links represent the delayed time step. (b) is the time se-
ries graph representation, where brown and blue circles are
the source nodes, (i.e., Xt−1 and Yt−1), black circle is the
target node (i.e., Zt), brown circle represents the nodes in
PCXt−1→Zt

\CYt−1→Zt
and blue circle refers to the nodes in

PCYt−1→Zt
\CXt−1→Zt

. Also, PZt
\(CXt−1→Zt

∪ CYt−1→Zt
) is

empty in this case. Therefore, the condition set ~W is only
{Vt−2}.

model in Fig. 3, but with a nonlinear dependency be-
tween X and Y such that:

Vt = ηVt

Xt = cVX Vt−1 + ηXt

Yt = cV Y Vt−1 + ηYt

Zt = cZ Xt−1 Yt−1 + ηZt . (24)

where cZ is the coupling coefficient in the function of Zt.
The MPID and the PID for Xt−1, Yt−1 and Zt are esti-

mated numerically for different combinations of cV X and
cV Y . cZ and the standard deviations of all the noises (i.e.,
σV , σX , σY and σZ) are set to 0.5 and 1, respectively.
To compute the information-theoretic metrics (e.g., con-
ditional entropy, conditional mutual information), the
multivariate probability distribution is required and es-
timated based on the kernel density estimation method
with the multivariate Gaussian kernel [24]. For each com-
bination of cVX and cV Y , the sample length is 10,000.
Fig. 4 shows the estimated interaction information and

the synergistic, redundant and unique information under
both MPID and PID. It can be observed that for MPID,
the redundant information, Rc, in the total information,
Itotal, is almost zero for different cVX and cV Y , consistent
with the conclusion that the redundancy is minimized
when additivity and separability hold. Nevertheless, all
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FIG. 4. The estimated interaction information MII-SCP and II as well as SUR (i.e., redundant, synergistic and unique
information) from both MPID (the left column) and PID (the right column) for the sources {Xt−1, Yt−1} and the target Zt,
based on Eq.(24) with a simulation time length 10000 for each combination of cV X and cV Y .

the remaining metrics (i.e, MII-SCP, Sc, UX , UY ) vary
with cV X and cV Y . It suggests that the coupling strength
autonomy is not entirely valid due to the nonlinearity in
Zt. Especially, both MII-SCP and Sc show higher values
when both cVX and cV Y are close to zero, illustrating
more synergistic information from Xt−1 and Yt−1 with
the decrease of the influence from their common driver
Vt−2.

With regards to PID (shown in the second column in
Fig. 4), all the metrics are affected by V through cVX

and cV Y . The impacts of cV X and cV Y on redundancy is
illustrated in the increasing redundancy R with the two

coefficients, consistent with the conclusion in the linear
case (see Eqs.(22) and (23)). Furthermore, more interac-
tion information II and synergistic information S is also
observed for higher values of cVX and cV Y .

By comparing the estimated results from MPID and
PID in Fig. 4, we can draw the following conclusions.
First, the effect from the external driver, V , on the re-
dundancy for MPID (i.e., Rc) is negligible based on the
nearly-zero values of Rc. Second, even though MII-SCP,
Sc and the two unique information values (UX,c and UY,c)
in MPID still depend on cV X and cV Y , their variations in
terms of the two coefficients (i.e., cV X and cV Y ) are much
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smaller than the corresponding metrics (i.e., II and S)
in PID. It suggests that in the nonlinear common driver
model, the conditioning in MPID is able to significantly
reduce the influences from the common driver Vt−2 in
quantifying the dynamics among Xt−1, Yt−1 and Zt.

V. OTHER MOMENTARY PARTIAL
INFORMATION DECOMPOSITION

FRAMEWORKS

In this study, we adopt the rescaled redundancy mea-
sure (Eq.(12)) to define the framework for the momentary
partial information decomposition (MPID) in Eq.(13).
However, because there is still no universal agreement
on an appropriate condition to supplement Eqs.(1)-(3)
to provide complete solution for estimating S, R, UX

and UY , researchers might prefer to adopt MPID based
on alternate approaches, such as those in [10, 11, 16–
19]. Therefore, in this section, we provide the frameworks
for MPID based upon three other redundancy measures
based on: (1) minimum specific information RMSI [10],
(2) minimum mutual information RMMI [11], and (3)
pointwise common change in surprisal RCCS [17], with
the corresponding conditional redundancies represented
as RMSI,c, RMMI,c and RCCS,c respectively. These con-
ditional redundancy candidates can be used to replace
the rescaled redundancy in Eq.(13b) for forming new
MPID frameworks. However, except the RMMI,c-based
MPID, the coupling strength autonomy does not hold for
the other two MPID frameworks. This is detailed at the
end of this section along with other properties of these
alternative MPID frameworks. Despite this, due to the
causal Markov property, the proposed MPID frameworks
based on various redundancy measurements are still help-
ful in excluding the influence of the history in quantifying
the different information transfer in a causal subgraph,
thus revealing the information partitioning from there
alternative perspectives.

A. The Minimum Specific Information Approach

Williams and Beer [10] proposed the redundancy mea-
sure as the average minimum specific information over
the considered input sources. The idea of defining the
conditional version RMSI,c is to exclude the influence of
the complementary causal subgraph in calculating the
specific information for the two source nodes Xt−τX and
Yt−τY . Therefore, RMSI,c is given by:

RMSI,c =

∫

min
A∈{Xt−τX

,Yt−τY
}
{I(Zt = z;A | ~W )}p(z)dz,

(25)

where I(Zt = z;A | ~W ) is the conditional specific infor-
mation [10] that A ∈ {Xt−τX , Yt−τY } provides about the

outcome Zt = z conditioned on ~W , and can be expressed

as:

I(Z = z;A | ~W ) =

∫

a

∫

~w

p(a, ~w|z)[ln
p(z|a, ~w)

p(z|~w)
]da d~w.

(26)

B. The Minimum Mutual Information Approach

As part of Rc in Eq.(13b), the expression of RMMI,c

is given in Eq.(13e).

C. The Pointwise Common Change in Surprisal
Approach

Ince [17] characterized the redundancy, RCCS , as the
expected pointwise change in surprisal of the target which
is common to the sources. The pointwise change in sur-
prisal of the target Zt is interpreted as the pointwise or
local interaction information, whose joint distribution P̃
is estimated from the original joint distribution P based
on a game-theoretic approach (see the details in [17]).

RCCS is defined based on the interaction in-
formation II(Xt−τX ;Yt−τY ;Zt) and its local ele-
ments [17]. We develop the corresponding conditional
version RCCS,c upon the conditional interaction in-

formation II(Xt−τX ;Yt−τY ;Zt | ~W ), which is also
∆IMSCP

{Xt−τX
,Yt−τY

}→Zt
in Eq.(10) given as:

II(Xt−τX ;Yt−τY ;Zt | ~W ) = (27)
∫

~w

∫

x

∫

y

∫

z

p(x, y, z, ~w)i(x; y; z|~w)dx dy dz d~w,

where i(x; y; z|~w) is the local interaction information of

II(Xt−τX ;Yt−τY ;Zt | ~W ) and can be written as:

i(x; y; z|~w) = log
p(x, y, z | ~w)p(x | ~w)p(y | ~w)p(z | ~w)

p(x, y | ~w)p(x, z | ~w)p(y, z | ~w)
(28a)

= ∆zh(x, y | ~w)−∆zh(x | ~w)−∆zh(y | ~w),
(28b)

with the three local individual informations:
∆zh(x, y|~w) = log p(x,y,z|~w)

p(x,y|~w)p(z|~w) , ∆zh(x|~w) =

log p(x,z|~w)
p(x|~w)p(z|~w) , and ∆zh(y|~w) = log p(y,z|~w)

p(y|~w)p(z|~w) .

Therefore, following the idea that the redundancy is
measured with pointwise common change in surprisal,
RCCS,c can be defined as the weighted sum of the local
conditional interaction information and is given by:

RCCS,c =

∫

x

∫

y

∫

z

∫

~w

p̃(x, y, z, ~w) (29)

∆zh
com(x, y | ~w)dx dy dz d~w,
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where

∆zh
com(x, y | ~w) = (30)











−ip̃(x; y; z | ~w), if sgn∆zh(x, y | ~w) = sgn∆zh(x | ~w)

= sgn∆zh(y | ~w) = sgn[−ip̃(x; y; z | ~w)]

0, otherwise.

Notice that the signs of the three local individual infor-
mation and the inverse of the local interaction informa-
tion have to be the same. This is because of the assump-
tion [17] that the positive and negative local information
terms are fundamentally different, so that only the lo-
cal (conditional) interaction information where all three
local individual informations have the same signs con-
tributes to the redundancy. Also, p̃ is the element of the
maximum entropy distribution P̃ from the original joint
distribution P such that:

P̃ (X,Y, Z, ~W ) = argmax
Q∈∆P

∫

x

∫

y

∫

z

∫

~w

−q̃(x, y, z, ~w)

log q̃(x, y, z|~w)dx dy dz d~w,
(31)

where the set of potential distributions ∆P is selected
from each candidate joint distribution Q, which has the
same sources’ joint distribution as well as pairwise source-
target marginal joint distribution as P , and is given by:

∆P =















Q ∈ ∆ :

Q(X,Z| ~W ) = P (X,Z| ~W ),

Q(Y, Z| ~W ) = P (Y, Z| ~W ),

Q(X,Y | ~W ) = P (X,Y | ~W )















.

The selection of the joint distribution P̃ for RCCS,c fol-
lows a similar game-theory approach as RCCS in [17] but
is different in that the optimization in Eq.(31) is based
on the maximization of the conditional entropy.

D. Properties of the Four Conditional
Redundancies

We have provided formulations for MPID based on
four different definitions for conditional redundancies as
the additional condition for MPID. The four selected re-
dundancies (i.e., RMSI , RMMI , RCCS and RS) originate
from different perspectives. RMSI and RMMI render the
redundancy as a function of the marginal distribution be-
tween the target and each source, which usually overesti-
mate the redundancy. To overcome that, the rescaled re-
dundancy, RS , takes the source correlations into account
in the redundancy computation. Furthermore, RCCS is
developed based on a game-theory perspective and the
idea that the redundancy consists of the pointwise com-
mon change in surprisal represented as the local interac-
tion information, which essentially utilizes the informa-
tion of the whole joint distribution.

In terms of the non-negative PID or the corresponding
MPID, termed as “local positivity” in [22], only RMMI

and RS allow a non-negative decomposition. The local
positive property for PID and MPID is imposed in this
study because the non-negative decomposition might be
essential in illustrating physical phenomenon in a mean-
ingful way. Despite the fact the other two measures,
RMSI and RCCS , cannot guarantee the local positivity of
PID and MPID, it should also be noted that the negativ-
ity of the PID and MPID induced by RCCS and RCCS,c,
respectively, is explainable in the context of the definition
for RCCS [17].

Furthermore, coupling strength autonomy only holds
for the RMMI,c and RS,c-based MPID, while the other
two conditional redundancy measures do not facilitate
this property due to their pointwise or local information
based computation. Nevertheless, the definitions for the
RMSI,c and RCCS,c-based MPIDs are also useful in com-
puting MPIDs with most of the influence from the com-
plementary causal subgraph eliminated owing to causal
Markov property of the network.

In addition, when the two causal paths are separable,
the conditional redundancy based on the rescaled ap-
proach is minimized as Rmin,c (see Section IVA). The
minimization of the redundancy vividly illustrates the
separable structure of the two causal paths from the
sources, making the rescaled approach (Eq.(12)) suitable
in quantifying MPID for separable causal paths based on
a causal network.

Despite their pros and cons, the three proposed MPID
frameworks in this section would eventually delineate the
information transfer along causal paths in a causal net-
work from their own perspectives, and provide for poten-
tially alternative applications.

VI. QUANTIFYING MPID UNDER
DIFFERENT CAUSAL PATHS AND CAUSALITY

STRUCTURES

Given the four MPID frameworks based on different
redundancy measures described above, the MPID using
the rescaled redundancy is adopted for further analy-
sis. Specifically, in this section, we aim to investigate
how MPID is affected by (1) separable and non-separable
causal paths and different causal network structures, and
(2) the effect of noise. We use synthetic data generated
from two coupled logistic equation models for both sep-
arable and non-separable causal paths.

A. Coupled Logistic Equations

The two models, each of which involves three variables,
are given as:

(1) A coupled logistic equation model without self-
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FIG. 5. Illustration of the time series graphs and the averaged information partitioning for the two cases in Eq.(32) (i.e.,
Case SI and Case NI) when the coupling strength ǫ equals to 0.5. (a) and (c) are the time series graphs of Cases SI and NI
respectively (blue and brown nodes: the source nodes; black node: the target node; blue and brown directed links: the links in

the causal paths of the two sources; grey solid nodes: the conditioning nodes in ~W for MPID in Eq.(10)). (b) and (d) are the
pie charts of the averaged synergistic, redundant and unique information percentages from PID and MPID of Cases SI and NI
respectively, with a legend showing the averaged values along with the corresponding standard deviations in the parenthesis
(Uλ1 and Uλ1,c: the unique information of X1,t−1; and Uλ2 and Uλ2,c: the unique information of X2,t−1).

dependency:

Xi,t =
1− ǫ

2

3
∑

j=0
j 6=i

4Xj,t−1(1−Xj,t−1) + ǫηXi

t , (32)

where ηXi

t is a standard uniform noise ~U(0, 1), and ǫ is
the noise coupling strength ranging from 0 to 1.
(2) A fully coupled logistic equation model given as

Xi,t =
1− ǫ

3

3
∑

j=1

4Xj,t−1(1−Xj,t−1) + ǫηXi

t . (33)

For each model (Eqs.(32) and (33)), the following two
situations of a causal subgraph, comprising the pathways

of two sources affecting a target node, are considered for
computing their MPID and PID:

• Scenario 1 (separable causal paths): the sources
{X1,t−1, X2,t−1} and the target X3,t;

• Scenario 2 (non-separable causal paths): the
sources {X1,t−1, X3,t−2} and the target X3,t.

For convenience, we name the four cases as follows:

• Case SI: Scenario 1 (separable) in Eq.(32) (without
self-dependency);

• Case NI: Scenario 2 (non-separable) in Eq.(32)
(without self-dependency);

• Case SC: Scenario 1 (separable) in Eq.(33) (fully
coupled);
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FIG. 6. Illustration of the time series graphs and the averaged information partitioning for the two cases in Eq.(33) (i.e.,
Case SC and Case NC) when the coupling strength ǫ equals to 0.5. (a) and (c) are the time series graphs of Cases SC and
NC respectively (blue and brown nodes: the source nodes; black node: the target node; blue and brown directed links: the

links in the causal paths of the two sources; grey solid nodes: the conditioning nodes in ~W for MPID in Eq.(10)). (b) and (d)
are the pie charts of the averaged synergistic, redundant and unique information percentages from PID and MPID of Cases
SC and NC respectively, with a legend showing the averaged values along with the corresponding standard deviations in the
parenthesis (Uλ1 and Uλ1,c: the unique information of X1,t−1; and Uλ2 and Uλ2,c: the unique information of X2,t−1).

• Case NC: Scenario 2 (non-separable) in Eq.(33)
(fully coupled).

Figs. 5a, 5c, 6a and 6c show the time series graphs of the
two models and the causal subgraphs for the four cases.
For both scenarios,X1,t−1 is considered as the first source
whose unique information are represented by Uλ1 and
Uλ1,c for PID and MPID, respectively. X2,t−1 and X3,t−2

are taken as the second source for Scenario 1 and Scenario
2, respectively, with unique information represented as
Uλ2 and Uλ2,c for PID and MPID, respectively.

B. Simulation Setting

We change the noise coupling strength ǫ uniformly in
19 intervals between 0 and 1 to control the influence of
the noise on the two logistic models Eqs.(32) and (33)
for generating synthetic data for the four cases. For each
ǫ, 10,000 data points are generated for computing both
MPID and PID in each case. To get an averaged behav-
ior, ensembles of 10 trajectories are conducted for each
ǫ. We first investigate the general influences of the sep-
arability of the causal paths and the network structure
on MPID and PID when the coupling strength ǫ equals
to 0.5. Then, we expand the analysis to explore how the
noise strength shapes MPID and PID.
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C. Influence of the Separability of the Causal
Paths and the Network Structure on MPID/PID

The average percentages of the redundancy (i.e., R and
Rc), the synergy (i.e., S and Sc) and the unique informa-
tion (i.e., Uλ1 , Uλ1,c, Uλ2 and Uλ2,c) of both MPID and
PID from an ensemble of 10 runs with ǫ = 0.5 are shown
in Figs. 5b, 5d, 6b and 6d. The standard deviations of
MPID and PID are depicted in the parenthesis in the
legends.

Comparison between PID and MPID: For all the four
cases, the results of MPID and PID are different. Es-
pecially, in Case SI, Fig. 5b shows that there is al-
most no redundancy R and little synergy S from PID,
while more synergy Sc (~25.4%) is observed in MPID.
This is explained by the fact that X3,t is entirely deter-
mined by X1,t−1 and X2,t−1 according to Eq.(32), thus
in MPID the exclusion of the history, that is, the com-

plementary causal subgraph, through conditioning on ~W
results in higher synergistic information. Furthermore,
in Cases NI and NC, where the two causal paths are
non-separable (Scenario 2), PID reveals near-zero redun-
dancy of the two sources and significant unique informa-
tion (69% ~78%) from X1,t−1 (Figs. 5d and 6d). How-
ever, MPID (Cases NI and NC) indicates that unique
information percentages of the sources (Uλ1,c and Uλ2,c)
are much closer and the proportion of the redundancy,
Rc, is larger than that of PID. This is because the non-
separable causal paths (Scenario 2) allows the informa-
tion transfer of the sourceX1,t−1 to be a part of the infor-
mation transfer of the other source X3,t−2, leading to the
higher redundancy. Also, almost identical unique infor-
mation of the two sources in MPID (with Uλ1,c slightly
larger) for Cases NI and NC results from the balance
between the information transfer from the direct driver
X1,t−1 with one pathway and the indirect driver X3,t−2

with multiple pathways. Even though X3,t−2 affects the
target X3,t indirectly, there are two and three pathways
towards the target for Cases NI and NC, respectively, en-
hancing its unique information contribution to the target.

Different causal networks: Let’s first compare the in-
formation partitioning results of Scenario 1 – the sepa-
rable causal paths (i.e. Cases SI and NI shown in Figs.
5b and 6b, respectively). The synergy of the MPID in
Case SI (i.e., Sc) is larger than that of Case NI. As dis-
cussed in the previous paragraph, the higher percentage
of Sc in Case SI arises because the target X3,t is de-
termined entirely by the two sources (i.e., X1,t−1 and
X2,t−1) based on the causal relationship in Eq.(32). Nev-
ertheless, the full coupling in Eq.(33) enables the target
X3,t to be dictated by three nodes (i.e., X1,t−1, X2,t−1

and X3,t−1). Therefore, for MPID in Case SC, with the
knowledge of only two nodes, it is not sufficient to provide
the synergistic information Sc to the target, resulting in
a less synergy Sc compared with Case SI. In addition,
in the comparison between Cases NI and NC, of which
the two causal paths are not separable, the information
partitioning patterns of both cases are consistent with

each other. For example, the PIDs of both cases shows a
strong unique information Uλ1 from Xt−1. However, the
differences in the causal network quantitatively results
in the differences in the information partitioning result.
For instance, in terms of MPID, the increased redundant
information Rc in Case NC is higher than that of Case
SC.
Separable and non-separable causal paths: For each

model, we compare the MPID results of the separable
and non-separable causal paths. The comparisons (i.e.,
Case SI versus NI, and Case SC versus NC) reveal the
same behavior in the two coupled logistic models that
more redundancy in the cases of non-separable causal
paths (i.e., Cases NI and NC) is estimated than that of
the separable ones (i.e., Cases SI and SC). This is intu-
itive because in both Case NI and NC, the source X1,t−1

lies in the causal path from the other source X3,t−2 to
the target X3,t, thereby a part of the information trans-
fer from X3,t−2 to X3,t is overlapped or contributed by
the information given byX1,t−1, resulting in more redun-
dancy than that of the separable causal paths in Cases
SI and SC.

D. Influence of Noise

To understand how additive noise affects the estima-
tion of MPID and PID, we plot these estimates as a func-
tion of signal-to-noise ratio (SNR) which is computed as
the ratio of the variance of the logistic time series to the
variance of the noise terms in Eqs.(32)-(33). Further-
more, it is well known that the coupled logistic equations
are prone to synchronize depending on the lags and noise
strength [25–29], which impacts the MPID and PID out-
comes. To investigate whether the lagged synchroniza-
tion occurs and, thus, affects MPID and PID, we also
plot the similarity functions among the sources and tar-
get as well as the percentages of total information given
by the two sources in the overall uncertainty for both
MPID and PID over SNR in Fig. 7, which are defined as
follows:

SFij(τ) =
{ E[(Xi,t+τ −Xj,t)

2]

[E(X2
i,t+τ )E(X2

j,t)]
1/2

}0.5

(34)

Itot,p =
I(λ1, λ2;Xtar)

H(λ1, λ2, Xtar)
× 100% (35)

Itot,p,c =
I(λ1, λ2;Xtar | ~W )

H(λ1, λ2, Xtar | ~W )
× 100% (36)

where SFij(τ) is the similarity function between Xi,t+τ

and Xj, E is the expectation function, H( ) and H( | )
are the Shannon’s entropy and the corresponding condi-
tional entropy [14], respectively, {λ1, λ2, Xtar} represents
the two sources and the target variables in the four cases,
and Itot,p and Itot,p,c are the percentages of shared infor-
mation between sources and target for PID and MPID,
respectively. The similarity function SFij(τ) describes
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the degree of synchronization between two variables Xi

and Xj with a lag τ . A lower value SFij(τ) means a
higher similarity betweenXi andXj with lag τ with value
0 representing a complete synchronization. The normal-
ized total information Itot,p and Itot,p,c accounts for the
amount of uncertainty reduced by the two sources λ1 and
λ2 for the target Xtar against their overall uncertainty,

with and without conditioning on ~W , respectively.
Influence of SNR on Itot,p and Itot,p,c: The percent-

ages of total information behave differently for PID and
MPID. For PID, Itot,p (the red lines in the first column
of Fig. 7) increases with SNR. This is because with the
decrease in the noise, the sources have a stronger con-
trol on the target, resulting in high Itot,p. Meanwhile,
for MPID, Itot,p,c (the red lines in the second column of
Fig. 7) increases gradually until SNR is between 1 to 50.
Note that higher SNR is achieved by reducing the noise
coupling strength ǫ in Eqs.(32) and (33). With further
increase in SNR rapidly, Itot,p,c initially drops down and
then flattens (for Case SC) or even increases a bit (for
the other cases). The decrease of Itot,p,c for MPID in
the range 1 < SNR < 50 can be explained by two fac-
tors. First, the dynamics tend to be less stochastic in

higher SNR and thus the condition set ~W is able to ex-
plain more about the target. Note that in a deterministic
model, the target variable can be determined entirely by

the knowledge of the condition set ~W . Therefore, the en-

hanced contribution of ~W leads to the decline of Itot,p,c
under high SNR. Second, the synchronization rate be-
tween each source and the target decreases when SNR
becomes larger than around 1, shown as the flattened
black lines with marked symbols in the second column
of Fig. 7. Moreover, with the further growth of SNR
(≫ 1), the target starts to be desynchronized with each
source, reflected as the increase of the similarity function
between the two in each case. The change of synchro-
nization rate accounts for not only the decrease of Itot,p,c
when SNR is slightly larger than 1, but also the increase
of Itot,p,c for MPID when the system is much less stochas-
tic for large SNR.
Influence of lagged synchronization on Itot,p and

Itot,p,c: The three similarity functions among the two
sources and the target are plotted as the three types of
black lines in the first and second columns of Fig. 7 for
PID and MPID, respectively. It can be observed that
when SNR is less than 1 (or the noise coupling strength ǫ
is large than around 0.5), the decrease of the three simi-
larity functions captures with the increases of both Itot,p
and Itot,p,c. It implies the synchronization between each
source and the target with the decrease of the noise effect
results in an increased proportion of uncertainty reduc-
tion in the target given the knowledge of the two sources.
Moreover, Itot,p,c decreases significantly once SNR is in
the range of 1 to 50. As explained at the end of the
previous paragraph, this is due to (1) the increased in-

formation provided by the condition set ~W for the target
in a less stochastic system, and (2) the desynchroniza-
tion trend between each source and the target, which

is shown as the growth of the similarity functions when
SNR is larger than around 1. However, when SNR is
large, that is, the system is weakly stochastic, Itot,p,c
flattens for Case SC and goes up again for the other
three cases, while at the same time, the increasing rate
of the similarity functions between each source and the
target declines. The decline in the increasing rate of the
similarity functions reflects the slowdown of the desyn-
chronization process between each source and the target,
causing the flattening and growth of Itot,p,c, for Case SC
and the other three cases, respectively. Especially, for
Cases NI and NC where the two causal paths are non-
separable, the increase of Itot,p,c in MPID for high SNR
(close to 100) is mainly due to the reduction in the rate
of growth of the similarity function between the target
and the first source, whose unique information, Uλ1,c,
(the blue dashed lines in the fourth column of Fig. 7)
contributes to most of Itot,p,c.

Influence of SNR on PID: For all the four cases, the
synergy S (the orange lines in the third column in Fig. 7)
is almost zero with a little increase for high SNR, while
the redundancy R (the black lines in the third column
in Fig. 7) is close to zero when SNR is less than around
1 but increases significantly for high values of SNR. The
near-zero values of both S and R for SNR less than 1
are due to the dominant role of the noise in the system
such that the two sources provide little information to
the target, which is also manifested as the near-zero val-
ues of the corresponding Itot,p (the red lines in the third
column of Fig. 7). Meanwhile, the significant increase of
R for larger SNR (> 1) is due to the symmetric structure
of the coupled logistic equations, whose influence is more
significant in larger SNR where the system is less stochas-
tic, resulting in a higher value of redundancy. In terms
of the two unique information, for Cases SI and SC, Uλ1

(the blue dashed lines) and Uλ2 (the sienna dashed lines)
are almost identical for both sources which influence the
target directly through the same logistic equation. For
Cases NI and NC, the two unique information are almost
zero for small SNR because of the dominant role of the
noise, and start to increase with the growth of SNR with
a faster increasing rate for Uλ1 . That Uλ1 is larger than
Uλ2 when the system is less stochastic for a higher SNR
illustrates the fact that the first source X1,t−1 is a direct
cause of the target X3,t while the second source X3,t−2

influences the target indirectly.

Influence of SNR on MPID: For Case SI, the redun-
dancyRc (the orange lines in the fourth column in Fig. 7)
and the synergy Sc (the black lines in the fourth column
in Fig. 7) increases and decreases with SNR, respectively.
Especially, Sc is much larger than Rc for SNR < 1, illus-
trating the fact that the target is entirely determined by
the two sources, which is not shown in the correspond-
ing PID plot in Case SI. Meanwhile, with the increase of
SNR, Rc increases rapidly while Sc decreases, as a result
of the symmetric structure of the coupled logistic equa-
tions, which leads to higher redundancy. For the other
three cases, both Sc and Rc are much larger than zero



17

100 102
0.0

0.2

0.4
Ca

se
SI

Itot, p

100 102
0.0

0.2

0.4
Itot, p, c

100 102
0.0

0.5

1.0
PID

100 1020.0

0.2

0.4
MPID

100 102
0.0

0.2

0.4

Ca
se

N
I

100 102
0.0

0.2

0.4

100 102
0.0

0.5

100 102
0.0

0.2

0.4

100 102
0.0

0.2

0.4

Ca
se

SC

100 102
0.0

0.2

0.4

100 102
0.0

0.5

1.0

100 102
0.0

0.2

0.4

100 102
SNR

0.0

0.2

0.4

Ca
se

N
C

100 102
SNR

0.0

0.2

0.4

100 102
SNR

0.0

0.5

100 102
SNR

0.0

0.2

0.4

  0%

 20%

 40%

  0%

 20%

 40%

  0%

 20%

 40%

  0%

 20%

 40%

  0%

 20%

 40%

  0%

 20%

 40%

  0%

 20%

 40%

  0%

 20%

 40%

S(Sc)
R(Rc)

Uλ1(Uλ1, c)
Uλ2(Uλ2, c)

e=0.5λ1& tar
λ2& tar

λ1&λ2
Itot, p (Itotp, p, c)

FIG. 7. The averaged percentages of total information, PID, and MPID for the four cases based on the two coupled logistic
equations in Eqs.(32)-(33) in terms of different signal-to-noise ratio (SNR). The first and second columns plot the percentages
of total information in Eqs.(35)-(36) (the red line) and the similarity functions in Eq.(34) between the first source and the
target, λ1 & tar (the black line marked with triangles), the second source and the target, λ2 & tar (the black line marked
with solid cirles), and the two sources, λ1 & λ2 (the black dashed line), for PID and MPID, respectively. The first and second
columns plot the synergistic (the orange line), the redundant (the black line), and the two unique information (the blue and
sienna dashed lines) for PID and MPID, respectively.

with Rc > Sc for SNR < 1, and both start to decrease
with SNR and reach around zero when SNR is close to
100. In the condition of a smaller SNR (< 1), a higher Rc

results from (1) the non-separable causal paths in Cases
of NI and NC, which results in an overlapped informa-
tion transfer from the two sources, and (2) the fact that
the target is determined by three causes in Case SC so
that the synergistic information Sc given by two sources
is not large enough. In the case of a larger SNR (> 1),
Sc and Rc decline because of the the decreased total in-
formation Itot,p,c. With regards to the two unique infor-
mation, Uλ1,c and Uλ2,c are almost identical for the cases
with separable causal paths (i.e., Cases SI and SC) since
that both sources impact the target directly through the
same logistic equation. For the other cases with non-
separable causal path (i.e., Cases NI and NC), the two
unique information are close for a noise-dominant system
with a smaller SNR and start to diverge with a higher
Uλ1,c when the system becomes less stochastic with a

larger SNR. The increasing difference between the two
unique information with SNR illustrates that in a more
deterministic system, compared with the second source
X3,t−2 indirectly controlling the target X3,t, the first
source X1,t−1 is able to provide more information to the
target through its direct influence on X3,t.

VII. SUMMARY AND CONCLUSIONS

By employing a time series graph-based approach,
where the dynamics among the components at each time
step are explicitly represented, we propose the momen-
tary partial information decomposition (MPID). It al-
lows us to dissect the information transfer to a target
through a preceding causal subgraph, which comprises
multiple causal paths from multiple sources to the tar-
get, into synergistic, redundant and unique information.
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Different from the original partial information decompo-
sition (PID), whose quantification includes the informa-
tion from the entire history, MPID is able to exclude the
influence from this history or the complementary causal
subgraph, through conditioning, for any direct cause of
the subgraph of interest in the estimation. PID and
MPID together provide two ways for investigating in-
formation partitioning (with and without the influence
from the complementary causal subgraph), and the com-
parison between them draws out different behaviors of a
process network.

The adopted rescaled method for estimating redun-
dancy (Eq.(12)) in information partitioning [12] proves
to be effective in MPID in excluding the influence of the
complementary causal subgraph. For instance, when the
two causal paths are separable, meaning that neither of
the sources belongs to the causal path of the other, the re-
dundant information Rc in MPID is minimized. It makes
sense that when two sources influence the target through
different causal paths, the redundancy is reduced. Also,
because there is no universal agreement on the appro-
priate PID method, we provide the estimations for the
MPID frameworks based on the three alternative redun-
dancy measures in Section V.

Further, we investigate MPID and PID of a three-
node dynamics under different causality structures and
both separable and non-separable causal paths as well as
the noise effect on the information partitioning. Appli-
cation of PID and MPID for two coupled logistic equa-
tion models shows that compared with separable causal
paths, non-separable causal paths generate more redun-
dant information since the two sources have overlap in
their causal paths towards the target. Also, the differ-
ence in causality structure gives rise to different MPID
results. For instance, under two separable causal paths,
more synergistic information is observed, when the tar-
get is entirely controlled by the two sources in the model
without self-dependency, than the fully-coupled model
where the target is also driven by an external node. Fur-
thermore, the influence of noise on PID and especially
MPID is more complex. In the two coupled logistic equa-
tions, when the system is noise dominant (low signal-to-
noise ratio (SNR)), the decline of a strong noise influ-
ence is able to enhance the lag synchronization between
each source and the target, which results in the growth
of the total information given by the two sources to-
wards the target for both PID and MPID (i.e., Itot,p and
Itot,p,c). Meanwhile, in a weak stochastic system (high
signal-to-noise ratio), Itot,p,c might either decrease due
to a higher proportion of information explained by the

condition set ~W or increase because of the decrease of
the desynchronization rate between the sources and the
target. In short, the influence of noise on the estimates of
PID and MPID is determined by the stochastic degree of
the system as well as the causality structures of both the
system and the causal subgraph of interest. Also, it is
noted that the empirical results of MPID in the coupled
logistic equations, which adopts the conditional rescaled

redundancy measure, may differ if other conditional re-
dundancy measures, such as those proposed in Section V,
were used.

Although the momentary information approach is able
to exclude most of the influences from the complemen-
tary causal subgraph of interest, as pointed out by
Runge [2, 6], the time series graph-based approach has
the following limitations. First, the coupling strength
autonomy property is only analytically established when
both linearity and additivity hold, and not guaran-
teed for nonlinear cases. However, in some cases, such
as the nonlinear common driver model, this momentary

approach can still significantly reduce the impact from
the history and thus better reveal the internal dynam-
ics among the nodes of interest in terms of information
partitioning. Furthermore, the Markovian conditional in-
dependence property of the graph facilitates an approxi-
mate estimation of an automonous information partition-
ing. Therefore, when the functional dynamics of a com-
plex system are unknown, MPID can provide at least a
general picture of the autonomous mechanism in a causal
subgraph. Second, the estimation of a high-dimensional
probability distribution function, resulting from the po-

tentially many external drivers (i.e., ~W ), requires a large
amount of data, and would potentially result in biased es-
timation of cause-effect relationships for short datasets.

Finally, the proposed momentary partial information
decomposition, which is a Granger causality-oriented
framework, provides a new perspective in exploring com-
plex systems, especially in natural systems where sys-
tems are complex, self-organized, and hard to be inter-
vened. With the increasing availability of observational
data recorded in finer resolutions [30, 31], a lot of in-
vestigations based on different data analysis approaches
have been conducted in understanding the dynamics of
different aspects in nature, such as exploring the self-
organization in various ecohydrological system by using
transfer entropy [32], the quantification of the strength
and delay in climatic interaction through the causal net-
work [33], etc. The proposed framework, anchored on
the information partitioning of a causal subgraph, has
the potential to enable the investigation of the dynamics
of multiple lagged components in terms of different types
of information transfer from the sources.

APPENDIX

In this appendix, some important notations used
throughout this paper are listed. In addition, we provide
the proof of the coupling strength autonomy property
for MPID shown in Sect. IV as well as the derivation
for the analytical solutions of the linear common driver
model in Eq.(20). Some properties of Shannon entropy
and mutual information are also given to facilitate the
proof.
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Appendix A: List of important notations

ABBREVIATIONS

MII momentary interaction
information

MII-SCP momentary interaction infor-
mation for separable causal
paths

MIT momentary information
transfer

MITP momentary information trans-
fer along causal paths

MPID momentary partial informa-
tion decomposition

PID partial information
decomposition

KEY SYMBOLS

ǫ noise coupling strength in Eqs.
(32) and (33)

ηK
t−τ noise of the node Kt−τ

λ1, λ2 the first and second source
nodes, respectively

∧ logical AND
∆IMXt−τX

→Zt|Yt−τY

MII of Yt−τY on CXt−τX
→Zt

∆IMSCP
{Xt−τX

,Yt−τ2
}→Zt

MII-SCP of the sources Xt−τX

and Yt−τ2 and the target Zt

fK() function of the dependencies

P
~B
Kt−τ

for Kt−τ

f̃K() linear combinations of all the
noise terms in ~B for Kt−τ

gK() function of the dependencies

PKt−τ
\P

~B
Kt−τ

for Kt−τ

~B union of two causal
paths P (CXt−τX

→Zt
) and

P (CYt−τY
→Zt

) and the target
node Zt

CXt−τ→Zt
causal path from Xt−τ to Zt

G time series graph
H(Xt) Shannon entropy of Xt

I(Xt−τX ;Yt−τY ) mutual information between
Xt−τX and Yt−τY

I(Xt−τX , Yt−τY ;Zt) mutual information between
Zt and the union of Xt−τX and
Yt−τY

I(Xt−τX ;Yt−τY |Zt) conditional mutual informa-
tion betweenXt−τX and Yt−τY

given Zt

IMIT
Xt−τ→Zt

MIT from Xt−τ to Zt

IMITP
Xt−τ→Zt

MITP from Xt−τ to Zt

Itot,p percentage-wise total informa-
tion for PID

Itot,p,c percentage-wise total informa-
tion for MPID

II(Xt−τX ;Yt−τY ;Zt) interaction information among
Xt−τX , Yt−τY and Zt

II(Xt−τX ;Y ;Z| ~W ) conditional interaction infor-
mation among Xt−τX , Yt−τY

and Zt given ~W
PXt

parents of the node Xt

PCXt−τ→Zt
parents of the causal path from
Xt−τ to Zt

P
~B
Xt−τ

union set between PXt−τ
and

~B
P the original joint distribution

of the sources and the target

P̃ the maximum entropy distri-
bution estimated from Eq.(31)

Q the candidate distribution for
P̃

R redundant information in PID
RS the redundancy measure based

on the rescaled approach
RMSI the redundancy measure based

on the minimum specific infor-
mation approach

RMMI the redundancy measure based
on the minimum mutual infor-
mation approach

RCCS the redundancy measure based
on the pointwise common
change in surprisal approach

Rc redundant information in
MPID

S synergistic information in PID
Sc synergistic information in

MPID
SFij(τ ) similarity function between

Xi,t+τ and Xj,t

U unique information in PID
Uc unique information in MPID
~W condition set for MPID
X subprocess X
Xt node representing a subprocess

X at a specific time t
~Xt all the nodes at time step t
~X−
t all the nodes at time steps pre-

ceding t
~X multivariate process

Appendix B: Some properties of Shannon entropy
and mutual information

The conditional Shannon entropy holds the transla-
tionally invariant property [2] such that

H(X+f(W )|V,W )

=

∫

p(w)H(X + f(w)|V,W = w)dw

=

∫

p(w)H(X |V,W = w)dw

= H(X |V,W ), (B1)
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where X , V and W are random variables and f is an
arbitrary function. Such translational invariance is also
valid for the conditional mutual information and can be
given as

I(X+f(W );Y |V,W )

= H(X + f(W )|V,W )−H(X + f(W )|Y, V,W )
Eq.(B1)
= H(X |V,W )−H(X |Y, V,W )

= I(X ;Y |V,W ), (B2)

where Y is a random variable. Moreover, the transla-
tional invariance for the conditional mutual information
can be generalized as

I(X + f(W );Y + g(V )|V,W ) = I(X ;Y |V,W ), (B3)

where g is also an arbitrary function. The proof of
Eq.(B3) is similar to the proof for I(X+f(W );Y |V,W ) =
I(X ;Y |V,W ) such that we emphasize the translational
invariance of the conditions V this time. Another way
for generalizing the translational invariance for the con-
ditional mutual information is

I(X+f(W ), Z + h(W );Y |V,W )

= H(X + f(W ), Z + h(W )|V,W )−

H(X + f(W ), Z + h(W )|Y, V,W )
Eq.(B1)
= H(X,Z|V,W )−H(X,Z|Y, V,W )

= I(X,Z;Y |V,W ), (B4)

where Z and h are a random variable and an arbitrary
function, respectively.
Moreover, if all the variables are Gaussian, the entropy

of a d-dimensional process ~X conditional on another mul-

tivariate Gaussian process ~Y can be expressed as [14]

H( ~X | ~Y ) =
1

2
ln
{

(2πe)d
|Γ ~X,~Y |

|Γ~Y |

}

, (B5)

where |Γ~Y | and |Γ ~X,~Y | are the determinant of the covari-

ance matrix of ~Y and ( ~X, ~Y ), respectively.

Appendix C: Proof of the coupling strength
autonomy property for MPID

To prove the coupling strength autonomy property for
MPID shown in Section IVA, we start from the deriva-
tion for MII-SCP and then give the solutions for the syn-
ergistic, unique and redundant information. We denote
~W as the condition adopted in MPID such that

~W = ~W1 ∪ ~W2 ∪ ~W3 (C1a)

where

~W1 = PZt
\(CXt−τX

→Zt
∪ CYt−τY

→Zt
), (C1b)

~W2 = PCXt−τX
→Zt

\CYt−τY
→Zt

, (C1c)

~W3 = PCYt−τY
→Zt

\CXt−τX
→Zt

. (C1d)

The interaction information in MPID can be written as

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

= II(Xt−τX ;Yt−τY ;Zt | ~W )

= I(Xt−τX ;Yt−τY | {Zt} ∪ ~W )− I(Xt−τX ;Yt−τY | ~W ),
(C2)

which means the expressions for the two conditional mu-

tual information values I(Xt−τX ;Yt−τY | {Zt} ∪ ~W ) and

I(Xt−τX ;Yt−τY | ~W ) are required.
(i) Assume the additivity condition holds. Then,

I(Xt−τX ;Yt−τY | ~W ) can be expressed as

I(Xt−τX ;Yt−τY | ~W )
Eq.(15)
= I(fX(P

~B
Xt−τX

) + gX(PXt−τX
\P

~B
Xt−τX

) + ηXt−τX ;

fY (P
~B
Yt−τY

) + gY (PYt−τY
\P

~B
Yt−τY

) + ηYt−τ2 | ~W )

Eq.(B2)
= I(fX(P

~B
Xt−τX

) + ηXt−τX ; fY (P
~B
Yt−τY

) + ηYt−τY | ~W )

(C3)

The first equality holds due to the additivity condition
defined in Eq.(15), while the second equality is obtained
based on the translational invariance in Eq.(B2) because

PKt−τ
\P

~B
Kt−τ

∈ ~W (where Kt−τ ∈ ~B).

Furthermore, due to the chain rule, I(Xt−τX ;Yt−τY |

{Zt} ∪ ~W ) in Eq.(C2) can be expanded as

I(Xt−τX ;Yt−τY | {Zt} ∪ ~W )

= I(Xt−τX , Zt;Yt−τY | ~W )− I(Yt−τY ;Zt | ~W ). (C4)

I(Xt−τX , Zt;Yt−τY | ~W ) in Eq.(C4) can be further ex-
pressed as

I(Xt−τX , Zt;Yt−τY | ~W )
Eq.(15)
= I(fX(P

~B
Xt−τX

) + gX(PXt−τX
\P

~B
Xt−τX

) + ηXt−τX ,

fZ(P
~B
Zt
) + gZ(PZt

\P
~B
Zt
) + ηZt ;

fY (P
~B
Yt−τY

) + gY (PYt−τY
\P

~B
Yt−τY

) + ηYt−τY ) |
~W )

Eq.(B2)
= I(fX(P

~B
Xt−τX

) + gX(PXt−τX
\P

~B
Xt−τX

) + ηXt−τX ,

fZ(P
~B
Zt
) + gZ(PZt

\P
~B
Zt
) + ηZt ;

fY (P
~B
Yt−τY

) + ηYt−τY | ~W )

Eq.(B4)
= I(fX(P

~B
Xt−τX

) + ηXt−τX , fZ(P
~B
Zt
) + ηZt ;

fY (P
~B
Yt−τY

) + ηYt−τY | ~W ). (C5)

The first equality is because of the additivity condi-
tion. For the second and third equalities, notice that

g represents the function of the parents not in ~B,

PKt−τ
\P

~B
Kt−τ

, which are a part of the condition set ~W

(i.e., PKt−τ
\P

~B
Kt−τ

∈ ~W ). Therefore, the translational

invariance in Eqs.(B2) and (B4) are applicable in the last
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two equalities in Eq.(C5). Similarly, the second term on
the right hand side of Eq.(C4) can be changed into

I(Yt−τY ;Zt | ~W )
Eq.(15)
= I(fY (P

~B
Yt−τY

) + gY (PYt−τY
\P

~B
Yt−τY

) + ηYt−τY ;

fZ(P
~B
Zt
) + gZ(PZt

\P
~B
Zt
) + ηZt | ~W )

Eq.(B3)
= I(fY (P

~B
Yt−τY

) + ηYt−τY ; fZ(P
~B
Zt
) + ηZt | ~W ).

(C6)

Combining Eqs.(C3), (C4), (C5) and (C6) into
Eq.(C2), we get

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

=I(fX(P
~B
Xt−τX

) + ηXt−τX , fY (P
~B
Yt−τY

) + ηYt−τY ;

fZ(P
~B
Zt
) + ηZt | ~W )−

I(fX(P
~B
Xt−τX

) + ηXt−τX ; fZ(P
~B
Zt
) + ηZt | ~W )−

I(fY (P
~B
Yt−τY

) + ηYt−τY ; fZ(P
~B
Zt
) + ηZt | ~W )

=II(fX(P
~B
Xt−τX

) + ηXt−τX ; fY (P
~B
Yt−τ2

) + ηYt−τY ;

fZ(P
~B
Zt
) + ηZt | ~W ). (C7)

(ii) If linearity and addivitity hold, which means all the
f functions are linear such that all the nodes on the two
causal paths and the target node are linearly dependent
on each other, the interaction information in Eq.(C7) can
be reduced to

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

=I(f̃X( ) + ηXt−τX , f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt | ~W )−

I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt | ~W )−

I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt | ~W ) (linearity)

=II(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt | ~W ),

(C8a)

where both f̃X( ), f̃Y ( ) and f̃Z( ) are the linear functions
of all the noise terms ηt in the union of the two causal

paths and the target node (i.e., ~B). The first equality re-
sults from the fact that each parent in the linear function
f can be iteratively decomposed into the summation of
both the noise terms η and the function g of the exter-
nal nodes (i.e, the parents of the two causal paths and
the target node), and therefore the translational invari-
ance in Eqs.(B2)-(B4) can be used for canceling out the g
functions. Furthermore, because all the noise terms η are

i.i.d., the condition ~W is independent of η and Eq.(C8a)
can be simplified as

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

= II(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt ),

(C9)

yielding Eq.(17a). Similarly, the translationally invariant
property can be used to simplify the momentary interac-
tion partitioning in Eqs.(13a)-(13b) as

Rc = Rmin,c + Is,c(RMMI,c −Rmin,c) (C10a)

Sc = ∆IMSCP +Rc (C10b)

UX,c = I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt )−Rc (C10c)

UY,c = I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )−Rc, (C10d)

where

RMMI,c = min[I(f̃X( ) + ηXt−τX ; f̃Z( ) + ηZt ),

I(f̃Y ( ) + ηYt−τY ; f̃Z( ) + ηZt )]

Is,c =
I(f̃X( ) + ηXt−τX ; f̃Y ( ) + ηYt−τ2)

min[H(f̃X( ) + ηXt−τX ), H(f̃Y ( ) + ηYt−τY )]

Rmin,c =

{

0, if ∆IMSCP ≥ 0

−∆IMSCP , otherwise.

It is obviously that under the linearity and additivity con-

ditions, MPID is independent of the condition ~W , result-
ing in the coupling strength autonomy property.

(iii) If separability and additivity hold, P
~B
Xt−τX

and

P
~B
Yt−τY

are empty because X (or Z) is not in the

causal path CYt−τY
→Zt

(or CXt−τX
→Zt

). Therefore,

fX(P
~B
Xt−τX

) and fY (P
~B
Yt−τY

) are zero, which allows

Eq.(C7) to be revised as

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

=II(ηXt−τX ; ηYt−τY ; fZ(P
~B
Zt
) + ηZt | ~W )

=I(ηXt−τX ; ηYt−τY | {fZ(P
~B
Zt
) + ηZt } ∪ ~W )

− I(ηXt−τX ; η
Y
t−τY | ~W )

=I(ηXt−τX ; ηYt−τY | {fZ(P
~B
Zt
) + ηZt } ∪ ~W ), (C11)

yielding Eq.(19a). The final equality holds because

ηXt and ηYt are i.i.d. and the nodes in the ~W are
not the common children of ηXt−τX and ηYt−τY , leading

to I(ηXt−τX ; ηYt−τY | ~W ) = 0. Also, notice that due

to the separability condition, I(Xt−τX ;Yt−τY | ~W ) =

I(ηXt−τX ; ηYt−τY | ~W ) = 0 (here, gX and gY cancel out
because of the translational invariance). Hence, Is,c in
Eq.(13b) is reduced to zero (since all the noises η are
i.i.d.), resulting in the minimum value of the redundancy
such that Rc = Rmin,c according to Eq.(13b). There-
fore, the synergistic and redundant information can be
expressed as

Rc = Rmin,c (C12)

Sc = ∆IMSCP +Rc. (C13)

The two unique information can also be obtained based
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on the separability condition such that

UX,c = I(ηXt−τX ; fZ(P
~B
Zt
) + ηZt | ~W )−Rc (C14)

UY,c = I(ηYt−τY ; fZ(P
~B
Zt
) + ηZt | ~W )−Rc. (C15)

(iv) If all the three conditions hold, we can easily ob-
tain MPID by combining the results of both the situa-
tions (ii) and (iii) such that

∆IMSCP
{Xt−τX

,Yt−τY
}→Zt

= I(ηXt−τX ; ηYt−τY | f̃Z( ) + ηZt ) (C16a)

Rc = Rmin,c (C16b)

Sc = ∆IMSCP +Rc (C16c)

UX,c = I(ηXt−τX ; f̃Z( ) + ηZt )−Rc (C16d)

UY,c = I(ηYt−τY ; f̃Z( ) + ηZt )−Rc. (C16e)

Appendix D: Analytical solutions of the linear
common driver model

In the following, we show the derivation of the analyti-
cal solutions of ∆IMSCP

{Xt−1,Yt−1}→Zt
and II(Xt−1;Yt−1;Zt)

in Eqs.(21c) and (22) for the linear common driver model
in Eq.(20).

a. Variances and covariances

We derive some variances and covariances of the lin-
ear model Eq.(20) for the further usage in the deriva-
tion of the analytical solutions of ∆IMSCP

{Xt−1,Yt−1}→Zt
and

II(Xt−1;Yt−1;Zt).
The variances of the four sub-processes (i.e., V , X , Y ,

Z) can be expressed as

ΓV = σ2
V

ΓX = c2VXΓV + σ2
X

ΓY = c2V Y ΓV + σ2
Y

ΓZ = c2XZΓX + c2Y ZΓY + σ2
Z .

Also, some of the used covariances between two vari-
ables (e.g., X and Y ) with a lag τ , denoted as ΓXY (τ) =
E[Xt+τYt] (where E represents the expectation func-
tion), are given by

ΓXY (0) = cV XcV Y ΓV

ΓZX(1) = cXZΓX + cY ZΓXY (0)

ΓZY (1) = cY ZΓY + cXZΓXY (0)

ΓXV (1) = cV XΓV

ΓY V (1) = cV Y ΓV

ΓZV (2) = cXZΓXV (1) + cY ZΓY V (1).

b. The momentary interaction information for separable
causal paths ∆IMSCP

{Xt−1,Yt−1}→Zt

As shown in Fig. 3b, the condition set
~W for ∆IMSCP

{Xt−1,Yt−1}→Zt
is {Vt−2}. Therefore,

∆IMSCP
{Xt−1,Yt−1}→Zt

can be written as

∆IMSCP
{Xt−1,Yt−1}→Zt

=II(Xt−1;Yt−1;Zt | Vt−2)

=I(Xt−1;Yt−1 | Zt, Vt−2)− I(Xt−τ1 ;Yt−τ2 | Vt−2)

=H(Xt−1 | Zt, Vt−2)−H(Xt−1 | Yt−1, Zt, Vt−2)

−H(Xt−1 | Vt−2) +H(Xt−1 | Yt−1, Vt−2). (D1)

Because all the processes in the linear model are
Gaussian, based on Eq.(B5), each component in
∆IMSCP

{Xt−1,Yt−1}→Zt
is given by

H(Xt−1 | Zt, Vt−2) =
1

2
ln
{

2πe
|ΓXt−1,Zt,Vt−2 |

|ΓZt,Vt−2 |

}

H(Xt−1 | Yt−1, Zt, Vt−2) =
1

2
ln
{

2πe
|ΓXt−1,Yt−1,Zt,Vt−2 |

|ΓYt−1,Zt,Vt−2 |

}

H(Xt−1 | Vt−2) =
1

2
ln
{

2πe
|ΓXt−1,Vt−2 |

|ΓVt−2 |

}

H(Xt−1 | Yt−1, Vt−2) =
1

2
ln
{

2πe
|ΓXt−1,Yt−1,Vt−2 |

|ΓYt−1,Vt−2 |

}

.

(D2)

To derive the analytical solutions of the above condi-
tional entropies, we need to solve the determinants in-
volved in the above equations. Consider the example of
H(Xt−1 | Vt−2). The determinant of the covariance ma-
trix |ΓXt−1,Vt−2 | can be expressed as

|ΓXt−1,Vt−2 | =

∣

∣

∣

∣

ΓX ΓXV (1)
ΓXV (1) ΓV

∣

∣

∣

∣

= ΓXΓV − ΓXV (1)
2

= σ2
XΓV . (D3)

Also, because |ΓVt−2 | = ΓV , the analytical solution of
H(Xt−1 | Vt−2) is given by

H(Xt−1 | Vt−2) =
1

2
ln{2πeσ2

X}. (D4)

Therefore, by solving all the determinants above and
putting all the analytical solutions of the four conditional
entropy back to Eq.(D1), we obtain the analyticial solu-
tion of ∆IMSCP

{Xt−1,Yt−1}→Zt
as shown in Eq.(21c).

It is noted that because all the three conditions (i.e.,
separability, linearity and additivity) hold for the lin-
ear common driver model, the solution in Eq.(21c)
can also be achieved by solving ∆IMSCP

{Xt−τ1 ,Yt−τ2}→Zt
=

II(ηXt−τ1 ; η
Y
t−τ2 ;

˜fZ( ) + ηZt ) directly, which is not shown
here.
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c. Interaction information II(Xt−1;Yt−1;Zt)

II(Xt−1;Yt−1;Zt) can be expanded as

II(Xt−1;Yt−1;Zt)

=I(Xt−1;Yt−1 | Zt)− I(Xt−τ1 ;Yt−τ2)

=H(Xt−1 | Zt)−H(Xt−1 | Yt−1, Zt)−H(Xt−1)

+H(Xt−1 | Yt−1) (D5)

Similarly, the Gaussian process-based
II(Xt−1;Yt−1;Zt) can be further revised according
to Eq.(B5) as,

II(Xt−1;Yt−1;Zt)

=
1

2
ln
{

2πe
|ΓXt−1,Zt

|

|ΓZt
|

}

−
1

2
ln
{

2πe
|ΓXt−1,Yt−1,Zt

|

|ΓYt−1,Zt
|

}

−

1

2
ln
{

2πe|ΓXt−1 |
}

+
1

2
ln
{

2πe
|ΓXt−1,Yt−1 |

|ΓYt−1 |

}

=
1

2
ln
{ |ΓXt−1,Zt

||ΓYt−1,Zt
||ΓXt−1,Yt−1 |

|ΓZt
||ΓXt−1,Yt−1,Zt

||ΓXt−1 ||ΓYt−1 |

}

. (D6)

By solving all the determinants in Eq.(D6), we can obtain
the solution in Eq.(22).
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