
This is the accepted manuscript made available via CHORUS. The article has been
published as:

General method to find the attractors of discrete dynamic
models of biological systems

Xiao Gan and Réka Albert
Phys. Rev. E 97, 042308 — Published 17 April 2018

DOI: 10.1103/PhysRevE.97.042308

http://dx.doi.org/10.1103/PhysRevE.97.042308

A general method to find the attractors of discrete dynamic models of

biological systems

Xiao Gan
Department of Physics
Penn State University

U.S.A
xxg114@psu.edu

Réka Albert
Department of Physics
Penn State University

U.S.A
rza1@psu.edu

Abstract
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide

valuable insight. We propose a general method that can find the attractors of multi-level discrete

dynamical systems by extending a method that finds the attractors of a Boolean network model. The

previous method is based on finding stable motifs, subgraphs whose nodes’ states can stabilize on their

own. We extend the framework from binary states to any finite discrete levels by creating a virtual node

for each level of a multi-level node, and describing each virtual node with a quasi-Boolean function. We

then create an expanded representation of the multi-level network, find multi-level stable motifs and

oscillating motifs, and identify attractors by successive network reduction. In this way, we find both

fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate

on representative synthetic networks and on published multi-level models of biological networks.

Despite its primary motivation to analyze biological networks, our motif-based method is general and

can be applied to any finite discrete dynamical system.

PACS numbers: 07.05.Tp, 87.15.A, 87.16.Yc, 87.18.Mp, 89.75.Fb

I. INTRODUCTION

Dynamic modeling is a valuable avenue for

understanding the emergent properties of

interacting biological systems [1, 2]. Networks,

with their nodes representing biological entities

and their edges representing interactions, can

connect the interactions among cellular

constituents (e.g. mRNAs, proteins or small

molecules) to cell-level functions or behaviors [3,

4]. Once a network is constructed, a dynamic

model can be created next. Each node is

characterized with a state variable, representing its

abundance, concentration or activation level [5].

The state variable will evolve over time according

to a regulatory function that depends on the

regulators of the node. The state variables and

regulatory functions of a dynamic model can be

discrete or continuous. Discrete modeling is

particularly powerful in biological models in that

it can capture the system’s behavior without the

need for much kinetic detail [6-8]. Such detail,

including reaction stoichiometry and kinetic rates,

is often difficult to obtain in experiments, and for

most systems, especially large networks, the

existing knowledge is insufficient to effectively

inform continuous models [9]. In this work we

focus on discrete dynamic models.

Attractors are long-term behaviors of a dynamic

system, and represent system-level outcomes.

They are especially important for biological

systems because they represent biological

phenotypes. For example, in a cell signaling

network, attractors can correspond to cell types,

cell fates or behaviors, including cyclic behaviors

such as circadian rhythms and the cell cycle [10,

11]. Therefore, finding the attractor repertoire of a

network model is an important goal. However

finding all attractors (including cyclic and

complex attractors) is challenging due to the

complex dynamics of networks [12]. Thanks to the

strong advances in understanding network

structure [13-16], a promising way to tackle this

problem is to try to find the attractors based on the

network topology and the key features of the

network’s dynamics, instead of from its detailed

dynamics [17]. For example, R. Thomas related

the conditions of multi-stability and cyclic

attractors to positive and negative feedback loops,

respectively [18]. Boolean models, which

characterize each node with two states and

describe regulation in a parameter-free manner,

are most strongly based on the network structure.

Many methods exist for finding attractors of

Boolean networks [19-22]. Although for some

systems Boolean modeling is appropriate, often at

least a subset of the nodes needs to be

characterized by multiple levels, in order to

accurately describe experimentally observed

relative outcomes in case of combinations of

inputs [23, 24]. For example, multiple elements of

the signal transduction network that underlies

light-induced opening of microscopic pores on

plant leaves were observed to have different

activity levels under red light, blue light, and white

(combined) light [25]. Three levels also allow the

separate representation of upregulation or

downregulation compared to a baseline/normal

level [26]. Current approaches to attractor (mainly

fixed point) identification in multi-level models

use exhaustive search, model checking methods or

polynomial algebra [27-29]. Yet, there is still an

unmet need for a general method that can

effectively find all attractors (fixed points and

complex attractors) of a multi-level model.

In this paper, we propose a general method that

can find both fixed points and complex attractors

of any finite multi-level model. Our method is an

extension of a Boolean attractor finding method

proposed by Zañudo & Albert [30]. We test and

validate our method on synthetic networks and on

a collection of biological models from the

literature.

II. METHODS
In this section we give background information

on discrete dynamic modeling and attractors, and

then an overview of our method. In sub-sections C

to I we describe each step of the method in detail.

A. Discrete dynamic modeling and attractors

Discrete dynamic models require minimal

parameterization, yet they can capture important

biological emergent properties, and are widely

used in describing biological networks [12, 31].

These models use discrete time (implemented

through update schemes). There are deterministic

update schemes such as synchronous update,

where all nodes are updated simultaneously at

each time step according to their regulatory

function [32], or asynchronous schemes with fixed

time delays [33]; there are also stochastic update

schemes [34], for example a general asynchronous

update where in each time step, one node from the

network is randomly chosen to update [35]. By

considering multiple replicate simulations,

general asynchronous update in effect samples all

kinds of rates. It is motivated by the fact that the

temporal details of biological processes are

difficult to obtain and usually insufficiently

known. By considering every kind of rates of

states transitions, this update method is capable of

covering multiple timescales involved in

intracellular processes, making up for incomplete

knowledge of the reaction timescales in biological

network modeling, while synchronous update can

lead to spurious behaviors [36]. Therefore it is

applied frequently in biological models, in both

simulations [37] and theoretical analysis [38, 39].

An attractor can be described as one of the

smallest self-contained set of states, i.e. a set of

states from which only states in the same set can

be reached. Attractors include steady state

attractors (fixed points), and complex (oscillating)

attractors where a subset of the nodes do not take

fixed values. In discrete models, attractors can

also be defined as the terminal strongly-

connected-components (SCCs) of the state

transition graph (STG). An STG of a dynamic

model is the graph wherein each node represents a

state of the system, and each edge represents a

state transition. The nodes in a terminal SCC of the

STG are self-contained as they cannot reach nodes

other than themselves, and are therefore attractors

of the system.

In a discrete dynamical system, the fixed point

attractors are independent of the update scheme;

on the other hand, complex attractors may depend

on the update scheme of the system. This is

intuitive, as the edges of a STG can be different

for different update schemes. An example is

provided in Appendix D1. Since the general

asynchronous update allow all kinds of rates and

timing, complex attractors found under general

asynchronous update are invariant with respect to

arbitrary fluctuations in the rates of the processes

involved [40]. In this paper, we will focus on

general asynchronous update.

An accurate method to find all attractors of

discrete models is to perform an exhaustive search

in the state space. However this is not practical

because the state space of a network scales

exponentially with its size. Even for the simplest,

Boolean model, the size of the state space of an N-

node network is 2N, which is too large for

exhaustive search. There has been a lot of effort to

develop methods to find attractors in the Boolean

framework [19-22], but there are only a few

methods that can find attractors of multi-level

models, and they have special constrains when

finding complex attractors. For example, Dubrova

et al. proposed an SAT-based bounded model

checking method that can only find complex

attractors in a synchronous update scheme [27].

Hinkelmann et al. converted the attractor finding

problem into solving polynomial equations; this

method can only find complex attractors of a

limited size [28]. Our method does not explicitly

consider time and does not enumerate the system’s

trajectories. Instead, it combines graph topology

and regulatory functions into an expanded graph

representation. Because this expanded network is

much smaller than the size of the state space, our

method can work on networks of larger size. Our

method is comprehensive in the broad family of

dynamical systems wherein one node changes

state at any given time instant.

B. Overview of our motif-based attractor

identification method

The idea of our method is to translate the

attractor identification problem into a graph

theoretical problem by creating an expanded

representation of the network that incorporates all

the regulatory functions, then identifying certain

motifs (subgraphs) of this expanded network [41].

We will refer to our method as the motif-based

attractor identification method, or ‘motif-based

method’ for short.

We first represent each state of each original

node with a Boolean virtual node. The ‘ON’ state

of the virtual node means that the original node is

in the state embodied by the virtual node. The

regulatory function of a virtual node is a quasi-

Boolean function, whose inputs are virtual nodes,

expressed in an appropriate disjunctive normal

form. This disjunctive normal form is obtained by

summing up the input combinations that yield the

‘ON’ state for the virtual node.

Then an expanded network containing all

information expressed in the regulatory functions

can be established. The expanded network is

obtained from the original one by the following

operations: 1. Include each virtual node in the

expanded network, and connect all the virtual

node’s regulators to it; 2. for each ‘and’ rule in the

regulatory functions, create a composite node, and

re-wire the edges from the input nodes of the ‘and’

rule to this composite node, then connect the

composite node to the regulated (target) node. The

original edges from the input nodes of the ‘and’

rule to the target node are removed. The expanded

network allows one to distinguish between co-

pointing interactions that are combinatorial in

nature (i.e. they are combined by ‘and’ rules) from

co-pointing interactions that are individually

sufficient (i.e. they are combined by ‘or’ rules).

We use the term “motif” for strongly connected

components of the expanded network that satisfy

certain properties (which we will describe later).

Depending on the virtual nodes involved in the

motif, we define stable motifs, which correspond

to stabilized states of the constituent nodes, and

oscillating motifs, which are candidates for

oscillations of the constituent nodes.

After the motifs are found, plugging in the node

states specified in the motifs into the regulatory

functions of their target nodes will specify the

states of these nodes, therefore reducing the

network. Then more motifs can be found in the

reduced network, and this reduction process can

be done iteratively. Ultimately, the motif sequence

we find in the iteration process will determine the

attractor. In the following sub-sections we

describe the details of each step.

C. Quasi-Boolean formalism of multi-level

models
We establish a formalism where multi-level

regulatory functions become Boolean-like. We

treat each level (state) of a multi-level node as a

separate node, called a virtual node. For example,

if a node A has 3 different levels, 0, 1, and 2, then

3 virtual nodes for A, namely A0, A1, A2, are

created in our formalism. Each virtual node is like

a Boolean variable, and the combination of all

virtual nodes represents the state of the original

node. We will refer to these virtual nodes as

‘sibling nodes’ of each other. For example,

original state A=2 (where for simplicity the node

state is represented by the node name) will now be

represented as the combination A0=0, A1=0,

A2=1. Note that one and only one of the virtual

nodes takes value 1, while all other virtual nodes,

i.e. its sibling nodes, must all be 0. Then we write

the regulatory function of each virtual node in a

Boolean disjunctive normal form, by treating each

input combination as a conjunctive clause and

then connecting all conjunctive clauses that yield

the same target node level with the Boolean ‘or’

operator. Figure 1 demonstrates the example of

converting the regulatory function fA = B+C into a

set of quasi-Boolean regulatory functions of

virtual nodes.

FIG. 1 Demonstration of the construction of a quasi-

Boolean regulatory function. A 3-level node A has

regulatory function: fA =B+C, where B and C both have

2 levels. From the truth table, one can identify the

regulatory function for each virtual node of A, by

connecting all conjunctive clauses that yield the same

state of A with the Boolean ‘or’ operator. In this way,

each virtual node’s regulatory function will have a

Boolean disjunctive normal form.

Note that the Boolean ‘not’ rule is absent from

this formalism, because we have assigned virtual

nodes to all states of nodes. Negation is now

replaced with activation by the sibling nodes. We

will proceed through the rest of our analysis based

on the regulatory functions of the virtual nodes,

instead of the functions of the original nodes.

We require the regulatory functions to be

written in a disjunctive normal form with all of

their prime implicants present, or in other words,

in the Blake canonical form [42]. A minterm is a

combination of inputs that yields the value 1 for a

Boolean expression. An implicant is a ‘covering’

(sum or product) of minterms in a Boolean

function; a prime implicant of a function is an

implicant that cannot be covered by a more

general (more reduced) implicant. For example,

the Blake canonical form of the regulatory

function ‘𝑓𝐴 = B and C or D and not C’ is ‘𝑓𝐴 = B

and C or D and not C or B and D’, as the

conjunctive clause ‘B and D’ is also a prime

implicant of A. This form is not preferred in

Boolean models because of its redundancy, but it

is necessary for the creation of the expanded

network, because it explicitly contains all

sufficient conditions to activate a virtual node. The

Quine-McCluskey (QM) algorithm finds the

Blake canonical form of a Boolean function. We

extend this algorithm to multi-level models.

D. Multi-level Quine-McCluskey algorithm
To obtain the Blake canonical form of a multi-

level function, we developed a multi-level version

of the QM algorithm. The original QM algorithm

not only finds all prime implicants but also

minimizes the function [43-45]. We aim to find all

prime implicants and omit the latter step.

The idea of the QM algorithm is that, if multiple

minterms cover all states of a node, these

minterms can be merged and the node can be

eliminated from the function. For example, in a

Boolean case, A and B or A and not B = A.

Similarly, if all states of a node in a multi-level

function are covered by certain minterms, these

minterms can be merged. For example, if B has 3

states, then A1 and B0 or A1 and B1 or A1 and

B2 =A1. The key property here is B0 or B1 or B2

=1; or in general, N(0) or N(1) or N(2) or … or N(m-

1)=1, where m is the number of states of node N

has and 𝑁(𝑖−1) represents the ith state of N. We call

this the completeness condition. The main

difference of the multi-level functions compared

to a Boolean function is that the completeness

condition becomes implicit. There is also a

uniqueness condition, which can be written

as N(𝑖) 𝑎𝑛𝑑 N(𝑗) = 0, ∀ i ≠ j. The interpretation is

that N can only take a single state. Together the

completeness and uniqueness conditions mean

that at any given time node N can take one and

only one state from its possible states, which is a

natural requirement. These conditions are true in

the Boolean formalism (A or not A = 1, A and not

A =0). However, in the multi-level formalism

where we represent each node state separately, we

will need to separately impose these two conditions.

Specifically, the multi-level QM requires the

completeness condition to merge minterms.

The systematic merging can be done in a way

demonstrated in Figure 2. Suppose a virtual node

state D1 has its regulatory function expressed in

truth table format. One can then re-arrange the

minterms into groups, based on how many zeros

each minterm has. Then one can start merging by

checking minterms in neighboring groups that are

different by one node. If the minterms cover all

states of that node, then they can be merged. In the

example demonstrated in Figure 2, m1 (002), m5

(012) and m6 (022) differ in the state of node B,

and these three minterms cover all possible states

of B, so we can merge them to get ‘0X2’ in the 1st

row on the right, as a merged term. This process is

done repeatedly until all minterms are considered.

Any leftover minterms that did not get merged are

prime implicants, e.g. (011) in Figure 2. The

merged terms will contain ‘X’s representing

merged nodes. Next, one treats the 1st order

merged table in the same way, i.e. re-arrange

according to the number of zeros, and try to merge

into a 2nd order merged table. The difference is that

‘X’s are treated as a separate state of the variable

that cannot be merged. For example, (X01) and

(X11) are different by 1 node and may be

considered as candidates for merging, while (X01)

and (0X1) are different by 2 nodes and cannot be

merged. This process is done iteratively until no

more merging can be done. All ‘leftover’ terms are

prime implicants. In Figure 2, nothing can be

merged after 1st order, so we get a final prime

implicant form of D1 as fD
(1) = A0 and B1 and C1

or A0 and C2 or B0 and C2 or A1 and C0 or B2

and C2 or B2 and C0. We discuss the performance

of the algorithm in Appendix A, and a description

of the implementation is provided in Appendix B.

FIG. 2 Example of the multi-level Quine-McCluskey

algorithm. A Boolean node D is regulated by a Boolean

node A and two 3-state nodes B and C. The original

function of D is shown in a truth table on the top left,

in a form summarizing all input combinations that yield

fD
(1) =1. The top right table shows the minterms sorted

according to the number of zeros in them. From this

table, one can merge the terms between layers that are

different by 1 digit, if all states of the difference node

are present within the two layers. The result of the

merging is shown below. Merged terms are represented

by an ‘X’. There are 5 leftover terms after 1st order

merging, and there is 1 leftover term after 0th order

merging. The sum of all six terms is the final expression.

E. The expanded network representation

After all functions are transformed into the

proper form, we create an expanded network,

which is a representation of the network with

regulatory functions embedded. The expanded

network is obtained from the original network by

applying the following operations: 1. Include each

virtual node in the expanded network, and connect

its regulators to it; 2. for each ‘and’ rule in the

regulatory functions, create a composite node, and

re-wire the edges from the input nodes of the ‘and’

rule to this composite node, then connect the

composite node to the regulated node. The original

edges from input nodes of the ‘and’ rule to the

target node are removed. Figure 3 exemplifies the

construction of an expanded network from a

regulatory function. To construct the entire

expanded network, all virtual nodes and all

interactions must be created.

FIG. 3 Construction of an expanded network from a

regulatory function. Virtual node A0 has function fA
(0)

= B0 or (C1 and B1), so in the expanded network, B0

is connected directly to A0; C1 and B1 are connected

indirectly to A0 via composite node 'C1 and B1'. A1

has function fA
(1) = C0 and B1, so C0 and B1 are

connected indirectly to A0 via composite node 'C0 and

B1'.

The expanded network contains not only the

network structure, but also all information about

the regulatory functions. Furthermore, interactions

of a combinatorial nature are separated, as all ‘and’

rules have become explicit nodes. In this way, the

expanded network makes it easy to identify a

sufficient condition to activate a node: a virtual

node will have state 1 if any of its regulator virtual

nodes is 1, or if any of its regulators that is a

composite node has all its input virtual nodes

being 1, regardless of the states of the rest of its

regulators. Following this intuition, a cycle in the

expanded network that satisfies the above criterion

will be self-sufficient to stabilize.

This leads to the definition of stable motifs.

F. Stable motifs

A stable motif is a subgraph of the expanded

network that can stabilize on its own. We define it

in the following way: a stable motif is a strongly-

connected-component (SCC) in the expanded

network that satisfies: (1) the SCC contains no

sibling node pairs; (2) if the SCC contains a

composite node, all of its input nodes must also be

in the SCC. The first condition is a natural

requirement for a stabilized state of the original

node; the second condition is about the nature of

the Boolean ‘and’ operator, as all inputs must be

present to activate the ‘and’ function. In our

algorithm we identify stable motifs as the smallest

SCCs that satisfy the above conditions. Figure 4

shows the expanded network and stable motifs of

a three node network.

FIG. 4 Illustration of stable motif identification in a

three-node network. (A) The original network and the

regulatory functions of each node; (B) The expanded

network is constructed according to the steps in section

I.E, and then the stable motifs are found by their

definition in I.F. (C) Stable motifs found in this

example. The first stable motif, A0, B0, corresponds to

a fixed point attractor of the system A=0, B=0, C=0.

The state C=0 is found by plugging A=B=0 into the

regulatory function of C. The 2nd stable motif

corresponds to another fixed point attractor A=2, B=2,

C=0.

In order for stable motifs to be correctly

recognized, the regulatory functions must contain

all prime implicants. If a prime implicant is

missing, a sufficient condition for a node to

stabilize is missing, which would lead to incorrect

identification of stable motifs. This is why we

require the Blake canonical form of regulatory

functions.

There is a one-to-one correspondence between a

stable motif and a partial fixed point of the system

(which is defined as a state in which a subset of

nodes stabilize regardless of the state of the rest of

the system). The proof of this statement is

provided in Appendix C. Consequently, by finding

all stable motifs we find all fixed points or partial

fixed points of the system.

G. Oscillating motifs
An oscillating motif is defined as the largest SCC

in the expanded network that satisfies: (1) at least

one virtual node in the SCC has at least one sibling

node in the SCC; (2) if the SCC contains a

composite node, all its input nodes must also be in

the SCC. In contrast to nodes in stable motifs, an

oscillating node must be able to enter at least two

states, so the first condition is necessary. The

second condition is also necessary due to the

combinatorial nature of the composite node.

FIG. 5 An example of an oscillating motif in a multi-

level network. Panel (A) shows the network and

regulatory functions; panel (B) indicates the expanded

network and motifs. A0 and B0 form a stable motif,

indicating a fixed point A=0, B=0; while A1, A2, B1

and B2 form an oscillating motif, indicating a possible

complex attractor involving states A=1, A=2, B=1 and

B=2. Panel (C) indicates the state transition graph of

the system when using general asynchronous update.

The stable motif and oscillating motif identified in 5B

correspond to a fixed point and a complex attractor,

respectively.

Unlike the relation between stable motifs and

partial fixed points, there is no one-to-one

correspondence between oscillating motifs and

complex attractors, because complex attractors are

dependent on the timing of individual events [37]

(see Appendix D1 for an example). Our motif-

based method is based on network structure and

regulatory functions and is independent of timing,

thus it cannot find timing-dependent complex

attractors. General asynchronous update prunes

timing-dependent complex attractors in discrete

framework, and all complex attractors under this

update are proven to be based on negative

feedback loops [38, 39]. These complex attractor

are also reliable under perturbation, in contrary to

timing-dependent complex attractors [40].

Therefore the complex attractors identified by our

method should be consistent with the complex

attractors under general asynchronous update. We

propose that for every complex attractor of the

discrete dynamic system under general

asynchronous update, there is a set of oscillating

motifs and their downstream that contain the

virtual nodes representing all the states visited by

the oscillating nodes. We sketch the proof of this

proposition in Appendix C. In our benchmarks

presented in section III. B., this proposition was

never violated. Figure 5 shows an example of a

complex attractor in a multi-level network model.

This example also illustrates the coexistence of a

fixed point attractor and a complex attractor for

different states of the same nodes (See Appendix

D4 for more detail).

FIG. 6 An example of an oscillating motif that contains

a stabilized node. (A) The network and regulatory

functions. (B) The expanded network and motifs. The

oscillating motif contains only one virtual node of B,

meaning that B will stabilize at 1 in the complex

attractor. (C) The state transition graph using general

asynchronous update. There are two attractors: a fixed

point attractor, and a complex attractor.

There is a difference between the criteria of

oscillating motifs in the Boolean and multi-level

case: in the Boolean case, all nodes in an

oscillating motif must oscillate [30], while in the

multi-level case, an oscillating motif can allow

stabilized nodes. An example of a complex

attractor corresponding to an oscillating motif

with a stabilized node is shown in Figure 6. We

illustrate several additional properties of

oscillating motifs in Appendix D.

H. Iterative motif reduction yields the

attractors of the system
The source (unregulated) nodes of a network that

stabilize in a fixed state can be reduced prior to

any attractor identification process. The

corresponding fixed states can be substituted into

the regulatory functions of the nodes they regulate.

This can be done iteratively until no source nodes

are present in the network, without affecting the

attractor repertoire of the system [46, 47]. For

some biological networks, this reduction alone can

reduce a large fraction of the network model,

leading to a much simplified model.

Once motifs are identified, we can plug in the

states of the nodes specified in the motifs into the

expanded network, as if these nodes were source

nodes, to further reduce the network. For

stabilized nodes, the stabilized virtual node takes

value 1 and its sibling nodes are set to 0; for

oscillating nodes, their corresponding virtual

nodes are marked as oscillating, and their sibling

nodes excluded from the oscillating motif are set

to 0. Certain nodes downstream of the motifs may

stabilize as a result. In this way, a reduced version

of the network model is obtained. We then identify

stable motifs and oscillating motifs in the reduced

network and substitute the corresponding virtual

node values again, until this cannot be done any

more. By the end of this process all nodes will

either become a part of a motif, or be downstream

of a motif and be determined by that motif, and we

will have obtained a set of motif sequences. If no

oscillating motifs are found in a motif sequence

and at the end of the process the network has

reduced completely, all nodes will be stabilized,

and we will have obtained a fixed point attractor.

If oscillating motifs are found in a motif sequence,

at the end of the process we will find some

(possibly none) of the nodes stabilized, while

some other nodes oscillating. We call this result a

quasi-attractor. Specifically, a quasi-attractor will

indicate the unique state of each stabilized node

and it will give a set of states among which a

potentially oscillating node oscillates. This quasi-

attractor is likely (but not guaranteed) to

correspond to a complex attractor (see Figure 10

in Appendix D for example). Under general

asynchronous update, since all partial fixed points

correspond to stable motifs, and all complex

attractors correspond to oscillating motifs, all

attractors will be covered with our motif-based

method. Note that there is no exact match between

the actual number of complex attractors and the

number of quasi-attractors found by our method

(see Appendix C and D for proof and examples).

FIG. 7 Attractor identification for a four-node network

by a motif succession diagram. A. The network and the

regulatory function of each node. B. Motif succession

diagram. Three motifs are found from the original

network, including 2 stable motifs (A0, B0), (C1, D1),

and one oscillating motif (A1, A2, B1, B2). For each

motif, the values of the nodes in the motif are plugged

into the regulatory functions, reducing the network.

Then new motifs are identified from the reduced

networks. The sequences corresponding to the three

motifs are labeled (1), (2) and (3).

The reduction process can be represented as a

motif succesion diagram, which is the diagram of

the motifs obtained successively in the iterative

network reduction process [48]. Figure 7

illustrates a motif succession diagram, where

iterative network reduction based on identified

motifs leads to the identification of attractors and

quasi-attractors. The original network has two

stable motifs (A0, B0), (C1, D1), and one

oscillating motif (A1, A2, B1, B2). When the

stable motif (A0, B0) is chosen, the network is

reduced down to two nodes, C and D, with new

regulatory functions fC
(0) = D0, fC

(1)= D1, fD
(0) =C0,

fD
(1)=C1. Two new stable motifs, (C0, D0) and (C1,

D1) are found in the reduced network, leading to

two attractors Attractor 1: A=0, B=0, C=0, D=0

and Attractor 2: A=0, B=0, C=1 D=1. When the

oscillating motif is chosen, A0 and B0 become 0,

and as a consequence C0 and D0 become 0, thus

1 The source code is available on GitHub: https://github.com/jackxiaogan/Multi-level_motif_algorithm.

C=D=1. The system is thus in a quasi-attractor in

which A and B oscillate between 1 and 2 and

C=D=1. When the stable motif (C1, D1) is chosen,

the regulatory functions of A and B stay the same,

thus either the (A0, B0) stable motif or the

oscillating motif can come next. Both yield

already encountered (quasi)-attractors (see Figure

6). Thus Attractor 1 is reached if stabilization of

(A0, B0) is followed by (C0, D0), Attractor 2 is

reached in case of stabilization of (A0, B0) and

(C1, D1), in either order, and quasi-attractor 3 is

reached due to the oscillating motif. In general, a

(partially) ordered sequence of motifs determines

a fixed point attractor or quasi-attractor, similarly

to the Boolean case [48].

I. Description of the motif-based algorithm

 Here we summarize the steps of the

implementation of the motif-based algorithm 1 .

The algorithm takes as input a set of regulatory

functions and specific values for each source node.

For a source node A whose value is uncertain, one

can define its regulatory function as itself, i.e.

𝑓𝐴 = 𝐴 . In this way each virtual node that

corresponds to A will have a self-loop, which is

also a stable motif. Thus all possible values of A

are considered.

1. Reduce the source nodes of the network

model by plugging their values into the

regulatory functions of the nodes they

regulate. Repeat until no source node is

present.

2. Transform the regulatory functions to Blake

canonical form using the multi-level Quine-

McCluskey algorithm.

3. Create the expanded network according to the

definition in section I.E.

4. Search the expanded network for stable

motifs and oscillating motifs.

5. For each stable motif and oscillating motif

identified, create a copy of the network, with

the node states specified in the motif plugged

into the regulatory functions of their targets.

In the case of oscillating motifs, the virtual

nodes in the oscillating motif are marked, and

their sibling nodes that are not in the motif are

set to 0. In addition, for each oscillating motif,

create a copy of the network with all virtual

nodes downstream of the oscillating motif

marked.

6. Repeat 1, 2, 3, 4, and 5 until no more motifs

can be identified. In step 1, the reduction

process, virtual nodes marked as potentially

https://github.com/jackxiaogan/Multi-level_motif_algorithm

oscillatory are not reduced when evaluating

regulatory functions.

7. Discard duplicate attractors.

The final result of the algorithm will be a set of

attractors or quasi-attractors. Each of these (quasi)

attractors will indicate a state (or multiple possible

states) for each node. For each stabilized node, its

unique stabilized state is given; for a potentially

oscillating node, the multiple states among which

it potentially oscillates are given.

III. RESULTS

To test the effectiveness of our motif-based

attractor identification method, we apply it to an

ensemble of synthetic networks and biological

networks from the literature.

A. Benchmark on synthetic networks

We test the motif-based algorithm on synthetic

networks of different size, ranging from 10 to 40.

To approximate biological networks, we first

generate networks where the in-degree is k=2 for

each node and the network is otherwise random

[49, 50]. Next, we generate the number of states

for each node. For multi-level ensembles, we

generate number of states according to an equal

probability of having 2 or 3 states. For Boolean

ensembles all nodes have 2 states. Then we

randomly generate a regulatory function among

those consistent with the number of regulators and

number of states for each node. The generation

process of regulatory functions is described in

Appendix E.

To test whether the motif-based algorithm finds

attractors correctly, we perform simulations

similar to Wang et al. [51] and Zañudo et al. [30].

We start from different random initial conditions,

and let the system evolve for Tstep effective time

steps. We used general asynchronous update,

where at each time step, one node is randomly

chosen and its state is updated according to its

regulatory function. If the new state of the node is

the same as before, another node will be selected

within the same time step, until the selected node

changes state. If no node can reach a new state, a

fixed point attractor is reached. If no fixed point

attractor is reached within Tstep effective time steps,

we evaluate whether the system is in a complex

attractor by determining the corresponding partial

state transition graph (STG). Note that this

sampling method is heuristic, and is likely to miss

attractors when the state space is large. For each

fixed point attractor found by simulation, we

check whether it is predicted by our motif-based

algorithm. In addition, for each predicted fixed

point or partial fixed point we check whether there

is a simulated attractor that contains the same

stabilized nodes in the same states. If a pair of

predicted and simulated fixed points passes both

checks, we categorize them as identical. If a

predicted partial fixed point passes the second

check, we call it consistent with the simulated

attractor. Complex attractors depend on the update

scheme (i.e. on the timing), so there cannot be a

definitive conclusion. The expectation (based on

our proposition presented in II.G) is that the set of

nodes found to oscillate in a simulation should be

a subset of the nodes predicted to oscillate by our

motif-based algorithm. If this is indeed the case (in

addition to the stabilized nodes, i.e. the partial

fixed points, being consistent), we say that the

attractors are highly consistent. In all tests, we

found identical fixed points and highly consistent

complex attractors with the sampling method. The

runtime of the motif-based algorithm increases

exponentially with the number of nodes, and

increases faster on the ensemble of multi-level

networks than on an ensemble of Boolean

networks, as expected (Table I). From the table,

the motif-based algorithm would not be practical

for large networks with more than 50 nodes or too

many multi-level nodes. The important question is

whether the algorithm is practical for biological

network models existing at present or constructed

in the near future. To estimate the answer to this

question, we test our algorithm on published

multi-level biological network models.

Multi-level Networks

Size of

network

10 15 20 25

Time (s) 0.07 1.1 48 251

Boolean Networks

Size of

network

10 20 30 40

Time (s) 0.07 0.89 74 600
Table I. Benchmark runtime of the motif-based

algorithm on synthetic networks of different sizes

(number of nodes). For each size, 50-100 random

networks with in-degree k=2 are generated. For multi-

level networks, each node has 50% chance of having 2

levels and has 50% chance of having 3 levels. In all

runs, the attractors found by the algorithm are identical

or highly consistent with the attractors found with the

sampling method.

B. Tests on biological networks from the

literature

The tested models include a signal transduction

network model describing stomatal opening in

plants [25] whose attractor repertoire we explored

before [52]. We also selected 18 models from the

model repository of the software tool GINsim,

which simulates discrete dynamic models of gene

regulatory networks [29]. These 19 models have

sizes ranging from 4 to 72 nodes, with 6%-100%

of these nodes being multi-level. We run our

motif-based algorithm on each model, and

compare the results with the results found by

GINsim.

To apply the motif-based algorithm, we first

convert the GINsim model into a ‘.txt’ file, with

regulatory functions suitable for our algorithm2. In

the few cases where the GINsim framework and

our framework are different, we adapt the model

to our framework. For example, GINsim allows an

‘empty function’: ‘fA
(0) = B0, fA

(2)=B1, fA
(1) is empty,

i.e. A1 has no function’, which our method doesn’t

allow. In this GINsim example, ‘A1’ will be

visited transiently when node A changes from A0

to A2. We discard the state ‘A1’. We can do so

because such transient states are never part of an

attractor. We also reduce some of the large models

before applying our algorithm. The reduction

consists of three methods: removing output nodes

(nodes with no outgoing edges), removing simple

mediator nodes (nodes with one incoming edges

and one outgoing edge), and replacing input trees

(acyclic sub-networks that contain a source node)

with a single source node. These reductions are

known to conserve the attractors of the model [46,

47]. In cases where there are a lot of different

signal (source node) state combinations, it is not

practical to compare all the fixed points found.

Instead, we select representative signal

combinations corresponding to different

biological phenotypes (some of which are

indicated as pre-made selections in GINsim), or

signal combinations that result in different

attractors.

We compare the attractor analysis results by first

checking whether the fixed points are identical,

and then checking whether the complex attractors

are consistent. We find that the fixed points found

by the two algorithms are identical, as expected.

For complex attractors, it is difficult to get a

definite conclusion. GINsim cannot predict

complex attractors; it can only simulate the state

transition graph (STG) or hierarchical transition

graph (HTG) and find the strongly-connected-

component from the STG/HTG [53]. The

complexity of this method goes up quickly with

the increase of the model size. Our method can

2 The converted models are uploaded to the ‘models’ folder in: https://github.com/jackxiaogan/Multi-level_motif_algorithm/.

only predict quasi-attractors, which may or may

not be actual complex attractors. Therefore it is

impossible to know the complex attractors exactly

unless an exhaustive (partial) state space search is

performed. If the model is simple enough for

GINsim to construct an STG, we check whether

the complex attractors found from the STGs are

covered by the candidates predicted by our

algorithm. We found consistent complex attractor

results from the two algorithms: all complex

attractors found in simulations are covered by

predicted quasi-attractors. The detailed results can

be found in the Supplementary File S1 [54].

We also compared the runtime of the two

algorithms. For the motif-based algorithm, we

record the runtime for each signal combination,

then average them. GINsim does not show the

actual time spent in computation, so we only

record whether the computation completed, and

give an estimated time. Note that both algorithms

are guaranteed to find solutions given enough

computational power, so cases of not completed

calculations are due to limited computational

resources. All GINsim fixed point computations

are done in seconds. The only model wherein the

motif-based algorithm did not finish computing

had a 72-node strongly connected network. A

summary of the results is shown in Table II. The

details of the runtime of each model can be found

in Supplementary File S1[54].

Network

count

Network

size

Computational Time

Motif

algorithm

GINsim

STG/HTG

9 4~15 0~8s 0~10s

9 17~36 0s~1h DNC

1 72 DNC DNC

Table II. Summary of the runtime of the two

algorithms. The networks fall into three categories.

The first column is the number of networks in each

category. The second column is the range of the

network sizes in each category. The 3rd and 4th

columns indicate whether motif analysis and

GINsim STG/HTG generation was successfully

completed or not. For completed analysis, the range

of computational time is shown in the table.

Otherwise, we indicate DNC (meaning “did not

complete”), which includes cases that ran out of

memory or did not finish in 6 hours. All tests were

run on a personal computer. There is no model

where GINsim succeeds and the motif-based

algorithm fails. The motif algorithm is successful in

18 of 19 models, while GINsim STG/HTG only

works in the small networks of the first category.

https://github.com/jackxiaogan/Multi-level_motif_algorithm/

IV. DISCUSSION

Our motif-based attractor identification method

connects the structure, regulatory logic and

attractors of discrete dynamical systems. The

expanded network representation is conceptually

similar to Petri nets (as the composite nodes share

certain properties with the Petri nets’ transition

nodes) [55] [56] and also to logic hypergraphs [57]

(which represent the group of edges incident on a

composite node with a hyper-edge). The

innovation of our analysis of the expanded

network lies in interpreting the patterns formed by

multiple connected regulatory functions. The

motifs identified in our expanded network have a

strong correspondence with the long-term

dynamic behaviors of the modeled system. The

expanded network is therefore a good

complementary technique to the existing family of

techniques to predict the attractor repertoire of

discrete dynamical systems.

Our method captures not only fixed points, but

also complex attractors. The fixed points of a

dynamic system are independent of timing, and

will be found accurately. Complex attractors may

be timing-dependent. Since our method is based

on the structure and regulatory logic of the system,

it will capture timing-independent, negative

feedback-driven complex attractors. Our method

can find all attractors of systems updated by

general asynchronous update; for systems updated

using other update schemes (i.e. when there exists

at least some node synchrony), our method can

accurately find fixed points and timing-

independent complex attractors, but there may be

timing-dependent attractors that our method

cannot capture.

The complexity of the motif-based algorithm

mainly comes from the identification of cycles.

Both stable and oscillating motifs are formed as

unions of simple cycles in the expanded network.

Identifying simple cycles in a directed graph is

known to be NP-complete, with time complexity

O((N + E)(c + 1)) using Johnson’s algorithm

[58], where N is the number of nodes, E is the

number of edges, and c is the number of directed

cycles. The last can grow faster than 2N for dense

networks. In addition, the introduction of multi-

level nodes dramatically increases the number of

nodes, especially the number of composite nodes

in the expanded network. These facts limit the

effectiveness of the motif-based algorithm on

networks with a large size, a high number of levels,

or with high connectivity. Typical biological

network models have a low average degree,

around two, and a low number of states for each

node (two or three). In addition, only a relatively

small fraction of the nodes are in SCCs; i.e.

biological networks are not feedback-dense. As

we have demonstrated in section III.B, our motif-

based method can be successfully applied to these

networks. For other types of networks, although

our method can theoretically work, the

computational complexity may be a challenge.

Possible further work on this project include

optimizations of the algorithm so it can work on

more complex network models, and finding more

necessary conditions of multi-level complex

attractors to reduce the number of quasi-attractors.

A possible way to optimize the algorithm is to add

a step to divide the network into SCCs before

trying to analyze for motifs, as all motifs can only

be found within an SCC. This may dramatically

reduce cycle-finding time in networks with SCC

‘communities’, which is quite common in

biological networks.

Although the idea is the same, there are

significant differences between the Boolean stable

motifs method and our multi-level motif-based

method. The most important difference is in the

criteria for oscillating motifs, as mentioned in

Section II G: the Boolean oscillating motif

requires the participation of two (i.e., both) sibling

virtual nodes for every node of the motif, while the

multi-level oscillating motif does not require that

two or more sibling virtual nodes participate for

every original node (see the multi-level example

in Figure 6). In addition, in the Boolean

framework, a fixed point and a complex attractor

cannot co-exist for different states of the same

node; while in the multi-level case this is possible

(see the example in Figure 5 and 6). These

differences bring fundamental differences and

complications to the design of the algorithm,

because in the iterative reduction process toward

attractor identification, the Boolean method needs

only knowledge of the stable motifs, while the

multi-level case needs both stable motifs and

oscillating motifs.

The integration of the network structure and

regulatory logic in the expanded network can

reveal the connectivity patterns that underlie the

system’s functional repertoire. There can be

multiple extensions to this work. For example, in

the Boolean case, elementary signaling mode

(ESM) has been defined from the expanded

network as the minimal set of nodes that can

perform signal transduction independently [59,

60]. It can be extended to the multi-level as well

to help understand signal transduction a multi-

level expanded network.

Another direction is to extend the concepts of

expanded network and stable motifs to a

continuous framework. If one can distill the causal

relationships wherein a certain value of a

continuous variable is sufficient to maintain a

certain value of another continuous variable, one

can construct an expanded network from these

relationships, and obtain insight into the system’s

dynamic repertoire [61].

Furthermore, one can develop the control

capability of multi-level motifs. Network

controllability has multiple definitions and

frameworks to address it [62-65]. Motifs can be

used to control the system by driving it into one of

its natural attractors. Zañudo et al. proved that in

the Boolean case a sequence of stable motifs

uniquely determines an attractor, which means

that driving certain nodes into their states in a

stable motif can drive the network into the

corresponding attractor; they also implemented an

algorithm to identify driver nodes from Boolean

stable motifs [48]. The same principle applies to

multi-level stable motifs as well, and the algorithm

to find the driver nodes to be controlled can be

adapted as well. This is particularly valuable in

biological networks, as the control of stable motifs

can suggest possible practical interventions to

switch the system from an undesired attractor to a

desired one. Another possible aspect of control is

target control, i.e., driving a single node or small

set of nodes into a desired state. This can be done

by exploiting more of the sufficiency conditions

revealed in an expanded network [66].

V. CONCLUSION

 In this paper, we propose a motif-based reduction

method to find both fixed points and complex

attractors of a discrete dynamic model, by

extending an existing method from Boolean to any

discrete level. We establish a multi-level

formalism and identify motifs from an expanded

representation of the multi-level network. Then

we iteratively reduce the network according to the

motifs to obtain the attractors. Our method is

general enough to work on any discrete dynamic

model. We demonstrate the method’s correctness

and effectiveness by implementing an algorithm,

and then benchmarking it on synthetic networks,

and applying it to biological networks in the

literature. In addition, the identification of stable

and oscillating motifs offers a way toward

attractor control of the network.

VI. ACKNOWLEDGEMENTS

This project was supported by NSF grants PHY

1205840, IIS 1161007, and PHY 1545832. The

authors thank Dr. Jorge G. T. Zañudo, Dr. Gang

Yang, Prof. István Albert, Nianyuan Bao and

Jordan Rozum for helpful discussions.

VII. APPENDIX

Appendix A. Runtime performance of the

multi-level Quine-McCluskey algorithm

The computational complexity of the Boolean

Quine–McCluskey algorithm grows exponentially

with the number of variables, because the problem

it solves is NP-hard, and it is shown that the upper

bound on the number of prime implicants of a

Boolean function with n variables is 3n ln(𝑛) [67].

Since a Boolean function is a special case of a

discrete function , it is straightforward that finding

all prime implicants of a multi-level function is at

least as complex as finding all prime implicants of

a Boolean function. To test whether the multi-

level QM algorithm is capable of analyzing

biological network models, we benchmark how

long it takes for the algorithm to transform all node

functions on 100 randomly generated

heterogeneous networks. The networks have 50

nodes and have a power law in-degree distribution

with exponent -3 and maximum degree 8. Each

node has 60% chance of having 2 states, 25%

chance of having 3 states, 10% chance of having 4

states, and 5% chance of having 5 states. These

parameters exceed the complexity of current

multi-level biological models. The result is shown

in Figure 8: the multi-level QM algorithm can

effectively transform the functions. In addition,

we found that within the algorithm, the complexity

of identifying stable or oscillating motifs is much

more than that of the QM transformation. So we

conclude that the complexity of the QM algorithm

is acceptable for practical problems.

FIG.8. Histogram of QM transformation runtime on

100 randomly generated heterogeneous networks with

50 nodes. The result shows that the complexity of QM

transformation is much less than identifying motifs.

Appendix B. Description of the multi-level

Quine-McCluskey algorithm

Here we describe the implementation of the

multi-level Quine-McCluskey algorithm:

1. Scan all functions to get the all states for each

node.

2. For each function, enumerate all input

combinations to get the minterms, make it

list1

3. Group the implicants in list1 according to the

number of zeroes

4. Compare between neighbor groups:

For each implicant1 in group i:

For each implicant2 in group i+1:

If implicant1 and 2 are different by 1

digit:

Access all implicants with all

states of the different node, if they

are all in group i+1, merge the

implicants;

5. If an implicant does not get merged in any

comparison, mark it. Go to step 4 with i+=1.

6. If there is no merged implicant, proceed to

step 7. Otherwise set list1 to be the merged

implicants, then go to step 3.

7. The marked implicants are prime implicants

8. Go to step 2 with the next function; repeat

until all functions are transformed.

Appendix C. Mathematical foundations of the

motif-based attractor identification algorithm
In this section we rigorously define the concepts

we used in our motif-based method, and present

important conclusions on why stable motifs and

oscillating motifs can be used to find attractors.

Our method does not depend on the update scheme,

so the complex attractors predicted by our method

are consistent with the complex attractors under an

asynchronous update where one node is updated

per time step. An efficient way to implement the

most general case of asynchronous update is to

randomly choose a node to update at each time

step, which is the ‘general asynchronous update’

we mentioned in the main text. It is a

representative update scheme for the broad class

of update schemes where our method can

accurately find all attractors.

Mathematical definitions of node states and

regulatory functions

Let 𝑣𝑖, 𝑖 = (1,2, … , 𝑁) be the N nodes of a

multi-level dynamical system; 𝑚𝑖, 𝑖 =
(1,2, … 𝑁) be the highest level of node 𝑣𝑖 (which

means that it has mi+1 levels, namely 0, 1… mi).

Let 𝜎𝑖, 𝑖 = (1,2, … , 𝑁) be a state of the 𝑖𝑡ℎ

node 𝑣𝑖; and 𝛴 = (𝜎1, 𝜎2, … , 𝜎𝑁) be a state of the

entire system. We use 𝛴𝑃 to represent a partial

system state where 𝑃 = (𝜎𝑚1
= 𝑙1, 𝜎𝑚2

=

𝑙2, … , 𝜎𝑚𝑀
= 𝑙𝑀), M < N is a subset of nodes

that have their states specified, while the other

states are unspecified.

Alternatively, we can represent the system with

virtual nodes. We use 𝑣𝑖
(𝑙)

, 𝑙 = (0, 1, … , 𝑚𝑖) to

represent the virtual node for the 𝑙𝑡ℎ state of 𝑣𝑖.

The total number of virtual nodes is 𝑁𝑣 =

∑ (𝑚𝑖 + 1)𝑁
𝑖=1 . 𝑣𝑖

(𝑙)
 is Boolean-like, meaning that

it can only have state values 0 or 1. The state of

each virtual node is now represented by 𝜎𝑖
(𝑙)

, 𝑖 =
(1,2, … , 𝑁), 𝑙 = (0, 1, … , 𝑚𝑖) . The state of the

system is then represented as 𝛴 =

(𝜎1
(1)

, 𝜎1
(2)

, … , 𝜎1
(𝑚1)

, 𝜎2
(1)

, 𝜎2
(2)

, … , 𝜎𝑁
(𝑚𝑁)

) .

Let 𝑓𝑖: ℵ𝑁 → {0,1, . . 𝑚𝑖} be the regulatory

function of node 𝑣𝑖, where ℵ𝑁 is the potential state

space of the system (as node levels are described

by natural numbers); the actual state space has

levels0,1, . . 𝑚𝑗 for each node j. The regulatory

function of each virtual node is a function of

virtual nodes, e.g. the function of the 𝑖𝑡ℎ node’s

𝑙𝑡ℎ state is 𝑓𝑖
(𝑙)

 (𝜎𝑘1

(𝑙1)
, 𝜎𝑘2

(𝑙2)
, …) (where 𝑘𝑗 is the

jth input of node i), thus it is Boolean-like,

𝑓𝑖
(𝑙)

: {0,1}𝑁𝑣 → {0,1} . Let 𝐹 =

(𝑓1
(0)

, 𝑓1
(1)

, … 𝑓1
(𝑚1)

, 𝑓2
(0)

, 𝑓2
(1)

, … 𝑓2
(𝑚2)

, … , 𝑓𝑁
(𝑚𝑁)

)

 be the vector of all virtual node functions. We use

𝑓𝑖
(𝑙)(Σ) to represent a function of a virtual node

evaluated under state Σ of the system,

and 𝑓𝑖
(𝑙)

|𝑃 to represent a function evaluated

under a partial state P, where only 𝑃 =

(𝜎𝑝1
(0)

, 𝜎𝑝1
(1)

, … , 𝜎𝑝2
(0)

, 𝜎𝑝2
(1)

, … , 𝜎𝑝𝑘
(0)

, 𝜎𝑝𝑘
(1)

, …) are

evaluated.

The virtual nodes that correspond to the same

original node 𝑣𝑖 are called ‘sibling nodes’ of each

other, and these nodes form a sibling set of 𝑣𝑖 ,

represented with Si = {𝑣𝑖
(𝑙)

 } , 𝑙 = (0, 1, … , 𝑚𝑖) .

A sibling set satisfies the following property:

when the functions of these nodes are evaluated

based on a state Σ , one and only one of the

functions in the set is 1 and the rest are 0,

i.e. ∑ 𝑓𝑗
(𝑖)

(Σ)
mj

i=1
= 1 , and 𝑓𝑗

(𝑘)
(Σ)𝑓𝑗

(𝑙)
(Σ) =

0, ∀𝑘 ≠ 𝑙. When implemented in a simulation, all

sibling virtual nodes corresponding to the same

original node should be evaluated simultaneously.

We assume that each of the virtual nodes’

regulatory functions has the following properties:

1. Non-constant. 𝑓𝑖
(𝑙)

 is not a constant, i.e. 𝑓𝑖
(𝑙)

≠

0 and 𝑓𝑖
(𝑙)

≠ 1

2. Each input node is effective. If 𝑓𝑖 depends on

node 𝑣𝑗 , then there must be at least one pair of

network states Σ(1) and Σ(2) with 𝜎𝑗
(1)

≠ 𝜎𝑗
(2)

 and

σ𝑘
(1)

= 𝜎𝑘
(2)

 for all k ≠ j such that 𝑓𝑖(Σ(1)) ≠

𝑓𝑖(Σ(2)). Or, equivalently in terms of virtual nodes,

if a sibling node function set Fi = {𝑓𝑖
(𝑙)

} , 𝑙 =

(0, 1, … , 𝑚𝑖) depends on a set of sibling nodes Si,

then there must be at least one pair of network

states Σ(1) and Σ(2) with σj
(1)

≠ 𝜎𝑗
(2)

 and σ𝑘
(1)

=

𝜎𝑘
(2)

 for all k ≠ j, such that ∃ 𝑓𝑖
𝑙(Σ(1)) ≠ 𝑓𝑖

𝑙(Σ(2)).

3. Each Boolean-like function 𝑓𝑖
(𝑙)

 is in a

disjunctive normal form (specifically, in a Blake

canonical form), with the inputs being the virtual

nodes:

𝑓𝑖
(𝑙)

= (𝑣𝑗1

(𝑙1)
 𝑎𝑛𝑑 𝑣𝑗2

(𝑙2)
 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑣𝑗𝑐1

(𝑙𝑐1)
)

𝑜𝑟 (𝑣𝑗𝑐1+1

(𝑙𝑐1+1)
 𝑎𝑛𝑑 𝑣𝑗𝑐1+2

(𝑙𝑐1+2)
 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑣𝑗𝑐2

(𝑙𝑐2)
) 𝑜𝑟 …

In addition, if for a network state subset 𝑃 ⊂ Σ,

𝑓𝑖
(l)

|𝑃 = 1 regardless of the states of the other

nodes, then the disjunctive normal form of 𝑓𝑖
(𝑙)

must have at least one conjunctive clause equal to

1 when evaluated under this partial state P.

Definition of the expanded network

The expanded network is a graph embodiment

of the virtual nodes and their regulatory functions.

The nodes of the expanded network consist of

virtual nodes 𝑣
𝑖

(𝑙𝑗)
, 𝑖 = (1,2, … , 𝑁), 𝑗 =

(1,2, … , 𝑚𝑖) and composite nodes (which

represent ‘and’ rules) 𝑣𝑘
(𝑐𝑜𝑚𝑝)

, (𝑖 = 1,2, … , 𝐾) ,

where K is the total number of ‘and’ rules used in

the functions. The edges of the expanded network

can be one of two types: edges from virtual or

composite nodes to virtual nodes (which are

aggregated with ‘or’ rules); and edges from virtual

nodes to composite nodes (which are aggregated

with ‘and’ rules). One can think of virtual nodes

as having a function that contains only the

Boolean operator ‘or’: 𝑓𝑖
(𝑙)

= 𝐼1 𝑜𝑟 𝐼2 𝑜𝑟 … ,

where the I’s are inputs of the virtual node in the

expanded network, including both virtual nodes

and composite nodes. The composite nodes can be

treated as having only the Boolean operator ‘and’:

𝑓𝑖
(𝑐𝑜𝑚𝑝)

= 𝐼1 𝑎𝑛𝑑 𝐼2 𝑎𝑛𝑑 …. , where the I’s are

the inputs (virtual nodes) of the composite node.

An example is provided in Sec. II E.

We define a sufficient regulator of a virtual

node A as either a virtual node connected directly

to A, or a composite node together with all of its

input virtual nodes. Thus a sufficient regulator

may be a group of virtual nodes.

Definitions of motifs

A stable motif is defined as a strongly-

connected-component (SCC) of the expanded

network that satisfies:

(1) If 𝑣𝑖
(𝑙)

 is in the SCC, then any 𝑣𝑖
(𝑘)

, (𝑘 ≠ 𝑙)

is not in the SCC.

(2) If 𝑣𝑘
(𝑐𝑜𝑚𝑝)

 is in the SCC, then all of its inputs

are in the SCC.

An oscillating motif is defined as a strongly-

connected-component (SCC) of the expanded

network that satisfies:

(1) There exists a 𝑣𝑖
(𝑙)

 in the SCC such that at

least one of its sibling nodes, say 𝑣𝑖
(𝑘)

, (𝑘 ≠
𝑙) is also in the SCC.

(2) If 𝑣𝑘
(𝑐𝑜𝑚𝑝)

 is in the SCC, then all of its inputs

are in the SCC.

These motifs are described and illustrated in Sec.

II F and G.

We also define a self-sufficient motif as an SCC

in the expanded network that satisfies: If 𝑣𝑘
(𝑐𝑜𝑚𝑝)

is in the SCC, then all of its inputs are in the SCC.

The intuition of this SCC is that it is a self-

sustaining feedback loop. Stable motifs and

oscillating motifs are special self-sufficient motifs,

with extra requirements in the states involved in

the motif.

It is important to note that both stable motifs

and oscillating motifs correspond to SCCs in the

original network. Stable motifs are SCCs in which

all cycles are positive. Oscillating motifs contain

negative cycles. These negative cycles may only

be apparent when considering the specific

regulatory functions.

In analogy to source nodes (i.e. nodes that do

not have incoming edges), we call an SCC a

source SCC if there are no nodes other than the

nodes of the SCC that can reach the source SCC

through directed paths.

There is a one-to-one correspondence

between stable motifs and partial fixed points

We define a partial fixed point (or partial steady

state), as a set of nodes and associated states in

which the nodes stabilize regardless of the rest of

the network. Note that this definition expresses a

stricter condition than a set of nodes whose states

stabilizes in a certain context (which depends on

the rest of the network).

We show that each stable motif corresponds to

a partial fixed point of the system, and that each

partial fixed point corresponds to a stable motif.

Proposition 1. A stable motif corresponds to a

fixed point of the nodes that participate in the

motif, i.e. the states of the nodes of the stable motif

remain the same regardless of the state of the other

nodes. Formally,

Let 𝑀 =

(𝑣𝑗1

(𝑙1)
, 𝑣𝑗2

(𝑙2)
, … , 𝑣𝑗𝑘

(𝑙𝑘)
, 𝑣𝑚1

(𝑐𝑜𝑚𝑝)
, 𝑣𝑚2

(𝑐𝑜𝑚𝑝)
, … , 𝑣𝑚𝐿

(𝑐𝑜𝑚𝑝)
)

 be a stable motif where 𝑣𝑗1

(𝑙1)
, 𝑣𝑗2

(𝑙2)
, … , 𝑣𝑗𝑘

(𝑙𝑘)
 are

virtual nodes and 𝑣𝑚1

(𝑐𝑜𝑚𝑝)
, 𝑣𝑚2

(𝑐𝑜𝑚𝑝)
, … , 𝑣𝑚𝐿

(𝑐𝑜𝑚𝑝)

are composite nodes. Let 𝑃 = (𝜎𝑗1
= 𝑙1, 𝜎𝑗𝑘

=

𝑙𝑘 , … , 𝜎𝑗𝑘
= 𝑙𝑘) be a partial system state. Then for

any system state 𝛴𝑃 with 𝜎𝑗𝑖
= 𝑙𝑖 , we

have 𝑓𝑗𝑖

(𝑙𝑘)
(𝛴𝑃) = 𝛿𝑖𝑘.

Sketch of proof: We first show that 𝑓𝑗𝑖

(𝑙𝑖)
(Σ𝑃) =

1 . By definition of a stable motif, each virtual

node’s function must have a conjunctive clause

(implicant) that consists of either of the following:

(1) a virtual node of the same stable motif; or (2)

a composite node whose inputs consists only of

virtual nodes of the same stable motif. This

implicant will be 1 when 𝑓𝑗𝑖

(𝑙𝑖)
(Σ𝑃) is evaluated,

fixing the value 𝑓𝑗𝑖

(𝑙𝑖)
(Σ𝑃) = 1. Then 𝑓𝑗𝑖

(𝑙𝑘)
(Σ𝑀) =

0 ∀𝑘 ≠ 𝑖 is trivially true because the functions of

sibling nodes must satisfy: 𝑓𝑗
(𝑘)

(Σ)𝑓𝑗
(𝑙)

(Σ) =

0 ∀𝑘 ≠ 𝑙.

Proposition 2. (Reverse of proposition 1) For

any partial fixed point of the system, i.e. a set of

node states where updating any involved node

gives back the same state for the node, there is a

set of stable motifs that correspond to it. Formally,

Let 𝑃 = (𝜎𝑗1
= 𝑙1, 𝜎𝑗𝑘

= 𝑙𝑘 , … , 𝜎𝑗𝑘
= 𝑙𝑘) be a

partial system state such that 𝑓𝑗𝑖

(𝑙𝑖)
(𝛴𝑃) = 1, ∀𝑗𝑖 .

Then (1) there exists a set of stable motifs {𝑀𝑛}

where each stable motif contains only nodes from

{𝑣𝑗𝑖

𝑙𝑖}, 𝑖 = 1, … , 𝑘 as virtual nodes; (2) the nodes

specified in P but not in nodes of {𝑀𝑛} are

downstream of the nodes of {𝑀𝑛}.

Sketch of proof: From the disjunctive normal

form of the functions, 𝑓𝑗𝑖

(𝑙𝑖)
(Σ𝑃) = 1 means that at

least one of the conjunctive clauses of each

function is 1, and consists of virtual nodes

specified in P. Then one can create a sub-network

of the expanded network, whose nodes are these

virtual nodes as well as composite nodes

representing conjunctive clauses; and edges are

added if a virtual node or composite node is an

input in a virtual node’s function, or if a virtual

node is an input of a composite node. Since each

virtual node in this sub-network has at least one

input within the sub-network, there exists at least

one SCC. This SCC(s) is/are the stable motif(s) we

are looking for.

Stable and oscillating parts of complex

attractors

A complex attractor of the whole system

consists of a set of states that the system keeps

revisiting. When considering the states visited by

each node in a complex attractor, there may be a

subset of nodes whose state remains the same. We

call these nodes stabilized nodes. The remaining

nodes (potentially, all nodes) will oscillate,

meaning that they will keep revisiting all, or

possibly a subset, of their states. We will call these

nodes oscillating nodes. In the following two

propositions we establish the relationships

between these nodes.

Proposition 3. Stabilized nodes in an attractor

can be downstream of stabilized nodes or

downstream of oscillating nodes.

Let 𝐴 be an attractor of a multi-level dynamical

system under general asynchronous update, and

let 𝑆 and 𝑂 be the stabilized and oscillating nodes,

respectively. If 𝑣𝑠 ⊂ 𝑆 and 𝑙𝑠 is the node’s

stabilized value, then one of the following holds:

(1) one of the conjunctive clauses of 𝑓𝑠
(𝑙𝑠)

 depends

only on nodes of 𝑆 in 𝐴; if (1) is not true, then (2)

𝑓𝑠
(𝑙𝑠)

 and the function of at least one sibling

node 𝑓𝑠
(𝑘𝑠)

, 𝑘𝑠 ≠ 𝑙𝑠 have at least one conjunctive

clause dependent on the nodes in O.

The first case is self-evident. An example for

the second case is a network with Boolean nodes,

A, B and C:

 𝑓𝐴
(0)

= (𝐴1 or 𝐵1) 𝑎𝑛𝑑 𝐶0,

 𝑓𝐴
(1)

= 𝐴0 𝑎𝑛𝑑 𝐵0 𝑜𝑟 𝐶1,

 𝑓𝐵
(0)

= (𝐴1 or 𝐵1) 𝑎𝑛𝑑 𝐶0,

 𝑓𝐵
(1)

= 𝐴0 𝑎𝑚𝑑 𝐵0 𝑜𝑟 𝐶1,

 𝑓𝐶
(0)

= 𝐵0 𝑎𝑛𝑑 𝐶0 𝑜𝑟 𝐴0 𝑎𝑛𝑑 𝐶0,

 𝑓𝐶
(1)

= (𝐴1 𝑎𝑛𝑑 𝐵1) 𝑜𝑟 𝐶1,

where for simplicity the virtual nodes are denoted

Xi, X={A,B,C} instead of Xi. This network has an

oscillating attractor with A and B oscillating and

C stabilized at 0. C is stabilized despite being

regulated by nodes that oscillate. It does not satisfy

(1) in the proposition; instead, 𝑓𝐶
(0)

 and 𝑓𝐶
(1)

satisfy (2) in the proposition.

Proposition 4. Oscillating nodes in an attractor

must be downstream of oscillating nodes.

Let 𝐴 be an attractor of a multi-level dynamical

system under general asynchronous update, and

let 𝑆 and 𝑂 be the stabilized and oscillating nodes,

respectively. If 𝑣𝑂 ⊂ 𝑂 and 𝑙𝑂1
, 𝑙𝑂2

, … , 𝑙𝑂𝑘
 are

the oscillating states, then the following holds:

none of the conjunctive clauses of 𝑓𝑂𝑖

(𝑙𝑂𝑖
)
, (𝑖 =

1,2, … , 𝑘) depends only on nodes of 𝑆 in 𝐴 ; or

alternatively, all functions 𝑓𝑂𝑖

(𝑙𝑂𝑖
)
, (𝑖 = 1,2, … , 𝑘)

have at least one conjunctive clause dependent on

state of nodes in O.

The proof for proposition 4 is straightforward.

Iterative stable motif based network reduction

conserves the attractors of the system

We proceed to the proof of conservation of

attractors during iterative network reduction by

stating three lemmas.

Lemma 1. Construction of the stabilized

set 𝑆𝑟𝑒𝑑 that corresponds to at least one stable

motif

Let 𝐴 be an attractor of a multi-level dynamical

system under general asynchronous update, and

let 𝑆 and 𝑂 be the stabilized and oscillating nodes,

respectively. If there is a partial fixed point in A,

then: there exists a set of nodes 𝑆𝑟𝑒𝑑 ⊂ 𝑆 such that

in the expanded network representation there will

be at least one stable motif composed only of

virtual nodes of 𝑆𝑟𝑒𝑑 in A, or composite nodes

composed of such nodes.

Sketch of proof: Each stabilized node in S

corresponds to a function 𝑓S
(ls)

. By Proposition 3,

we can divide S into nodes whose functions have

a conjunctive clause that depends only on node

states (virtual nodes) specified in S, denoted 𝑆0,

and nodes that have at least one conjunctive clause

in their rule dependent on the states of nodes in O,

denoted 𝑆𝑜𝑠𝑐. Let 𝑆1 ⊂ 𝑆0 be the nodes that have

at least one conjunctive clause dependent only on

nodes’ states specified in 𝑆0. Let 𝑆2 ⊂ 𝑆1 be the

nodes that have at least one conjunctive clause

dependent only on node states specified in 𝑆1. One

can do this iteratively until 𝑆𝑖𝑚𝑎𝑥
= 𝑆𝑖𝑚𝑎𝑥+1, and

denote 𝑆𝑟𝑒𝑑 = 𝑆𝑖𝑚𝑎𝑥
. Since there exists a partial

fixed point, 𝑆𝑟𝑒𝑑 will contain nodes in the partial

fixed point and will not be an empty set. The

iterative selection guarantees that 𝑆𝑟𝑒𝑑 does not

depend on oscillating nodes or nodes influenced

by oscillating nodes. And since the function of

each node in 𝑆𝑟𝑒𝑑 contains at least one

conjunctive clause dependent only on nodes

in 𝑆𝑟𝑒𝑑 itself, there is at least one SCC in 𝑆𝑟𝑒𝑑 and

this SCC satisfies the definition of a stable motif.

Lemma 2. Network reduction based on stable

motifs stabilizes the nodes in 𝑆𝑟𝑒𝑑

Let 𝑆𝑟𝑒𝑑 ⊂ 𝑆 be the set of nodes constructed in

Lemma 1. Then (1) Network reduction based on

stable motifs composed only of nodes from 𝑆𝑟𝑒𝑑

can only stabilize nodes in 𝑆𝑟𝑒𝑑. Moreover, (2) if

a node i in 𝑆𝑟𝑒𝑑 stabilizes during the reduction, it

has to stabilize at its state specified in A; if a node

i does not stabilize during the reduction, then after

the reduction, its function 𝑓𝑖
(𝑙𝑠)

, where 𝑙𝑠 is the

node’s stabilized state in A, must have a

conjunctive clause that depends only on nodes’

states specified in 𝑆𝑟𝑒𝑑 in A that did not stabilize

during reduction.

Sketch of proof: We first prove (1) by showing

that the other nodes, i.e. nodes in S0 − 𝑆𝑟𝑒𝑑 and

𝑆𝑜𝑠𝑐, cannot stabilize from stable motifs composed

only of nodes from 𝑆𝑟𝑒𝑑 . This statement is

straightforward from the definitions of S0 − 𝑆𝑟𝑒𝑑

and 𝑆𝑜𝑠𝑐 . Nodes in S0 − 𝑆𝑟𝑒𝑑 do not have any

conjunctive clauses that depend only on nodes’

states from 𝑆𝑟𝑒𝑑 , otherwise the nodes would be

in 𝑆𝑟𝑒𝑑. According to Proposition 3, nodes in 𝑆𝑜𝑠𝑐

do not have any conjunctive clauses that depend

only on nodes’ states from 𝑆𝑟𝑒𝑑 . Therefore

reduction based on stable motifs composed only of

nodes from 𝑆𝑟𝑒𝑑 is not sufficient to stabilize these

nodes. To show (2), consider the iterative process

of reduction by plugging in the stabilized nodes’

states. One starts with a chosen SCC in 𝑆𝑟𝑒𝑑, and

then nodes with at least one conjunctive clause

depending only on nodes states from 𝑆𝑟𝑒𝑑 will

stabilize in their value in A. When this reduction

is applied iteratively until it cannot be done

anymore, the resulting 𝑆𝑟𝑒𝑑 contains only non-

stabilized nodes, whose functions do not have any

dependence on the reduced nodes. Then these

functions must have a conjunctive clause that

depends only on nodes’ states specified in 𝑆𝑟𝑒𝑑 in

A that did not stabilize during reduction.

Lemma 3. In a system/reduced system with no

stable motifs, all nodes are influenced by

oscillating nodes.

Let 𝐴 be an attractor of a multi-level dynamical

system under general asynchronous update, and

let 𝑆 and 𝑂 be the stabilized and oscillating nodes,

respectively. Let 𝑆𝑟𝑒𝑑 ⊂ 𝑆 be the set of nodes

constructed in Lemma 1. Assume 𝑆𝑟𝑒𝑑 is empty

and O is not empty. Then in the original system,

all nodes in O and S must all be a part of, or

downstream of, a set of source SCCs, each of

which contains at least one oscillating motif.

Moreover, the oscillating motifs will contain the

virtual nodes corresponding to all the states

visited by the oscillating nodes.

Sketch of proof: We can assume that there are

no source nodes in the network corresponding to

the dynamical system, because if there are any,

one can reduce them and substitute their values of

the source nodes into the regulatory functions of

their downstream nodes. The network contains

one or more source SCCs. Then, any source SCC

in the network must contain at least one oscillating

node, otherwise this source SCC would contain

only stabilized nodes, meaning a non-empty 𝑆𝑟𝑒𝑑.

We then show that any of these source SCCs

corresponds to at least one oscillating motif in the

expanded network. Suppose that a pair of sibling

virtual nodes 𝑣1
(𝑙1)

, 𝑣1
(𝑙2)

 correspond to an

oscillating node 𝑣1 in the source SCC. Since it is

a source SCC, all regulators of 𝑣1 are from this

SCC, and 𝑣1 regulates at least one other node from

this SCC. Consider the expanded network

around 𝑣1
(𝑙1)

. We construct an oscillating motif

candidate starting with marking its regulators and

selected targets. First we mark all inputs of 𝑣1
(𝑙1)

,

including inputs directly connected to 𝑣1
(𝑙1)

 and

inputs connected to 𝑣1
(𝑙1)

 via composite nodes. All

marked virtual nodes correspond to nodes in the

source SCC. Then we mark the target virtual nodes

of 𝑣1
(𝑙1)

 that satisfy: (1) the target is regulated

directly by 𝑣1
(𝑙1)

 or via one composite node; (2) the

target corresponds to a node in the source SCC.

We iteratively continue this marking process for

all marked virtual nodes. Since in each step only

virtual nodes corresponding to nodes in the source

SCC are marked, and each node marked must have

at least one regulator and one selected target, we

will obtain an SCC in the expanded network all of

whose virtual nodes correspond to the source SCC

in the original graph. Because we started the

process in a source SCC in the original network, if

a composite node is marked, all of its inputs will

satisfy the marking condition, and will be marked

as well. We refer to this SCC in the expanded

network as the expanded motif, and will show that

it can be used to construct an oscillating motif.

Notice that for both 𝑣1
(𝑙1)

 and 𝑣1
(𝑙2)

, one can

construct the corresponding expanded motif,

respectively. Because this pair of virtual nodes

represents oscillating states under a general

asynchronous complex attractor, they must be

connected to each other, otherwise they cannot

oscillate. Thus their expanded motifs are strongly

connected, and can be merged to obtain a larger

strongly connected motif that includes both 𝑣1
(𝑙1)

and 𝑣1
(𝑙2)

. In cases where more than two virtual

nodes corresponding to the same node are

involved in an oscillation, the same merging can

be applied, and it similarly results in a single

expanded motif. This merging can be done for

each pair of oscillating sibling nodes. The

resulting merged motif is an oscillating motif,

because the marking process guarantees that all

inputs of composite nodes are marked; and the

merging guarantees that at least two states of

oscillating nodes are marked. In addition, all

oscillating virtual nodes in the oscillation are

marked, i.e. the oscillating motif covers all the

oscillating states of each oscillating node in the

oscillation.

Therefore, after the reduction of stable motifs,

in a reduced network any source SCC corresponds

to at least one oscillating motif, and all nodes in

the expanded network are either part of an

oscillating motif or downstream of an oscillating

motif.

Remark: It is worth pointing out that complex

attractors of a dynamic model depend on the

update scheme. Some complex attractors only

exist if a specific update scheme is imposed (see

Appendix D1). Therefore, a timing-independent

method like ours is not able to find candidates of

all complex attractors, but only candidates for

timing-independent complex attractors, i.e.

complex attractors under asynchronous update. In

the proof of Lemma 3, this is reflected by the

condition “Because this pair of virtual nodes

represents oscillating states under a general

asynchronous complex attractor, they must be

connected to each other, otherwise they cannot

oscillate.” Everything else in the proof applies for

arbitrary update schemes. In addition, the actual

oscillation may be different from the

corresponding oscillating motifs, so no exact

conclusions can be made regarding nodes

downstream of an oscillating motif.

The following theorem is the main result of this

section, and it combines the results of Lemma 1, 2,

and 3. It shows that for every attractor of the

system, our motif-based method will find a

corresponding quasi-attractor in which:

(1) The state of the nodes in 𝑆𝑟𝑒𝑑 is the same as in

the attractor

(2) There is at least one oscillating motif that

corresponds to the oscillating part of each

complex attractor.

Theorem 1. Conservation of attractors in motif

reduction

Let 𝐴 be an attractor of a multi-level dynamical

system under general asynchronous update, and

let 𝑆 and 𝑂 be the stabilized and oscillating nodes,

respectively. Let 𝑆𝑟𝑒𝑑 ⊂ 𝑆 be the set of nodes

constructed in Lemma 1. Then, there exists a set of

stable motifs such that, by applying network

reduction, all the nodes in 𝑆𝑟𝑒𝑑 will stabilize in

their steady state in A, while the rest of the nodes

will be part of the final reduced network. This final

reduced network will be such that all nodes in O

and S must all be a part of, or downstream of a set

of source SCCs, each of which contains at least

one oscillating motif. Moreover, the oscillating

motifs will contain the virtual nodes

corresponding to all the states visited by the

oscillating nodes.

Sketch of proof: Using Lemma 2, the network

obtained after reducing any stable motif composed

only of the corresponding states of 𝑆𝑟𝑒𝑑 in A will

have a new 𝑆𝑟𝑒𝑑 containing only the nodes in the

previous 𝑆𝑟𝑒𝑑 that did not stabilize. One can

iteratively plug in the stable motifs until 𝑆𝑟𝑒𝑑 is

empty. Because of Lemma 1, there is always a

stable motif as long as 𝑆𝑟𝑒𝑑 is not empty. In the

reduction process only nodes in 𝑆𝑟𝑒𝑑 can stabilize.

By Lemma 3, the source SCCs in the resulting

reduced network contains oscillating motifs that

cover all virtual nodes corresponding to oscillating

states of oscillating nodes.

Finally we list some straightforward corollaries

of the theorem that help demonstrate the

properties of attractors.

Corollary 1. If a multi-level dynamic system

does not have oscillating motifs in its expanded

network, the system does not have complex

attractors.

Corollary 2. If a multi-level system does not

have fixed point attractors, it must have at least

one oscillating motif.

Corollary 3. A quasi-attractor can correspond

to multiple complex attractors. Examples in

Appendix D illustrate this corollary.

Appendix D. Oscillating Motif Examples

Here we illustrate certain properties of

oscillating motifs with examples. Because certain

regulatory relationships between nodes are non-

monotonic (their sign depends on the node state),

for simplicity we use the same type of arrow for

all edges. For better visualization, we omitted the

names of composite nodes in complicated

expanded networks.

1. Timing-dependent complex attractor

Figure 9 shows an example of a dynamical

system with different attractors under different

update schemes.

In synchronous update al nodes are updated

simultaneously, thus state transitions are

deterministic. Each state has only one successor

(i.e. each node of the state transition graph has a

single outgoing edge). In the state transition graph

corresponding to general asynchronous update, a

given state has as many potential state transitions

as many nodes there are in the system (because

each node has a chance to be updated).

In this example a complex attractor exists for

synchronous update, but not for general

asynchronous update. This complex attractor is

induced by positive feedback, not negative

feedback, and requires that nodes A and B are

updated at exactly the same time. So it is timing-

dependent and will not be preserved under

fluctuations in timing. This type of timing-

dependent complex attractor will not be identified

by our motif-based method.

FIG. 9. An example of a timing-dependent complex

attractor. (A) The network and regulatory functions. (B)

The state transition graph under synchronous update.

Each node of the state transition graph is a state, given

in the order A, B, and each edge is a state transition

allowed by synchronous update. The system has two

fixed points, (0,0) and (1,1). It also has a complex

attractor formed by the states (0,1) and (1,0). (C) The

state transition graph under general asynchronous

update (i.e. when one node is updated at a time). Only

the two fixed point attractors exist. The synchronous

complex attractor is timing-dependent and does not

exist in this update scheme.

2. The existence of an oscillating motif does

not guarantee the existence of a complex

attractor

Figure 10 demonstrates a simple example

where the oscillating motif corresponds to a

transient oscillation, which will converge into a

fixed point attractor.

FIG. 10. An example of an oscillating motif without a

complex attractor. (A) The network and regulatory

functions. (B) The expanded network and motifs. There

is a stable motif formed by A0 and B0, and an

oscillating motif made up by A1, A2, B1. (C) The state

transition graph using general asynchronous update.

There is only one attractor, which is a fixed point. The

transient oscillation between states (2,1) and (1,1) will

eventually converge into the fixed point.

3. Oscillating nodes can have stabilized

downstream nodes

Figure 11 shows a Boolean example adapted

from [30] in (A)(B) and a multi-level example in

(C). In the system on Figure 11(A), nodes A and

B do not visit the state A=1, B=1 unless starting

from there, which causes the stabilization of C=0.

Such situations are expected to be more common

in multi-level systems than in Boolean systems. In

the system of Figure 11(C) the regulator node A

has more states than the regulated node B, thus the

oscillation in A does not affect B This situation is

expected to be observed in biological systems.

FIG. 11. Examples of stabilized nodes downstream of

oscillating node(s). (A) A Boolean example where A

and B oscillate but their downstream C is stable under

that oscillation. (B) The general asynchronous state

transition graph of nodes A and B. The state (A=1,B=1)

is not visited in the long term, leading to the

stabilization of C=0. (C) A multi-level example where

A is oscillating between 1 and 2, leading to B

stabilizing at 1. This example arises because of

asymmetry in the nodes’ number of states: A has three

states but B only has two states.

4. Co-existence of a fixed point and a complex

attractor

If a dynamical system has input variables

(source nodes with sustained states), it can have a

different attractor for different values of the input

variables. Here we consider a dynamical system

with a given choice of input variables, or

equivalently, no input variables. Co-existence of a

fixed point attractor and a complex attractor for

such a system is possible but rare in Boolean

systems. Zañudo et al. [30] referred to this

situation as unstable oscillation. We reproduce the

example given in as Figure 12. Notice that the

nodes involved in the two attractors share node

states, i.e. A is fixed at 1 in the fixed point attractor,

but also enters state 1 in the complex attractor. In

multi-level dynamical systems the fixed point and

complex attractor do not need to share node states

(see Figure 5 and Figure 6 in section II-G). Thus

we expect that coexistence of (potentially multiple)

fixed point(s) and complex attractor(s) is more

frequently observed.

FIG. 12. An example of an unstable oscillation. The

system has a fixed point and a complex attractor. (A)

The network and regulatory functions. (B) The

expanded network and motifs. The entire expanded

network forms an oscillating motif, containing the

stable motif by two nodes A1, B1, and one composite

node. (C) The state transition graph using general

synchronous update. There is a fixed point attractor

A=1, B=1, and a complex attractor. Note that in the

complex attractor, although both A and B are allowed

to enter state 1, they cannot be in state 1 simultaneously.

5. One oscillating motif can correspond to

multiple attractors

 Figure 12 also illustrates that the same

oscillating motif can correspond to multiple

attractors, in this case a complex attractor and a

fixed point. In multi-level cases, multiple complex

attractors can also be found within the same

oscillating motif. Figure 13 shows such an

example. Combined with the property that an

oscillating motif does not guarantee a complex

attractor, the conclusion is that there is no exact

match between the actual number of complex

attractors and the number of quasi-attractors found,

i.e. there may be more actual attractors than quasi-

attractors found, and there may be less actual

attractors than quasi-attractors found.

FIG. 13. An example of an oscillating motif containing

two complex attractors. (A) The network and

regulatory functions. (B) The expanded network and

motifs. The entire expanded network forms an

oscillating motif. (C) The state transition graph. For

simplicity self-loops representing self-transitions are

not shown in the graph. There are two complex

attractors, the first attractor is B=0, A=0 or 1, and the

second attractor is B=1, A =2 or 3.

Appendix E. Generation of regulatory

functions in synthetic networks

Here we describe how we randomly generated

regulatory functions among those consistent with

the number of regulators and number of states for

each node.

In the network generation part, each node’s

regulators are generated. In the benchmarks, we

generated networks where each node has two

input nodes. For each target node, we assign to

each combination of different states of the

regulator nodes a randomly selected state of the

target node. For example, if Boolean target node

A is regulated by Boolean nodes B and C, each of

the four state combinations of B and C will be

randomly assigned to either the function of A0 or

A1. Different input combinations assigned to the

same target state will be separated by an ‘or’

operator. For example, combinations B0 C0 and

B1 C0 are assigned to A0, then the function of A0

is just fA
(0) = (B0 and C0) or (B1 and C0). If at the

end of the assignment a target state did not get any

assigned combination, this function is ineffective,

and we discard all the functions of this target node

and start over to generate a new set of functions.

References
[1] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno,

C. Zhou, Synchronization in complex networks,

Physics Reports, 469 (2008) 93-153.

[2] X.-J. Tian, H. Zhang, J. Sannerud, J. Xing,

Achieving diverse and monoallelic olfactory receptor

selection through dual-objective optimization design,

Proceedings of the National Academy of Sciences,

113 (2016) E2889-E2898.

[3] A.-L. Barabasi, Z.N. Oltvai, Network biology:

understanding the cell's functional organization, Nat

Rev Genet, 5 (2004) 101-113.

[4] D. Deritei, W.C. Aird, M. Ercsey-Ravasz, E.R.

Regan, Principles of dynamical modularity in

biological regulatory networks, Sci Rep, 6 (2016)

21957.

[5] J.J. Tyson, K. Chen, B. Novak, Network dynamics

and cell physiology, Nature Reviews Molecular Cell

Biology, 2 (2001) 908-916.

[6] R. Albert, R.S. Wang, DISCRETE DYNAMIC

MODELING OF CELLULAR SIGNALING

NETWORKS, in: M.L. Johnson, L. Brand (Eds.)

Methods in Enzymology: Computer Methods, Part B,

Elsevier Academic Press Inc, San Diego, 2009, pp.

281-306.

[7] M. Pennisi, S. Cavalieri, S. Motta, F. Pappalardo,

A methodological approach for using high-level Petri

Nets to model the immune system response, BMC

bioinformatics, 17 (2016) 498.

[8] A.A. Butchy, N. Miskov-Zivanov, Discrete

modeling of macrophage differentiation, The Journal

of Immunology, 198 (2017) 67.13-67.13.

[9] R. Albert, J. Thakar, Boolean modeling: a logic-

based dynamic approach for understanding signaling

and regulatory networks and for making useful

predictions, Wiley interdisciplinary reviews. Systems

biology and medicine, 6 (2014) 353-369.

[10] R. Zhang, M.V. Shah, J. Yang, S.B. Nyland, X.

Liu, J.K. Yun, R. Albert, T.P. Loughran, Jr., Network

model of survival signaling in large granular

lymphocyte leukemia, Proc Natl Acad Sci U S A, 105

(2008) 16308-16313.

[11] F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, The

yeast cell-cycle network is robustly designed,

Proceedings of the National Academy of Sciences of

the United States of America, 101 (2004) 4781-4786.

[12] W. Abou-Jaoude, P. Traynard, P.T. Monteiro, J.

Saez-Rodriguez, T. Helikar, D. Thieffry, C. Chaouiya,

Logical Modeling and Dynamical Analysis of Cellular

Networks, Frontiers in genetics, 7 (2016) 94.

[13] S. Havlin, D.Y. Kenett, E. Ben-Jacob, A. Bunde,

R. Cohen, H. Hermann, J.W. Kantelhardt, J. Kertész,

S. Kirkpatrick, J. Kurths, J. Portugali, S. Solomon,

Challenges in network science: Applications to

infrastructures, climate, social systems and economics,

The European Physical Journal Special Topics, 214

(2012) 273-293.

[14] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó,

D. Lazer, K. Kaski, J. Kertész, A.-L. Barabási,

Structure and tie strengths in mobile communication

networks, Proceedings of the National Academy of

Sciences, 104 (2007) 7332-7336.

[15] B. Federico, P. Matjaž, L. Vito, Determinants of

public cooperation in multiplex networks, New

Journal of Physics, 19 (2017) 073017.

[16] A. Lancichinetti, S. Fortunato, J. Kertész,

Detecting the overlapping and hierarchical community

structure in complex networks, New Journal of

Physics, 11 (2009) 033015.

[17] F. Mori, A. Mochizuki, Expected Number of

Fixed Points in Boolean Networks with Arbitrary

Topology, Physical Review Letters, 119 (2017)

028301.

[18] R. Thomas, European Molecular Biology

Organization., Kinetic logic : a Boolean approach to

the analysis of complex regulatory systems :

proceedings of the EMBO course "Formal analysis of

genetic regulation," held in Brussels, September 6-16,

1977, Springer-Verlag, Berlin ; New York, 1979.

[19] H. Klarner, A. Bockmayr, H. Siebert, Computing

maximal and minimal trap spaces of Boolean

networks, Natural Computing, 14 (2015) 535-544.

[20] A. Garg, A. Di Cara, I. Xenarios, L. Mendoza, G.

De Micheli, Synchronous versus asynchronous

modeling of gene regulatory networks,

Bioinformatics, 24 (2008) 1917-1925.

[21] A. Naldi, D. Thieffry, C. Chaouiya, Decision

Diagrams for the Representation and Analysis of

Logical Models of Genetic Networks, in: M. Calder,

S. Gilmore (Eds.) Computational Methods in Systems

Biology: International Conference CMSB 2007,

Edinburgh, Scotland, September 20-21, 2007.

Proceedings, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007, pp. 233-247.

[22] R. Laubenbacher, F. Hinkelmann, D. Murrugarra,

A. Veliz-Cuba, Algebraic Models and Their Use in

Systems Biology, in: N. Jonoska, M. Saito (Eds.)

Discrete and Topological Models in Molecular

Biology, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2014, pp. 443-474.

[23] P. Traynard, A. Fauré, F. Fages, D. Thieffry,

Logical model specification aided by model-checking

techniques: application to the mammalian cell cycle

regulation, Bioinformatics, 32 (2016) i772-i780.

[24] J. Gómez Tejeda Zañudo, M. Scaltriti, R. Albert,

A network modeling approach to elucidate drug

resistance mechanisms and predict combinatorial drug

treatments in breast cancer, Cancer Convergence, 1

(2017) 5.

[25] Z. Sun, X. Jin, R. Albert, S.M. Assmann, Multi-

level modeling of light-induced stomatal opening

offers new insights into its regulation by drought,

PLoS Comput Biol, 10 (2014) e1003930.

[26] J. Chifman, S. Arat, Z. Deng, E. Lemler, J.C.

Pino, L.A. Harris, M.A. Kochen, C.F. Lopez, S.A.

Akman, F.M. Torti, S.V. Torti, R. Laubenbacher,

Activated Oncogenic Pathway Modifies Iron Network

in Breast Epithelial Cells: A Dynamic Modeling

Perspective, PLoS computational biology, 13 (2017)

e1005352.

[27] E. Dubrova, M. Liu, M. Teslenko, Finding

Attractors in Synchronous Multiple-Valued Networks

Using SAT-based Bounded Model Checking, Journal

of Multiple-Valued Logic and Soft Computing, 19

(2012) 109-131.

[28] F. Hinkelmann, M. Brandon, B. Guang, R.

McNeill, G. Blekherman, A. Veliz-Cuba, R.

Laubenbacher, ADAM: Analysis of Discrete Models

of Biological Systems Using Computer Algebra, BMC

bioinformatics, 12 (2011) 295.

[29] C. Chaouiya, A. Naldi, D. Thieffry, Logical

modelling of gene regulatory networks with GINsim,

Methods Mol Biol, 804 (2012) 463-479.

[30] J.G. Zanudo, R. Albert, An effective network

reduction approach to find the dynamical repertoire of

discrete dynamic networks, Chaos, 23 (2013).

[31] B.L. Puniya, L. Allen, C. Hochfelder, M.

Majumder, T. Helikar, Systems Perturbation Analysis

of a Large-Scale Signal Transduction Model Reveals

Potentially Influential Candidates for Cancer

Therapeutics, Frontiers in Bioengineering and

Biotechnology, 4 (2016) 10.

[32] L. Glass, S.A. Kauffman, LOGICAL ANALYSIS

OF CONTINUOUS, NONLINEAR BIOCHEMICAL

CONTROL NETWORKS, Journal of Theoretical

Biology, 39 (1973) 103-129.

[33] X. Cheng, M. Sun, J.E.S. Socolar, Autonomous

Boolean modelling of developmental gene regulatory

networks, Journal of the Royal Society Interface, 10

(2013) 20120574.

[34] D. Murrugarra, A. Veliz-Cuba, B. Aguilar, S.

Arat, R. Laubenbacher, Modeling stochasticity and

variability in gene regulatory networks, EURASIP

Journal on Bioinformatics and Systems Biology, 2012

(2012) 5.

[35] M. Chaves, R. Albert, E.D. Sontag, Robustness

and fragility of Boolean models for genetic regulatory

networks, J Theor Biol, 235 (2005) 431-449.

[36] R. Thomas, Regulatory networks seen as

asynchronous automata: A logical description, Journal

of theoretical biology, 153 (1991) 1-23.

[37] A. Saadatpour, I. Albert, R. Albert, Attractor

analysis of asynchronous Boolean models of signal

transduction networks, J Theor Biol, 266 (2010) 641-

656.

[38] E. Remy, P. Ruet, D. Thieffry, Graphic

requirements for multistability and attractive cycles in

a Boolean dynamical framework, Advances in

Applied Mathematics, 41 (2008) 335-350.

[39] A. Richard, Negative circuits and sustained

oscillations in asynchronous automata networks,

Advances in Applied Mathematics, 44 (2010) 378-

392.

[40] K. Klemm, S. Bornholdt, Topology of biological

networks and reliability of information processing,

Proceedings of the National Academy of Sciences of

the United States of America, 102 (2005) 18414-

18419.

[41] X. Gan, R. Albert, A general method to find the

attractors of discrete dynamic models of biological

systems., in: the 8th International Conference on

Physics and Control (PhysCon 2017), Florence, Italy,

2017.

[42] F.M. Brown, The Blake Canonical Form, in:

Boolean Reasoning: The Logic of Boolean Equations,

Springer US, Boston, MA, 1990, pp. 71-86.

[43] W.V. Quine, The Problem of Simplifying Truth

Functions, The American Mathematical Monthly, 59

(1952) 521-531.

[44] W.V. Quine, A Way to Simplify Truth Functions,

The American Mathematical Monthly, 62 (1955) 627-

631.

[45] E.J. McCluskey, Minimization of Boolean

Functions*, Bell System Technical Journal, 35 (1956)

1417-1444.

[46] A. Saadatpour, R. Albert, T.C. Reluga, A

Reduction Method for Boolean Network Models

Proven to Conserve Attractors, Siam Journal on

Applied Dynamical Systems, 12 (2013) 1997-2011.

[47] A. Naldi, E. Remy, D. Thieffry, C. Chaouiya,

Dynamically consistent reduction of logical regulatory

graphs, Theoretical Computer Science, 412 (2011)

2207-2218.

[48] J.G. Zanudo, R. Albert, Cell fate reprogramming

by control of intracellular network dynamics, PLoS

Comput Biol, 11 (2015) e1004193.

[49] S.A. Kauffman, Metabolic stability and

epigenesis in randomly constructed genetic nets,

Journal of theoretical biology, 22 (1969).

[50] M. Aldana, S. Coppersmith, L.P. Kadanoff,

Boolean Dynamics with Random Couplings, in: E.

Kaplan, J.E. Marsden, K.R. Sreenivasan (Eds.)

Perspectives and Problems in Nolinear Science: A

Celebratory Volume in Honor of Lawrence Sirovich,

Springer New York, New York, NY, 2003, pp. 23-89.

[51] R.S. Wang, R. Albert, Effects of community

structure on the dynamics of random threshold

networks, Physical Review E, 87 (2013).

[52] X. Gan, R. Albert, Analysis of a dynamic model

of guard cell signaling reveals the stability of signal

propagation, BMC systems biology, 10 (2016) 78.

[53] D. Berenguier, C. Chaouiya, P.T. Monteiro, A.

Naldi, E. Remy, D. Thieffry, L. Tichit, Dynamical

modeling and analysis of large cellular regulatory

networks, Chaos, 23 (2013) 025114.

[54] See Supplemental Material S1 at [URL will be

inserted by publisher] for details of the tests on

biological models.

[55] W. Reisig, Petri Nets, in: I. Koch, W. Reisig, F.

Schreiber (Eds.) Modeling in Systems Biology: The

Petri Net Approach, Springer London, London, 2011,

pp. 37-56.

[56] C. Chaouiya, A. Naldi, E. Remy, D. Thieffry,

Petri net representation of multi-valued logical

regulatory graphs, Natural Computing, 10 (2011) 727-

750.

[57] R. Samaga, S. Klamt, Modeling approaches for

qualitative and semi-quantitative analysis of cellular

signaling networks, Cell Communication and

Signaling, 11 (2013) 43.

[58] D.B. Johnson, Finding All the Elementary

Circuits of a Directed Graph, SIAM Journal on

Computing, 4 (1975) 77-84.

[59] R.-S. Wang, R. Albert, Elementary signaling

modes predict the essentiality of signal transduction

network components, BMC systems biology, 5 (2011)

44.

[60] Z. Sun, R. Albert, Node-independent elementary

signaling modes: A measure of redundancy in

Boolean signaling transduction networks, Network

Science, 4 (2016) 273-292.

[61] J.C. Rozum, R. Albert, Identifying

(un)controllable dynamical behavior with applications

to biomolecular networks, bioRxiv, (2017).

[62] Z. Yuan, C. Zhao, Z. Di, W.-X. Wang, Y.-C. Lai,

Exact controllability of complex networks, Nature

communications, 4 (2013) 2447.

[63] Y.Y. Liu, J.J. Slotine, A.L. Barabasi,

Controllability of complex networks, Nature, 473

(2011) 167-173.

[64] A. Mochizuki, B. Fiedler, G. Kurosawa, D. Saito,

Dynamics and control at feedback vertex sets. II: A

faithful monitor to determine the diversity of

molecular activities in regulatory networks, Journal of

theoretical biology, 335 (2013) 130-146.

[65] J.G.T. Zañudo, G. Yang, R. Albert, Structure-

based control of complex networks with nonlinear

dynamics, Proceedings of the National Academy of

Sciences, 114 (2017) 7234-7239.

[66] G. Yang, J. Gomez Tejeda Zanudo, R. Albert,

Target Control in Logical Models Using the Domain

of Influence of Nodes, bioRxiv, (2018).

[67] A. K. Chandra, G. Markowsky, On the number of

prime implicants, 1978.

