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Abstract 
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide 

valuable insight. We propose a general method that can find the attractors of multi-level discrete 

dynamical systems by extending a method that finds the attractors of a Boolean network model. The 

previous method is based on finding stable motifs, subgraphs whose nodes’ states can stabilize on their 

own. We extend the framework from binary states to any finite discrete levels by creating a virtual node 

for each level of a multi-level node, and describing each virtual node with a quasi-Boolean function. We 

then create an expanded representation of the multi-level network, find multi-level stable motifs and 

oscillating motifs, and identify attractors by successive network reduction. In this way, we find both 

fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate 

on representative synthetic networks and on published multi-level models of biological networks. 

Despite its primary motivation to analyze biological networks, our motif-based method is general and 

can be applied to any finite discrete dynamical system.  

 

PACS numbers: 07.05.Tp, 87.15.A, 87.16.Yc, 87.18.Mp, 89.75.Fb 

 

 

I. INTRODUCTION 

Dynamic modeling is a valuable avenue for 

understanding the emergent properties of 

interacting biological systems [1, 2]. Networks, 

with their nodes representing biological entities 

and their edges representing interactions, can 

connect the interactions among cellular 

constituents (e.g. mRNAs, proteins or small 

molecules) to cell-level functions or behaviors [3, 

4]. Once a network is constructed, a dynamic 

model can be created next. Each node is 

characterized with a state variable, representing its 

abundance, concentration or activation level [5]. 

The state variable will evolve over time according 

to a regulatory function that depends on the 

regulators of the node. The state variables and 

regulatory functions of a dynamic model can be 

discrete or continuous. Discrete modeling is 

particularly powerful in biological models in that 

it can capture the system’s behavior without the 

need for much kinetic detail [6-8]. Such detail, 

including reaction stoichiometry and kinetic rates, 

is often difficult to obtain in experiments, and for 

most systems, especially large networks, the 

existing knowledge is insufficient to effectively 

inform continuous models [9]. In this work we 

focus on discrete dynamic models.  

Attractors are long-term behaviors of a dynamic 

system, and represent system-level outcomes. 

They are especially important for biological 

systems because they represent biological 

phenotypes. For example, in a cell signaling 

network, attractors can correspond to cell types, 

cell fates or behaviors, including cyclic behaviors 

such as circadian rhythms and the cell cycle [10, 

11]. Therefore, finding the attractor repertoire of a 

network model is an important goal. However 

finding all attractors (including cyclic and 

complex attractors) is challenging due to the 

complex dynamics of networks [12]. Thanks to the 

strong advances in understanding network 

structure [13-16], a promising way to tackle this 

problem is to try to find the attractors based on  the 

network topology and the key features of the 

network’s dynamics, instead of from its detailed 

dynamics [17]. For example, R. Thomas related 



 

 

the conditions of multi-stability and  cyclic 

attractors to positive and negative feedback loops, 

respectively [18]. Boolean models, which 

characterize each node with two states and 

describe regulation in a parameter-free manner, 

are most strongly based on the network structure. 

Many methods exist for finding attractors of 

Boolean networks [19-22]. Although for some 

systems Boolean modeling is appropriate, often at 

least a subset of the nodes needs to be 

characterized by multiple levels, in order to 

accurately describe experimentally observed 

relative outcomes in case of combinations of 

inputs [23, 24]. For example, multiple elements of 

the signal transduction network that underlies 

light-induced opening of microscopic pores on 

plant leaves were observed to have different 

activity levels under red light, blue light, and white 

(combined) light [25]. Three levels also allow the 

separate representation of upregulation or 

downregulation compared to a baseline/normal 

level [26].  Current approaches to attractor (mainly 

fixed point) identification in multi-level models 

use exhaustive search, model checking methods or 

polynomial algebra [27-29]. Yet, there is still an 

unmet need for a general method that can 

effectively find all attractors (fixed points and 

complex attractors) of a multi-level model.  

In this paper, we propose a general method that 

can find both fixed points and complex attractors 

of any finite multi-level model. Our method is an 

extension of a Boolean attractor finding method 

proposed by Zañudo & Albert [30]. We test and 

validate our method on synthetic networks and on 

a collection of biological models from the 

literature.  

 

II. METHODS  
In this section we give background information 

on discrete dynamic modeling and attractors, and 

then an overview of our method. In sub-sections C 

to I we describe each step of the method in detail.  

 

A. Discrete dynamic modeling and attractors 

Discrete dynamic models require minimal 

parameterization, yet they can capture important 

biological emergent properties, and are widely 

used in describing biological networks [12, 31]. 

These models use discrete time (implemented 

through update schemes). There are deterministic 

update schemes such as synchronous update, 

where all nodes are updated simultaneously at 

each time step according to their regulatory 

function [32], or asynchronous schemes with fixed 

time delays [33]; there are also stochastic update 

schemes [34], for example a general asynchronous 

update where in each time step, one node from the 

network is randomly chosen to update [35]. By 

considering multiple replicate simulations, 

general asynchronous update in effect samples all 

kinds of rates. It is motivated by the fact that the 

temporal details of biological processes are 

difficult to obtain and usually insufficiently 

known. By considering every kind of rates of 

states transitions, this update method is capable of 

covering multiple timescales involved in 

intracellular processes, making up for incomplete 

knowledge of the reaction timescales in biological 

network modeling, while synchronous update can 

lead to spurious behaviors [36]. Therefore it is 

applied frequently in biological models, in both 

simulations [37] and theoretical analysis [38, 39].  

An attractor can be described as one of the 

smallest self-contained set of states, i.e. a set of 

states from which only states in the same set can 

be reached. Attractors include steady state 

attractors (fixed points), and complex (oscillating) 

attractors where a subset of the nodes do not take 

fixed values. In discrete models, attractors can 

also be defined as the terminal strongly-

connected-components (SCCs) of the state 

transition graph (STG). An STG of a dynamic 

model is the graph wherein each node represents a 

state of the system, and each edge represents a 

state transition. The nodes in a terminal SCC of the 

STG are self-contained as they cannot reach nodes 

other than themselves, and are therefore attractors 

of the system.  

In a discrete dynamical system, the fixed point 

attractors are independent of the update scheme; 

on the other hand, complex attractors may depend 

on the update scheme of the system. This is 

intuitive, as the edges of a STG can be different 

for different update schemes. An example is 

provided in Appendix D1. Since the general 

asynchronous update allow all kinds of rates and 

timing, complex attractors found under general 

asynchronous update are invariant with respect to 

arbitrary fluctuations in the rates of the processes 

involved [40]. In this paper, we will focus on 

general asynchronous update.    

An accurate method to find all attractors of 

discrete models is to perform an exhaustive search 

in the state space. However this is not practical 

because the state space of a network scales 

exponentially with its size. Even for the simplest, 

Boolean model, the size of the state space of an N-

node network is 2N, which is too large for 

exhaustive search. There has been a lot of effort to 

develop methods to find attractors in the Boolean 



 

 

framework [19-22], but there are only a few 

methods that can find attractors of multi-level 

models, and they have special constrains when 

finding complex attractors. For example, Dubrova 

et al. proposed an SAT-based bounded model 

checking method that can only find complex 

attractors in a synchronous update scheme [27]. 

Hinkelmann et al. converted the attractor finding 

problem into solving polynomial equations; this 

method can only find complex attractors of a  

limited size [28]. Our method does not explicitly 

consider time and does not enumerate the system’s 

trajectories. Instead, it combines graph topology 

and regulatory functions into an expanded graph 

representation. Because this expanded network is 

much smaller than the size of the state space, our 

method can work on networks of larger size. Our 

method is comprehensive in the broad family of 

dynamical systems wherein one node changes 

state at any given time instant.  

 

B. Overview of our motif-based attractor 

identification method  

The idea of our method is to translate the 

attractor identification problem into a graph 

theoretical problem by creating an expanded 

representation of the network that incorporates all 

the regulatory functions, then identifying certain 

motifs (subgraphs) of this expanded network [41]. 

We will refer to our method as the motif-based 

attractor identification method, or ‘motif-based 

method’ for short. 

We first represent each state of each original 

node with a Boolean virtual node. The ‘ON’ state 

of the virtual node means that the original node is 

in the state embodied by the virtual node. The 

regulatory function of a virtual node is a quasi-

Boolean function, whose inputs are virtual nodes, 

expressed in an appropriate disjunctive normal 

form. This disjunctive normal form is obtained by 

summing up the input combinations that yield the 

‘ON’ state for the virtual node.  

Then an expanded network containing all 

information expressed in the regulatory functions 

can be established. The expanded network is 

obtained from the original one by the following 

operations: 1. Include each virtual node in the 

expanded network, and connect all the virtual 

node’s regulators to it; 2. for each ‘and’ rule in the 

regulatory functions, create a composite node, and 

re-wire the edges from the input nodes of the ‘and’ 

rule to this composite node, then connect the 

composite node to the regulated (target) node. The 

original edges from the input nodes of the ‘and’ 

rule to the target node are removed. The expanded 

network allows one to distinguish between co-

pointing interactions that are combinatorial in 

nature (i.e. they are combined by ‘and’ rules) from 

co-pointing interactions that are individually 

sufficient (i.e. they are combined by ‘or’ rules).  

We use the term “motif” for strongly connected 

components of the expanded network that satisfy 

certain properties (which we will describe later). 

Depending on the virtual nodes involved in the 

motif, we define stable motifs, which correspond 

to stabilized states of the constituent nodes, and 

oscillating motifs, which are candidates for 

oscillations of the constituent nodes.  

After the motifs are found, plugging in the node 

states specified in the motifs into the regulatory 

functions of their target nodes will specify the 

states of these nodes, therefore reducing the 

network. Then more motifs can be found in the 

reduced network, and this reduction process can 

be done iteratively. Ultimately, the motif sequence 

we find in the iteration process will determine the 

attractor. In the following sub-sections we 

describe the details of each step.  

 

C. Quasi-Boolean formalism of multi-level 

models 
We establish a formalism where multi-level 

regulatory functions become Boolean-like. We 

treat each level (state) of a multi-level node as a 

separate node, called a virtual node. For example, 

if a node A has 3 different levels, 0, 1, and 2, then 

3 virtual nodes for A, namely A0, A1, A2, are 

created in our formalism. Each virtual node is like 

a Boolean variable, and the combination of all 

virtual nodes represents the state of the original 

node. We will refer to these virtual nodes as 

‘sibling nodes’ of each other. For example, 

original state A=2 (where for simplicity the node 

state is represented by the node name) will now be 

represented as the combination A0=0, A1=0, 

A2=1. Note that one and only one of the virtual 

nodes takes value 1, while all other virtual nodes, 

i.e. its sibling nodes, must all be 0. Then we write 

the regulatory function of each virtual node in a 

Boolean disjunctive normal form, by treating each 

input combination as a conjunctive clause and 

then connecting all conjunctive clauses that yield 

the same target node level with the Boolean ‘or’ 

operator. Figure 1 demonstrates the example of 

converting the regulatory function fA = B+C into a 

set of quasi-Boolean regulatory functions of 

virtual nodes.  



 

 

 
FIG. 1 Demonstration of the construction of a quasi-

Boolean regulatory function. A 3-level node A has 

regulatory function: fA =B+C, where B and C both have 

2 levels. From the truth table, one can identify the 

regulatory function for each virtual node of A, by 

connecting all conjunctive clauses that yield the same 

state of A with the Boolean ‘or’ operator. In this way, 

each virtual node’s regulatory function will have a 

Boolean disjunctive normal form.  

 

Note that the Boolean ‘not’ rule is absent from 

this formalism, because we have assigned virtual 

nodes to all states of nodes. Negation is now 

replaced with activation by the sibling nodes. We 

will proceed through the rest of our analysis based 

on the regulatory functions of the virtual nodes, 

instead of the functions of the original nodes.  

We require the regulatory functions to be 

written in a disjunctive normal form with all of 

their prime implicants present, or in other words, 

in the Blake canonical form [42]. A minterm is a 

combination of inputs that yields the value 1 for a 

Boolean expression. An implicant is a ‘covering’ 

(sum or product) of minterms in a Boolean 

function; a prime implicant of a function is an 

implicant that cannot be covered by a more 

general (more reduced) implicant. For example, 

the Blake canonical form of the regulatory 

function ‘𝑓𝐴 = B and C or D and not C’ is ‘𝑓𝐴 = B 

and C or D and not C or B and D’, as the 

conjunctive clause ‘B and D’ is also a prime 

implicant of A. This form is not preferred in 

Boolean models because of its redundancy, but it 

is necessary for the creation of the expanded 

network, because it explicitly contains all 

sufficient conditions to activate a virtual node. The 

Quine-McCluskey (QM) algorithm finds the 

Blake canonical form of a Boolean function. We 

extend this algorithm to multi-level models.  

 

D. Multi-level Quine-McCluskey algorithm 
To obtain the Blake canonical form of a multi-

level function, we developed a multi-level version 

of the QM algorithm. The original QM algorithm 

not only finds all prime implicants but also 

minimizes the function [43-45]. We aim to find all 

prime implicants and omit the latter step.  

The idea of the QM algorithm is that, if multiple 

minterms cover all states of a node, these 

minterms can be merged and the node can be 

eliminated from the function. For example, in a 

Boolean case, A and B or A and not B = A. 

Similarly, if all states of a node in a multi-level 

function are covered by certain minterms, these 

minterms can be merged. For example, if B has 3 

states, then A1 and B0 or A1 and B1 or A1 and 

B2 =A1. The key property here is B0 or B1 or B2 

=1; or in general, N(0) or N(1) or N(2) or … or N(m-

1)=1, where m is the number of states of node N 

has and 𝑁(𝑖−1) represents the ith state of N. We call 

this the completeness condition. The main 

difference of the multi-level functions compared 

to a Boolean function is that the completeness 

condition becomes implicit. There is also a 

uniqueness condition, which can be written 

as N(𝑖) 𝑎𝑛𝑑 N(𝑗) = 0, ∀ i ≠ j. The interpretation is 

that N can only take a single state. Together the 

completeness and uniqueness conditions mean 

that at any given time node N can take one and 

only one state from its possible states, which is a 

natural requirement. These conditions are true in 

the Boolean formalism (A or not A = 1, A and not 

A =0). However, in the multi-level formalism 

where we represent each node state separately, we 

will need to separately impose these two conditions. 

Specifically, the multi-level QM requires the 

completeness condition to merge minterms.  

The systematic merging can be done in a way 

demonstrated in Figure 2. Suppose a virtual node 

state D1 has its regulatory function expressed in 

truth table format. One can then re-arrange the 

minterms into groups, based on how many zeros 

each minterm has. Then one can start merging by 

checking minterms in neighboring groups that are 

different by one node. If the minterms cover all 

states of that node, then they can be merged. In the 

example demonstrated in Figure 2, m1 (002), m5 

(012) and m6 (022) differ in the state of  node B, 

and these three minterms cover all possible states 

of B, so we can merge them to get ‘0X2’ in the 1st 

row on the right, as a merged term. This process is 

done repeatedly until all minterms are considered. 

Any leftover minterms that did not get merged are 

prime implicants, e.g. (011) in Figure 2. The 

merged terms will contain ‘X’s representing 

merged nodes. Next, one treats the 1st order 

merged table in the same way, i.e. re-arrange 

according to the number of zeros, and try to merge 

into a 2nd order merged table. The difference is that 

‘X’s are treated as a separate state of the variable 

that cannot be merged. For example, (X01) and 

(X11) are different by 1 node and may be 

considered as candidates for merging, while (X01) 

and (0X1) are different by 2 nodes and cannot be 

merged. This process is done iteratively until no 



 

 

more merging can be done. All ‘leftover’ terms are 

prime implicants. In Figure 2, nothing can be 

merged after 1st order, so we get a final prime 

implicant form of D1 as fD
(1) = A0 and B1 and C1 

or A0 and C2 or B0 and C2 or A1 and C0 or B2 

and C2 or B2 and C0. We discuss the performance 

of the algorithm in Appendix A, and a description 

of the implementation is provided in Appendix B.  

 
FIG. 2 Example of the multi-level Quine-McCluskey 

algorithm. A Boolean node D is regulated by a Boolean 

node A and two 3-state nodes B and C. The original 

function of D is shown in a truth table on the top left, 

in a form summarizing all input combinations that yield 

fD
(1) =1. The top right table shows the minterms sorted 

according to the number of zeros in them. From this 

table, one can merge the terms between layers that are 

different by 1 digit, if all states of the difference node 

are present within the two layers. The result of the 

merging is shown below. Merged terms are represented 

by an ‘X’. There are 5 leftover terms after 1st order 

merging, and there is 1 leftover term after 0th order 

merging. The sum of all six terms is the final expression.  

 

 

E. The expanded network representation 

After all functions are transformed into the 

proper form, we create an expanded network, 

which is a representation of the network with 

regulatory functions embedded. The expanded 

network is obtained from the original network by 

applying the following operations: 1. Include each 

virtual node in the expanded network, and connect 

its regulators to it; 2. for each ‘and’ rule in the 

regulatory functions, create a composite node, and 

re-wire the edges from the input nodes of the ‘and’ 

rule to this composite node, then connect the 

composite node to the regulated node. The original 

edges from input nodes of the ‘and’ rule to the 

target node are removed. Figure 3 exemplifies the 

construction of an expanded network from a 

regulatory function. To construct the entire 

expanded network, all virtual nodes and all 

interactions must be created.  

 
FIG. 3 Construction of an expanded network from a 

regulatory function. Virtual node A0 has function fA
(0)  

= B0 or (C1 and B1), so in the expanded network, B0 

is connected directly to A0; C1 and B1 are connected 

indirectly to A0 via composite node 'C1 and B1'. A1 

has function fA
(1) = C0 and B1, so C0 and B1 are 

connected indirectly to A0 via composite node 'C0 and 

B1'.  

 

The expanded network contains not only the 

network structure, but also all information about 

the regulatory functions. Furthermore, interactions 

of a combinatorial nature are separated, as all ‘and’ 

rules have become explicit nodes. In this way, the 

expanded network makes it easy to identify a 

sufficient condition to activate a node: a virtual 

node will have state 1 if any of its regulator virtual 

nodes is 1, or if any of its regulators that is a 

composite node has all its input virtual nodes 

being 1, regardless of the states of the rest of its 

regulators. Following this intuition, a cycle in the 

expanded network that satisfies the above criterion 

will be self-sufficient to stabilize.  

This leads to the definition of stable motifs.  

 

F. Stable motifs 

A stable motif is a subgraph of the expanded 

network that can stabilize on its own. We define it 

in the following way: a stable motif is a strongly-

connected-component (SCC) in the expanded 

network that satisfies: (1) the SCC contains no 

sibling node pairs; (2) if the SCC contains a 

composite node, all of its input nodes must also be 

in the SCC. The first condition is a natural 

requirement for a stabilized state of the original 

node; the second condition is about the nature of 

the Boolean ‘and’ operator, as all inputs must be 

present to activate the ‘and’ function. In our 

algorithm we identify stable motifs as the smallest 

SCCs that satisfy the above conditions. Figure 4 

shows the expanded network and stable motifs of 

a three node network.  



 

 

 
FIG. 4 Illustration of stable motif identification in a 

three-node network. (A) The original network and the 

regulatory functions of each node; (B) The expanded 

network is constructed according to the steps in section 

I.E, and then the stable motifs are found by their 

definition in I.F. (C) Stable motifs found in this 

example. The first stable motif, A0, B0, corresponds to 

a fixed point attractor of the system A=0, B=0, C=0. 

The state C=0 is found by plugging A=B=0 into the 

regulatory function of C. The 2nd stable motif 

corresponds to another fixed point attractor A=2, B=2, 

C=0.  

 

In order for stable motifs to be correctly 

recognized, the regulatory functions must contain 

all prime implicants. If a prime implicant is 

missing, a sufficient condition for a node to 

stabilize is missing, which would lead to incorrect 

identification of stable motifs. This is why we 

require the Blake canonical form of regulatory 

functions.  

There is a one-to-one correspondence between a 

stable motif and a partial fixed point of the system 

(which is defined as a state in which a subset of 

nodes stabilize regardless of the state of the rest of 

the system). The proof of this statement is 

provided in Appendix C. Consequently, by finding 

all stable motifs we find all fixed points or partial 

fixed points of the system.  

 

G. Oscillating motifs 
An oscillating motif is defined as the largest SCC 

in the expanded network that satisfies: (1) at least 

one virtual node in the SCC has at least one sibling 

node in the SCC; (2) if the SCC contains a 

composite node, all its input nodes must also be in 

the SCC. In contrast to nodes in stable motifs, an 

oscillating node must be able to enter at least two 

states, so the first condition is necessary. The 

second condition is also necessary due to the 

combinatorial nature of the composite node.  

 

 
FIG. 5 An example of an oscillating motif in a multi-

level network. Panel (A) shows the network and 

regulatory functions; panel (B) indicates the expanded 

network and motifs. A0 and B0 form a stable motif, 

indicating a fixed point A=0, B=0; while A1, A2, B1 

and B2 form an oscillating motif, indicating a possible 

complex attractor involving states A=1, A=2, B=1 and 

B=2. Panel (C) indicates the state transition graph of 

the system when using general asynchronous update. 

The stable motif and oscillating motif identified in 5B 

correspond to a fixed point and a complex attractor, 

respectively. 

 

Unlike the relation between stable motifs and 

partial fixed points, there is no one-to-one 

correspondence between oscillating motifs and 

complex attractors, because complex attractors are 

dependent on the timing of individual events [37] 

(see Appendix D1 for an example). Our motif-

based method is based on network structure and 

regulatory functions and is independent of timing, 

thus it cannot find timing-dependent complex 

attractors. General asynchronous update prunes 

timing-dependent complex attractors in discrete 

framework, and all complex attractors under this 

update are proven to be based on negative 

feedback loops [38, 39]. These complex attractor 

are also reliable under perturbation, in contrary to 

timing-dependent complex attractors [40]. 

Therefore the complex attractors identified by our 

method should be consistent with the complex 

attractors under general asynchronous update. We 

propose that for every complex attractor of the 



 

 

discrete dynamic system under general 

asynchronous update, there is a set of oscillating 

motifs and their downstream that contain the 

virtual nodes representing all the states visited by 

the oscillating nodes. We sketch the proof of this 

proposition in Appendix C. In our benchmarks 

presented in section III. B., this proposition was 

never violated. Figure 5 shows an example of a 

complex attractor in a multi-level network model. 

This example also illustrates the coexistence of a 

fixed point attractor and a complex attractor for 

different states of the same nodes (See Appendix 

D4 for more detail). 

 
FIG. 6 An example of an oscillating motif that contains 

a stabilized node. (A) The network and regulatory 

functions. (B) The expanded network and motifs. The 

oscillating motif contains only one virtual node of B, 

meaning that B will stabilize at 1 in the complex 

attractor. (C) The state transition graph using general 

asynchronous update. There are two attractors: a fixed 

point attractor, and a complex attractor. 

 

There is a difference between the criteria of 

oscillating motifs in the Boolean and multi-level 

case: in the Boolean case, all nodes in an 

oscillating motif must oscillate [30], while in the 

multi-level case, an oscillating motif can allow 

stabilized nodes. An example of a complex 

attractor corresponding to an oscillating motif 

with a stabilized node is shown in Figure 6. We 

illustrate several additional properties of 

oscillating motifs in Appendix D. 

 

 

H. Iterative motif reduction yields the 

attractors of the system 
The source (unregulated) nodes of a network that 

stabilize in a fixed state can be reduced prior to 

any attractor identification process. The 

corresponding fixed states can be substituted into 

the regulatory functions of the nodes they regulate. 

This can be done iteratively until no source nodes 

are present in the network, without affecting the 

attractor repertoire of the system [46, 47]. For 

some biological networks, this reduction alone can 

reduce a large fraction of the network model, 

leading to a much simplified model.  

Once motifs are identified, we can plug in the 

states of the nodes specified in the motifs into the 

expanded network, as if these nodes were source 

nodes, to further reduce the network. For 

stabilized nodes, the stabilized virtual node takes 

value 1 and its sibling nodes are set to 0; for 

oscillating nodes, their corresponding virtual 

nodes are marked as oscillating, and their sibling 

nodes excluded from the oscillating motif are set 

to 0. Certain nodes downstream of the motifs may 

stabilize as a result. In this way, a reduced version 

of the network model is obtained. We then identify 

stable motifs and oscillating motifs in the reduced 

network and substitute the corresponding virtual 

node values again, until this cannot be done any 

more. By the end of this process all nodes will 

either become a part of a motif, or be downstream 

of a motif and be determined by that motif, and we 

will have obtained a set of motif sequences. If no 

oscillating motifs are found in a motif sequence 

and at the end of the process the network has 

reduced completely, all nodes will be stabilized, 

and we will have obtained a fixed point attractor. 

If oscillating motifs are found in a motif sequence, 

at the end of the process we will find some 

(possibly none) of the nodes stabilized, while 

some other nodes oscillating. We call this result a 

quasi-attractor. Specifically, a quasi-attractor will 

indicate the unique state of each stabilized node 

and it will give a set of states among which a 

potentially oscillating node oscillates. This quasi-

attractor is likely (but not guaranteed) to 

correspond to a complex attractor (see Figure 10 

in Appendix D for example). Under general 

asynchronous update, since all partial fixed points 

correspond to stable motifs, and all complex 

attractors correspond to oscillating motifs, all 

attractors will be covered with our motif-based 

method. Note that there is no exact match between 

the actual number of complex attractors and the 



 

 

number of quasi-attractors found by our method 

(see Appendix C and D for proof and examples). 

 
FIG. 7 Attractor identification for a four-node network 

by a motif succession diagram. A. The network and the 

regulatory function of each node. B. Motif succession 

diagram. Three motifs are found from the original 

network, including 2 stable motifs (A0, B0), (C1, D1), 

and one oscillating motif (A1, A2, B1, B2). For each 

motif, the values of the nodes in the motif are plugged 

into the regulatory functions, reducing the network. 

Then new motifs are identified from the reduced 

networks. The sequences corresponding to the three 

motifs are labeled (1), (2) and (3).  

 

The reduction process can be represented as a 

motif succesion diagram, which is the diagram of 

the motifs obtained successively in the iterative 

network reduction process [48]. Figure 7 

illustrates a motif succession diagram, where 

iterative network reduction based on identified 

motifs leads to the identification of attractors and 

quasi-attractors. The original network has two 

stable motifs (A0, B0), (C1, D1), and one 

oscillating motif (A1, A2, B1, B2). When the 

stable motif (A0, B0) is chosen, the network is 

reduced down to two nodes, C and D, with new 

regulatory functions fC
(0) = D0, fC

(1)= D1, fD
(0) =C0, 

fD
(1)=C1. Two new stable motifs, (C0, D0) and (C1, 

D1) are found in the reduced network, leading to 

two attractors Attractor 1: A=0, B=0, C=0, D=0 

and Attractor 2: A=0, B=0, C=1 D=1. When the 

oscillating motif is chosen, A0 and B0 become 0, 

and as a consequence C0 and D0 become 0, thus 

                                                           
1 The source code is available on GitHub: https://github.com/jackxiaogan/Multi-level_motif_algorithm.  

C=D=1. The system is thus in a quasi-attractor in 

which A and B oscillate between 1 and 2 and 

C=D=1. When the stable motif (C1, D1) is chosen, 

the regulatory functions of A and B stay the same, 

thus either the (A0, B0) stable motif or the 

oscillating motif can come next. Both yield 

already encountered (quasi)-attractors (see Figure 

6). Thus Attractor 1 is reached if stabilization of 

(A0, B0) is followed by (C0, D0), Attractor 2 is 

reached in case of stabilization of (A0, B0) and 

(C1, D1), in either order, and quasi-attractor 3 is 

reached due to the oscillating motif. In general, a 

(partially) ordered sequence of motifs determines 

a fixed point attractor or quasi-attractor, similarly 

to the Boolean case [48].  

 

I. Description of the motif-based algorithm 

  Here we summarize the steps of the 

implementation of the motif-based algorithm 1 . 

The algorithm takes as input a set of regulatory 

functions and specific values for each source node. 

For a source node A whose value is uncertain, one 

can define its regulatory function as itself, i.e. 

𝑓𝐴 = 𝐴 . In this way each virtual node that 

corresponds to A will have a self-loop, which is 

also a stable motif. Thus all possible values of A 

are considered.  

1. Reduce the source nodes of the network 

model by plugging their values into the 

regulatory functions of the nodes they 

regulate. Repeat until no source node is 

present.  

2. Transform the regulatory functions to Blake 

canonical form using the multi-level Quine-

McCluskey algorithm.  

3. Create the expanded network according to the 

definition in section I.E.  

4. Search the expanded network for stable 

motifs and oscillating motifs. 

5. For each stable motif and oscillating motif 

identified, create a copy of the network, with 

the node states specified in the motif plugged 

into the regulatory functions of their targets. 

In the case of oscillating motifs, the virtual 

nodes in the oscillating motif are marked, and 

their sibling nodes that are not in the motif are 

set to 0. In addition, for each oscillating motif, 

create a copy of the network with all virtual 

nodes downstream of the oscillating motif 

marked.  

6. Repeat 1, 2, 3, 4, and 5 until no more motifs 

can be identified. In step 1, the reduction 

process, virtual nodes marked as potentially 

https://github.com/jackxiaogan/Multi-level_motif_algorithm


 

 

oscillatory are not reduced when evaluating 

regulatory functions.  

7. Discard duplicate attractors.  

The final result of the algorithm will be a set of 

attractors or quasi-attractors. Each of these (quasi) 

attractors will indicate a state (or multiple possible 

states) for each node. For each stabilized node, its 

unique stabilized state is given; for a potentially 

oscillating node, the multiple states among which 

it potentially oscillates are given.  

 

 

III. RESULTS 

To test the effectiveness of our motif-based 

attractor identification method, we apply it to an 

ensemble of synthetic networks and biological 

networks from the literature.  

 

A. Benchmark on synthetic networks 

We test the motif-based algorithm on synthetic 

networks of different size, ranging from 10 to 40. 

To approximate biological networks, we first 

generate networks where the in-degree is k=2 for 

each node and the network is otherwise random 

[49, 50]. Next, we generate the number of states 

for each node. For multi-level ensembles, we 

generate number of states according to an equal 

probability of having 2 or 3 states.  For Boolean 

ensembles all nodes have 2 states. Then we 

randomly generate a regulatory function among 

those consistent with the number of regulators and 

number of states for each node. The generation 

process of regulatory functions is described in 

Appendix E. 

To test whether the motif-based algorithm finds 

attractors correctly, we perform simulations 

similar to Wang et al. [51] and Zañudo et al. [30]. 

We start from different random initial conditions, 

and let the system evolve for Tstep effective time 

steps. We used general asynchronous update, 

where at each time step, one node is randomly 

chosen and its state is updated according to its 

regulatory function. If the new state of the node is 

the same as before, another node will be selected 

within the same time step, until the selected node 

changes state. If no node can reach a new state, a 

fixed point attractor is reached. If no fixed point 

attractor is reached within Tstep effective time steps, 

we evaluate whether the system is in a complex 

attractor by determining the corresponding partial 

state transition graph (STG). Note that this 

sampling method is heuristic, and is likely to miss 

attractors when the state space is large. For each 

fixed point attractor found by simulation, we 

check whether it is predicted by our motif-based 

algorithm. In addition, for each predicted fixed 

point or partial fixed point we check whether there 

is a simulated attractor that contains the same 

stabilized nodes in the same states. If a pair of 

predicted and simulated fixed points passes both 

checks, we categorize them as identical. If a 

predicted partial fixed point passes the second 

check, we call it consistent with the simulated 

attractor. Complex attractors depend on the update 

scheme (i.e. on the timing), so there cannot be a 

definitive conclusion. The expectation (based on 

our proposition presented in II.G) is that the set of 

nodes found to oscillate in a simulation should be 

a subset of the nodes predicted to oscillate by our 

motif-based algorithm. If this is indeed the case (in 

addition to the stabilized nodes, i.e. the partial 

fixed points, being consistent), we say that the 

attractors are highly consistent. In all tests, we 

found identical fixed points and highly consistent 

complex attractors with the sampling method. The 

runtime of the motif-based algorithm increases 

exponentially with the number of nodes, and 

increases faster on the ensemble of multi-level 

networks than on an ensemble of Boolean 

networks, as expected (Table I). From the table, 

the motif-based algorithm would not be practical 

for large networks with more than 50 nodes or too 

many multi-level nodes. The important question is 

whether the algorithm is practical for biological 

network models existing at present or constructed 

in the near future. To estimate the answer to this 

question, we test our algorithm on published 

multi-level biological network models.  

Multi-level Networks 

Size of 

network 

10 15 20 25 

Time (s) 0.07 1.1 48 251 

Boolean Networks 

Size of 

network 

10 20 30 40 

Time (s) 0.07 0.89 74 600 
Table I. Benchmark runtime of the motif-based 

algorithm on synthetic networks of different sizes 

(number of nodes). For each size, 50-100 random 

networks with in-degree k=2 are generated. For multi-

level networks, each node has 50% chance of having 2 

levels and has 50% chance of having 3 levels. In all 

runs, the attractors found by the algorithm are identical 

or highly consistent with the attractors found with the 

sampling method.  

 

B. Tests on biological networks from the 

literature 

The tested models include a signal transduction 

network model describing stomatal opening in 



 

 

plants [25] whose attractor repertoire we explored 

before [52]. We also selected 18 models from the  

model repository of the software tool GINsim, 

which simulates discrete dynamic models of gene 

regulatory networks [29]. These 19 models have 

sizes ranging from 4 to 72 nodes, with 6%-100% 

of these nodes being multi-level. We run our 

motif-based algorithm on each model, and 

compare the results with the results found by 

GINsim.  

To apply the motif-based algorithm, we first 

convert the GINsim model into a ‘.txt’ file, with 

regulatory functions suitable for our algorithm2. In 

the few cases where the GINsim framework and 

our framework are different, we adapt the model 

to our framework. For example, GINsim allows an 

‘empty function’: ‘fA
(0) = B0, fA

(2)=B1, fA
(1) is empty, 

i.e. A1 has no function’, which our method doesn’t 

allow. In this GINsim example, ‘A1’ will be 

visited transiently when node A changes from A0 

to A2. We discard the state ‘A1’. We can do so 

because such transient states are never part of an 

attractor. We also reduce some of the large models 

before applying our algorithm. The reduction 

consists of three methods: removing output nodes 

(nodes with no outgoing edges), removing simple 

mediator nodes (nodes with one incoming edges 

and one outgoing edge), and replacing input trees 

(acyclic sub-networks that contain a source node) 

with a single source node. These reductions are 

known to conserve the attractors of the model [46, 

47]. In cases where there are a lot of different 

signal (source node) state combinations, it is not 

practical to compare all the fixed points found. 

Instead, we select representative signal 

combinations corresponding to different 

biological phenotypes (some of which are 

indicated as pre-made selections in GINsim), or 

signal combinations that result in different 

attractors.  

We compare the attractor analysis results by first 

checking whether the fixed points are identical, 

and then checking whether the complex attractors 

are consistent. We find that the fixed points found 

by the two algorithms are identical, as expected. 

For complex attractors, it is difficult to get a 

definite conclusion. GINsim cannot predict 

complex attractors; it can only simulate the state 

transition graph (STG) or hierarchical transition 

graph (HTG) and find the strongly-connected-

component from the STG/HTG [53]. The 

complexity of this method goes up quickly with 

the increase of the model size. Our method can 

                                                           
2 The converted models are uploaded to the ‘models’ folder in: https://github.com/jackxiaogan/Multi-level_motif_algorithm/.  

only predict quasi-attractors, which may or may 

not be actual complex attractors. Therefore it is 

impossible to know the complex attractors exactly 

unless an exhaustive (partial) state space search is 

performed. If the model is simple enough for 

GINsim to construct an STG, we check whether 

the complex attractors found from the STGs are 

covered by the candidates predicted by our 

algorithm. We found consistent complex attractor 

results from the two algorithms: all complex 

attractors found in simulations are covered by 

predicted quasi-attractors. The detailed results can 

be found in the Supplementary File S1 [54].  

We also compared the runtime of the two 

algorithms. For the motif-based algorithm, we 

record the runtime for each signal combination, 

then average them. GINsim does not show the 

actual time spent in computation, so we only 

record whether the computation completed, and 

give an estimated time. Note that both algorithms 

are guaranteed to find solutions given enough 

computational power, so cases of not completed 

calculations are due to limited computational 

resources. All GINsim fixed point  computations 

are done in seconds. The only model wherein the 

motif-based algorithm did not finish computing 

had a 72-node strongly connected network. A 

summary of the results is shown in Table II. The 

details of the runtime of each model can be found 

in Supplementary File S1[54].  

Network 

count 

Network 

size 

Computational Time 

Motif 

algorithm 

GINsim 

STG/HTG 

9 4~15 0~8s 0~10s 

9 17~36 0s~1h DNC 

1 72 DNC DNC 

Table II. Summary of the runtime of the two 

algorithms. The networks fall into three categories. 

The first column is the number of networks in each 

category. The second column is the range of the 

network sizes in each category. The 3rd and 4th 

columns indicate whether motif analysis and 

GINsim STG/HTG generation was successfully 

completed or not. For completed analysis, the range 

of computational time is shown in the table. 

Otherwise, we indicate DNC (meaning “did not 

complete”), which includes cases that ran out of 

memory or did not finish in 6 hours. All tests were 

run on a personal computer. There is no model 

where GINsim succeeds and the motif-based 

algorithm fails. The motif algorithm is successful in 

18 of 19 models, while GINsim STG/HTG only 

works in the small networks of the first category.  
 

https://github.com/jackxiaogan/Multi-level_motif_algorithm/


 

 

IV. DISCUSSION 

Our motif-based attractor identification method 

connects the structure, regulatory logic and 

attractors of discrete dynamical systems. The 

expanded network representation is conceptually 

similar to Petri nets (as the composite nodes share 

certain properties with the Petri nets’ transition 

nodes) [55] [56] and also to logic hypergraphs [57] 

(which represent the group of edges incident on a 

composite node with a hyper-edge). The 

innovation of our analysis of the expanded 

network lies in interpreting the patterns formed by 

multiple connected regulatory functions. The 

motifs identified in our expanded network have a 

strong correspondence with the long-term 

dynamic behaviors of the modeled system. The 

expanded network is therefore a good 

complementary technique to the existing family of 

techniques to predict the attractor repertoire of 

discrete dynamical systems.    

Our method captures not only fixed points, but 

also complex attractors. The fixed points of a 

dynamic system are independent of timing, and 

will be found accurately. Complex attractors may 

be timing-dependent. Since our method is based 

on the structure and regulatory logic of the system, 

it will capture timing-independent, negative 

feedback-driven complex attractors. Our method 

can find all attractors of systems updated by 

general asynchronous update; for systems updated 

using other update schemes (i.e. when there exists 

at least some node synchrony), our method can 

accurately find fixed points and timing-

independent complex attractors, but there may be 

timing-dependent attractors that our method 

cannot capture.  

The complexity of the motif-based algorithm 

mainly comes from the identification of cycles. 

Both stable and oscillating motifs are formed as 

unions of simple cycles in the expanded network. 

Identifying simple cycles in a directed graph is 

known to be NP-complete, with time complexity 

O((N + E)(c + 1)) using Johnson’s algorithm 

[58], where N is the number of nodes, E is the 

number of edges, and c is the number of directed 

cycles. The last can grow faster than 2N for dense 

networks. In addition, the introduction of multi-

level nodes dramatically increases the number of 

nodes, especially the number of composite nodes 

in the expanded network. These facts limit the 

effectiveness of the motif-based algorithm on 

networks with a large size, a high number of levels, 

or with high connectivity. Typical biological 

network models have a low average degree, 

around two, and a low number of states for each 

node (two or three). In addition, only a relatively 

small fraction of the nodes are in SCCs; i.e. 

biological networks are not feedback-dense. As 

we have demonstrated in section III.B, our motif-

based method can be successfully applied to these 

networks. For other types of networks, although 

our method can theoretically work, the 

computational complexity may be a challenge. 

Possible further work on this project include 

optimizations of the algorithm so it can work on 

more complex network models, and finding more 

necessary conditions of multi-level complex 

attractors to reduce the number of quasi-attractors. 

A possible way to optimize the algorithm is to add 

a step to divide the network into SCCs before 

trying to analyze for motifs, as all motifs can only 

be found within an SCC. This may dramatically 

reduce cycle-finding time in networks with SCC 

‘communities’, which is quite common in 

biological networks.  

Although the idea is the same, there are 

significant differences between the Boolean stable 

motifs method and our multi-level motif-based 

method. The most important difference is in the 

criteria for oscillating motifs, as mentioned in 

Section II G: the Boolean oscillating motif 

requires the participation of two (i.e., both) sibling 

virtual nodes for every node of the motif, while the 

multi-level oscillating motif does not require that 

two or more sibling virtual nodes participate for 

every original node (see the multi-level example 

in Figure 6). In addition, in the Boolean 

framework, a fixed point and a complex attractor 

cannot co-exist for different states of the same 

node; while in the multi-level case this is possible 

(see the example in Figure 5 and 6). These 

differences bring fundamental differences and 

complications to the design of the algorithm, 

because in the iterative reduction process toward 

attractor identification, the Boolean method needs 

only knowledge of the stable motifs, while the 

multi-level case needs both stable motifs and 

oscillating motifs.  

The integration of the network structure and 

regulatory logic in the expanded network can 

reveal the connectivity patterns that underlie the 

system’s functional repertoire. There can be 

multiple extensions to this work. For example, in 

the Boolean case, elementary signaling mode 

(ESM) has been defined from the expanded 

network as the minimal set of nodes that can 

perform signal transduction independently [59, 

60]. It can be extended to the multi-level as well 

to help understand signal transduction a multi-

level expanded network.  



 

 

Another direction is to extend the concepts of 

expanded network and stable motifs to a 

continuous framework. If one can distill the causal 

relationships wherein a certain value of a 

continuous variable is sufficient to maintain a 

certain value of another continuous variable, one 

can construct an expanded network from these 

relationships, and obtain insight into the system’s 

dynamic repertoire [61].  

Furthermore, one can develop the control 

capability of multi-level motifs. Network 

controllability has multiple definitions and 

frameworks to address it [62-65]. Motifs can be 

used to control the system by driving it into one of 

its natural attractors. Zañudo et al. proved that in 

the Boolean case a sequence of stable motifs 

uniquely determines an attractor, which means 

that driving certain nodes into their states in a 

stable motif can drive the network into the 

corresponding attractor; they also implemented an 

algorithm to identify driver nodes from Boolean 

stable motifs [48]. The same principle applies to 

multi-level stable motifs as well, and the algorithm 

to find the driver nodes to be controlled can be 

adapted as well. This is particularly valuable in 

biological networks, as the control of stable motifs 

can suggest possible practical interventions to 

switch the system from an undesired attractor to a 

desired one. Another possible aspect of control is 

target control, i.e., driving a single node or small 

set of nodes into a desired state. This can be done 

by exploiting more of the sufficiency conditions 

revealed in an expanded network [66].   

 

V. CONCLUSION 

  In this paper, we propose a motif-based reduction 

method to find both fixed points and complex 

attractors of a discrete dynamic model, by 

extending an existing method from Boolean to any 

discrete level. We establish a multi-level 

formalism and identify motifs from an expanded 

representation of the multi-level network. Then 

we iteratively reduce the network according to the 

motifs to obtain the attractors. Our method is 

general enough to work on any discrete dynamic 

model. We demonstrate the method’s correctness 

and effectiveness by implementing an algorithm, 

and then benchmarking it on synthetic networks, 

and applying it to biological networks in the 

literature. In addition, the identification of stable 

and oscillating motifs offers a way toward 

attractor control of the network.  
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VII. APPENDIX 

 

Appendix A. Runtime performance of the 

multi-level Quine-McCluskey algorithm 

The computational complexity of the Boolean 

Quine–McCluskey algorithm grows exponentially 

with the number of variables, because the problem 

it solves is NP-hard, and it is shown that the upper 

bound on the number of prime implicants of a 

Boolean function with n variables is 3n ln(𝑛) [67].  

Since a Boolean function is a special case of a 

discrete function , it is straightforward that finding 

all prime implicants of a multi-level function is at 

least as complex as finding all prime implicants of 

a Boolean function. To test whether the multi-

level QM algorithm is capable of analyzing 

biological network models, we benchmark how 

long it takes for the algorithm to transform all node 

functions on 100 randomly generated 

heterogeneous networks. The networks have 50 

nodes and have a power law in-degree distribution 

with exponent -3 and maximum degree 8. Each 

node has 60% chance of having 2 states, 25% 

chance of having 3 states, 10% chance of having 4 

states, and 5% chance of having 5 states. These 

parameters exceed the complexity of current 

multi-level biological models. The result is shown 

in Figure 8: the multi-level QM algorithm can 

effectively transform the functions. In addition, 

we found that within the algorithm, the complexity 

of identifying stable or oscillating motifs is much 

more than that of the QM transformation. So we 

conclude that the complexity of the QM algorithm 

is acceptable for practical problems.  

 
FIG.8. Histogram of QM transformation runtime on 

100 randomly generated heterogeneous networks with 



 

 

50 nodes. The result shows that the complexity of QM 

transformation is much less than identifying motifs.  

 

Appendix B. Description of the multi-level 

Quine-McCluskey algorithm 

Here we describe the implementation of the 

multi-level Quine-McCluskey algorithm:  

1. Scan all functions to get the all states for each 

node.  

2. For each function, enumerate all input 

combinations to get the minterms, make it 

list1 

3. Group the implicants in list1 according to the 

number of zeroes 

4. Compare between neighbor groups:  

For each implicant1 in group i: 

For each implicant2 in group i+1: 

If implicant1 and 2 are different by 1 

digit: 

Access all implicants with all 

states of the different node, if they 

are all in group i+1, merge the 

implicants; 

5. If an implicant does not get merged in any 

comparison, mark it. Go to step 4 with i+=1.  

6. If there is no merged implicant, proceed to 

step 7. Otherwise set list1 to be the merged 

implicants, then go to step 3.  

7. The marked implicants are prime implicants 

8. Go to step 2 with the next function; repeat 

until all functions are transformed.  

 
Appendix C. Mathematical foundations of the 

motif-based attractor identification algorithm 
In this section we rigorously define the concepts 

we used in our motif-based method, and present 

important conclusions on why stable motifs and 

oscillating motifs can be used to find attractors. 

Our method does not depend on the update scheme, 

so the complex attractors predicted by our method 

are consistent with the complex attractors under an 

asynchronous update where one node is updated 

per time step. An efficient way to implement the 

most general case of asynchronous update is to 

randomly choose a node to update at each time 

step, which is the ‘general asynchronous update’ 

we mentioned in the main text. It is a 

representative update scheme for the broad class 

of update schemes where our method can 

accurately find all attractors.  

Mathematical definitions of node states and 

regulatory functions 

Let 𝑣𝑖,   𝑖 = (1,2, … , 𝑁)  be the N nodes of a 

multi-level dynamical system;  𝑚𝑖,   𝑖 =
(1,2, … 𝑁) be the highest level of node 𝑣𝑖 (which 

means that it has mi+1 levels, namely 0, 1… mi). 

Let  𝜎𝑖, 𝑖 = (1,2, … , 𝑁)  be a state of the 𝑖𝑡ℎ  

node 𝑣𝑖; and 𝛴 = (𝜎1, 𝜎2, … , 𝜎𝑁) be a state of the 

entire system. We use 𝛴𝑃  to represent a partial 

system state where 𝑃 = (𝜎𝑚1
= 𝑙1, 𝜎𝑚2

=

𝑙2, … , 𝜎𝑚𝑀
= 𝑙𝑀), M < N  is a subset of nodes 

that have their states specified, while the other 

states are unspecified.  

Alternatively, we can represent the system with 

virtual nodes. We use 𝑣𝑖
(𝑙)

, 𝑙 = (0, 1, … , 𝑚𝑖)  to 

represent the virtual node for the 𝑙𝑡ℎ  state of 𝑣𝑖. 

The total number of virtual nodes is 𝑁𝑣 =

∑ (𝑚𝑖 + 1)𝑁
𝑖=1 . 𝑣𝑖

(𝑙)
 is Boolean-like, meaning that 

it can only have state values 0 or 1. The state of 

each virtual node is now represented by 𝜎𝑖
(𝑙)

, 𝑖 =
(1,2, … , 𝑁), 𝑙 = (0, 1, … , 𝑚𝑖) . The state of the 

system is then represented as  𝛴 =

(𝜎1
(1)

, 𝜎1
(2)

, … , 𝜎1
(𝑚1)

, 𝜎2
(1)

, 𝜎2
(2)

, … , 𝜎𝑁
(𝑚𝑁)

) . 

Let  𝑓𝑖: ℵ𝑁 → {0,1, . . 𝑚𝑖}  be the regulatory 

function of node 𝑣𝑖, where ℵ𝑁 is the potential state 

space of the system (as node levels are described 

by natural numbers); the actual state space has 

levels0,1, . . 𝑚𝑗  for each node j. The regulatory 

function of each virtual node is a function of 

virtual nodes, e.g. the function of the 𝑖𝑡ℎ   node’s 

𝑙𝑡ℎ   state is 𝑓𝑖
(𝑙)

 (𝜎𝑘1

(𝑙1)
, 𝜎𝑘2

(𝑙2)
, … ) (where 𝑘𝑗  is the 

jth input of node i), thus it is Boolean-like, 

𝑓𝑖
(𝑙)

: {0,1}𝑁𝑣 → {0,1} . Let 𝐹 =

(𝑓1
(0)

, 𝑓1
(1)

, …  𝑓1
(𝑚1)

, 𝑓2
(0)

, 𝑓2
(1)

, … 𝑓2
(𝑚2)

, … , 𝑓𝑁
(𝑚𝑁)

 )

 be the vector of all virtual node functions. We use 

𝑓𝑖
(𝑙)(Σ) to represent a function of a virtual node 

evaluated under state Σ  of the system, 

and  𝑓𝑖
(𝑙)

|𝑃   to represent a function evaluated 

under a partial state P, where only 𝑃 =

(𝜎𝑝1
(0)

, 𝜎𝑝1
(1)

, … , 𝜎𝑝2
(0)

, 𝜎𝑝2
(1)

, … , 𝜎𝑝𝑘
(0)

, 𝜎𝑝𝑘
(1)

, … ) are 

evaluated.  

The virtual nodes that correspond to the same 

original node 𝑣𝑖 are called ‘sibling nodes’ of each 

other, and these nodes form a sibling set of  𝑣𝑖 , 

represented with  Si = {𝑣𝑖
(𝑙)

 } , 𝑙 = (0, 1, … , 𝑚𝑖) . 

A sibling set satisfies the following property: 

when the functions of these nodes are evaluated 

based on a state  Σ , one and only one of the 

functions in the set is 1 and the rest are 0, 

i.e.  ∑ 𝑓𝑗
(𝑖)

(Σ)
mj

i=1
= 1 , and  𝑓𝑗

(𝑘)
(Σ)𝑓𝑗

(𝑙)
(Σ) =

0, ∀𝑘 ≠ 𝑙. When implemented in a simulation, all 

sibling virtual nodes corresponding to the same 

original node should be evaluated simultaneously.  



 

 

We assume that each of the virtual nodes’ 

regulatory functions has the following properties:  

1. Non-constant. 𝑓𝑖
(𝑙)

 is not a constant, i.e. 𝑓𝑖
(𝑙)

≠

0 and 𝑓𝑖
(𝑙)

≠ 1 

2. Each input node is effective. If 𝑓𝑖 depends on 

node 𝑣𝑗 , then there must be at least one pair of 

network states Σ(1) and Σ(2) with 𝜎𝑗
(1)

≠ 𝜎𝑗
(2)

 and 

σ𝑘
(1)

= 𝜎𝑘
(2)

 for all k ≠ j  such that  𝑓𝑖(Σ(1)) ≠

𝑓𝑖(Σ(2)). Or, equivalently in terms of virtual nodes, 

if a sibling node function set  Fi = {𝑓𝑖
(𝑙)

} , 𝑙 =

(0, 1, … , 𝑚𝑖)   depends on a set of sibling nodes Si, 

then there must be at least one pair of network 

states Σ(1)  and Σ(2)  with σj
(1)

≠ 𝜎𝑗
(2)

 and σ𝑘
(1)

=

𝜎𝑘
(2)

 for all k ≠ j, such that ∃ 𝑓𝑖
𝑙(Σ(1)) ≠ 𝑓𝑖

𝑙(Σ(2)).  

3. Each Boolean-like function 𝑓𝑖
(𝑙)

 is in a 

disjunctive normal form (specifically, in a Blake 

canonical form), with the inputs being the virtual 

nodes: 

𝑓𝑖
(𝑙)

= (𝑣𝑗1

(𝑙1)
 𝑎𝑛𝑑 𝑣𝑗2

(𝑙2)
 𝑎𝑛𝑑 …  𝑎𝑛𝑑 𝑣𝑗𝑐1

(𝑙𝑐1)
) 

𝑜𝑟 (𝑣𝑗𝑐1+1

(𝑙𝑐1+1)
 𝑎𝑛𝑑 𝑣𝑗𝑐1+2

(𝑙𝑐1+2)
 𝑎𝑛𝑑 …  𝑎𝑛𝑑  𝑣𝑗𝑐2

(𝑙𝑐2)
)  𝑜𝑟 … 

In addition, if for a network state subset 𝑃 ⊂ Σ, 

𝑓𝑖
(l)

|𝑃 = 1  regardless of the states of the other 

nodes, then the disjunctive normal form of 𝑓𝑖
(𝑙)

 

must have at least one conjunctive clause equal to 

1 when evaluated under this partial state P.  

 

Definition of the expanded network 

The expanded network is a graph embodiment 

of the virtual nodes and their regulatory functions. 

The nodes of the expanded network consist of 

virtual nodes  𝑣
𝑖

(𝑙𝑗)
, 𝑖 = (1,2, … , 𝑁), 𝑗 =

(1,2, … , 𝑚𝑖)  and composite nodes (which 

represent ‘and’ rules)  𝑣𝑘
(𝑐𝑜𝑚𝑝)

, (𝑖 = 1,2, … , 𝐾) , 

where K is the total number of ‘and’ rules used in 

the functions. The edges of the expanded network 

can be one of two types: edges from virtual or 

composite nodes to virtual nodes (which are 

aggregated with ‘or’ rules); and edges from virtual 

nodes to composite nodes (which are aggregated 

with ‘and’ rules). One can think of virtual nodes 

as having a function that contains only the 

Boolean operator ‘or’:  𝑓𝑖
(𝑙)

= 𝐼1 𝑜𝑟 𝐼2 𝑜𝑟 … , 

where the I’s are inputs of the virtual node in the 

expanded network, including both virtual nodes 

and composite nodes. The composite nodes can be 

treated as having only the Boolean operator ‘and’: 

𝑓𝑖
(𝑐𝑜𝑚𝑝)

= 𝐼1 𝑎𝑛𝑑 𝐼2 𝑎𝑛𝑑 …. , where the I’s are 

the inputs (virtual nodes) of the composite node. 

An example is provided in Sec. II E.  

We define a sufficient regulator of a virtual 

node A as either a virtual node connected directly 

to A, or a composite node together with all of its 

input virtual nodes. Thus a sufficient regulator 

may be a group of virtual nodes.  

 

Definitions of motifs  

A stable motif is defined as a strongly-

connected-component (SCC) of the expanded 

network that satisfies:  

(1) If  𝑣𝑖
(𝑙)

 is in the SCC, then any 𝑣𝑖
(𝑘)

, (𝑘 ≠ 𝑙) 

is not in the SCC. 

(2) If  𝑣𝑘
(𝑐𝑜𝑚𝑝)

 is in the SCC, then all of its inputs 

are in the SCC. 

An oscillating motif is defined as a strongly-

connected-component (SCC) of the expanded 

network that satisfies:  

(1) There exists a  𝑣𝑖
(𝑙)

 in the SCC such that at 

least one of its sibling nodes, say 𝑣𝑖
(𝑘)

, (𝑘 ≠
𝑙) is also in the SCC. 

(2) If  𝑣𝑘
(𝑐𝑜𝑚𝑝)

 is in the SCC, then all of its inputs 

are in the SCC. 

These motifs are described and illustrated in Sec. 

II F and G. 

We also define a self-sufficient motif as an SCC 

in the expanded network that satisfies: If  𝑣𝑘
(𝑐𝑜𝑚𝑝)

 

is in the SCC, then all of its inputs are in the SCC. 

The intuition of this SCC is that it is a self-

sustaining feedback loop. Stable motifs and 

oscillating motifs are special self-sufficient motifs, 

with extra requirements in the states involved in 

the motif.  

It is important to note that both stable motifs 

and oscillating motifs correspond to SCCs in the 

original network. Stable motifs are SCCs in which 

all cycles are positive. Oscillating motifs contain 

negative cycles. These negative cycles may only 

be apparent when considering the specific 

regulatory functions. 

In analogy to source nodes (i.e. nodes that do 

not have incoming edges), we call an SCC a 

source SCC if there are no nodes other than the 

nodes of the SCC that can reach the source SCC 

through directed paths. 

 

There is a one-to-one correspondence 

between stable motifs and partial fixed points 

We define a partial fixed point (or partial steady 

state), as a set of nodes and associated states in 

which the nodes stabilize regardless of the rest of 

the network. Note that this definition expresses a 



 

 

stricter condition than a set of nodes whose states 

stabilizes in a certain context (which depends on 

the rest of the network).   

 

We show that each stable motif corresponds to 

a partial fixed point of the system, and that each 

partial fixed point corresponds to a stable motif.  

Proposition 1. A stable motif corresponds to a 

fixed point of the nodes that participate in the 

motif, i.e. the states of the nodes of the stable motif 

remain the same regardless of the state of the other 

nodes. Formally, 

Let 𝑀 =

(𝑣𝑗1

(𝑙1)
, 𝑣𝑗2

(𝑙2)
, … , 𝑣𝑗𝑘

(𝑙𝑘)
, 𝑣𝑚1

(𝑐𝑜𝑚𝑝)
, 𝑣𝑚2

(𝑐𝑜𝑚𝑝)
, … , 𝑣𝑚𝐿

(𝑐𝑜𝑚𝑝)
)

 be a stable motif where 𝑣𝑗1

(𝑙1)
, 𝑣𝑗2

(𝑙2)
, … , 𝑣𝑗𝑘

(𝑙𝑘)
 are 

virtual nodes and 𝑣𝑚1

(𝑐𝑜𝑚𝑝)
, 𝑣𝑚2

(𝑐𝑜𝑚𝑝)
, … , 𝑣𝑚𝐿

(𝑐𝑜𝑚𝑝)
 

are composite nodes. Let 𝑃 = (𝜎𝑗1
= 𝑙1, 𝜎𝑗𝑘

=

𝑙𝑘 , … , 𝜎𝑗𝑘
= 𝑙𝑘) be a partial system state. Then for 

any system state  𝛴𝑃  with  𝜎𝑗𝑖
= 𝑙𝑖 , we 

have 𝑓𝑗𝑖

(𝑙𝑘)
(𝛴𝑃) = 𝛿𝑖𝑘. 

Sketch of proof: We first show that 𝑓𝑗𝑖

(𝑙𝑖)
(Σ𝑃) =

1 . By definition of a stable motif, each virtual 

node’s function must have a conjunctive clause 

(implicant) that consists of either of the following: 

(1) a virtual node of the same stable motif; or (2) 

a composite node whose inputs consists only of 

virtual nodes of the same stable motif. This 

implicant will be 1 when  𝑓𝑗𝑖

(𝑙𝑖)
(Σ𝑃) is evaluated, 

fixing the value 𝑓𝑗𝑖

(𝑙𝑖)
(Σ𝑃) = 1. Then  𝑓𝑗𝑖

(𝑙𝑘)
(Σ𝑀) =

0 ∀𝑘 ≠ 𝑖 is trivially true because the functions of 

sibling nodes must satisfy:  𝑓𝑗
(𝑘)

(Σ)𝑓𝑗
(𝑙)

(Σ) =

0 ∀𝑘 ≠ 𝑙.  
 

Proposition 2. (Reverse of proposition 1) For 

any partial fixed point of the system, i.e. a set of 

node states where updating any involved node 

gives back the same state for the node, there is a 

set of stable motifs that correspond to it. Formally, 

Let 𝑃 = (𝜎𝑗1
= 𝑙1, 𝜎𝑗𝑘

= 𝑙𝑘 , … , 𝜎𝑗𝑘
= 𝑙𝑘)  be a 

partial system state such that 𝑓𝑗𝑖

(𝑙𝑖)
(𝛴𝑃) = 1, ∀𝑗𝑖 . 

Then (1) there exists a set of stable motifs {𝑀𝑛} 

where each stable motif contains only nodes from 

{𝑣𝑗𝑖

𝑙𝑖}, 𝑖 = 1, … , 𝑘 as virtual nodes; (2) the nodes 

specified in P but not in nodes of {𝑀𝑛}  are 

downstream of the nodes of {𝑀𝑛}.  

 

Sketch of proof: From the disjunctive normal 

form of the functions,  𝑓𝑗𝑖

(𝑙𝑖)
(Σ𝑃) = 1 means that at 

least one of the conjunctive clauses of each 

function is 1, and consists of virtual nodes 

specified in P. Then one can create a sub-network 

of the expanded network, whose nodes are these 

virtual nodes as well as composite nodes 

representing conjunctive clauses; and edges are 

added if a virtual node or composite node is an 

input in a virtual node’s function, or if a virtual 

node is an input of a composite node. Since each 

virtual node in this sub-network has at least one 

input within the sub-network, there exists at least 

one SCC. This SCC(s) is/are the stable motif(s) we 

are looking for.  

 

Stable and oscillating parts of complex 

attractors  

A complex attractor of the whole system 

consists of a set of states that the system keeps 

revisiting. When considering the states visited by 

each node in a complex attractor, there may be a 

subset of nodes whose state remains the same. We 

call these nodes stabilized nodes. The remaining 

nodes (potentially, all nodes) will oscillate, 

meaning that they will keep revisiting all, or 

possibly a subset, of their states. We will call these 

nodes oscillating nodes. In the following two 

propositions we establish the relationships 

between these nodes.  

Proposition 3. Stabilized nodes in an attractor 

can be downstream of stabilized nodes or 

downstream of oscillating nodes.  

Let 𝐴 be an attractor of a multi-level dynamical 

system under general asynchronous update, and 

let 𝑆 and 𝑂 be the stabilized and oscillating nodes, 

respectively. If 𝑣𝑠 ⊂ 𝑆  and 𝑙𝑠  is the node’s 

stabilized value, then one of the following holds: 

(1) one of the conjunctive clauses of 𝑓𝑠
(𝑙𝑠)

 depends 

only on nodes of 𝑆 in 𝐴; if (1) is not true, then (2) 

𝑓𝑠
(𝑙𝑠)

 and the function of at least one sibling 

node  𝑓𝑠
(𝑘𝑠)

, 𝑘𝑠 ≠ 𝑙𝑠  have at least one conjunctive 

clause dependent on the nodes in O.  

The first case is self-evident. An example for 

the second case is a network with Boolean nodes, 

A, B and C: 

 𝑓𝐴
(0)

= (𝐴1 or 𝐵1) 𝑎𝑛𝑑 𝐶0, 

 𝑓𝐴
(1)

= 𝐴0 𝑎𝑛𝑑 𝐵0 𝑜𝑟 𝐶1, 

 𝑓𝐵
(0)

= (𝐴1 or 𝐵1) 𝑎𝑛𝑑 𝐶0, 

 𝑓𝐵
(1)

= 𝐴0 𝑎𝑚𝑑 𝐵0 𝑜𝑟 𝐶1,  

 𝑓𝐶
(0)

= 𝐵0 𝑎𝑛𝑑 𝐶0 𝑜𝑟 𝐴0 𝑎𝑛𝑑 𝐶0,  

 𝑓𝐶
(1)

= (𝐴1 𝑎𝑛𝑑 𝐵1) 𝑜𝑟 𝐶1,  

where for simplicity the virtual nodes are denoted 

Xi, X={A,B,C} instead of Xi. This network has an 

oscillating attractor with A and B oscillating and 



 

 

C stabilized at 0. C is stabilized despite being 

regulated by nodes that oscillate. It does not satisfy 

(1) in the proposition; instead, 𝑓𝐶
(0)

 and 𝑓𝐶
(1)

 

satisfy (2) in the proposition.  

 

Proposition 4. Oscillating nodes in an attractor 

must be downstream of oscillating nodes. 

Let 𝐴 be an attractor of a multi-level dynamical 

system under general asynchronous update, and 

let 𝑆 and 𝑂 be the stabilized and oscillating nodes, 

respectively. If 𝑣𝑂 ⊂ 𝑂  and 𝑙𝑂1
, 𝑙𝑂2

, … , 𝑙𝑂𝑘
  are 

the oscillating states, then the following holds: 

none of the conjunctive clauses of 𝑓𝑂𝑖

(𝑙𝑂𝑖
)
, (𝑖 =

1,2, … , 𝑘)  depends only on nodes of  𝑆  in  𝐴 ; or 

alternatively, all functions 𝑓𝑂𝑖

(𝑙𝑂𝑖
)
, (𝑖 = 1,2, … , 𝑘) 

have at least one conjunctive clause dependent on 

state of nodes in O.  

The proof for proposition 4 is straightforward.  

 

Iterative stable motif based network reduction 

conserves the attractors of the system  

We proceed to the proof of conservation of 

attractors during iterative network reduction by 

stating three lemmas.  

Lemma 1. Construction of the stabilized 

set  𝑆𝑟𝑒𝑑  that corresponds to at least one stable 

motif 

Let 𝐴 be an attractor of a multi-level dynamical 

system under general asynchronous update, and 

let 𝑆 and 𝑂 be the stabilized and oscillating nodes, 

respectively. If there is a partial fixed point in A, 

then: there exists a set of nodes 𝑆𝑟𝑒𝑑 ⊂ 𝑆 such that 

in the expanded network representation there will 

be at least one stable motif composed only of 

virtual nodes of  𝑆𝑟𝑒𝑑  in A, or composite nodes 

composed of such nodes.  

Sketch of proof: Each stabilized node in S 

corresponds to a function 𝑓S
(ls)

. By Proposition 3, 

we can divide S into nodes whose functions have 

a conjunctive clause that depends only on node 

states (virtual nodes) specified in S, denoted 𝑆0, 

and nodes that have at least one conjunctive clause 

in their rule dependent on the states of nodes in O, 

denoted 𝑆𝑜𝑠𝑐. Let 𝑆1 ⊂ 𝑆0 be the nodes that have 

at least one conjunctive clause dependent only on 

nodes’ states specified in 𝑆0. Let 𝑆2 ⊂ 𝑆1 be the 

nodes that have at least one conjunctive clause 

dependent only on node states specified in 𝑆1. One 

can do this iteratively until 𝑆𝑖𝑚𝑎𝑥
= 𝑆𝑖𝑚𝑎𝑥+1, and 

denote 𝑆𝑟𝑒𝑑 = 𝑆𝑖𝑚𝑎𝑥
. Since there exists a partial 

fixed point, 𝑆𝑟𝑒𝑑 will contain nodes in the partial 

fixed point and will not be an empty set. The 

iterative selection guarantees that 𝑆𝑟𝑒𝑑  does not 

depend on oscillating nodes or nodes influenced 

by oscillating nodes. And since the function of 

each node in  𝑆𝑟𝑒𝑑  contains at least one 

conjunctive clause dependent only on nodes 

in 𝑆𝑟𝑒𝑑 itself, there is at least one SCC in  𝑆𝑟𝑒𝑑 and 

this SCC satisfies the definition of a stable motif.  

 

Lemma 2. Network reduction based on stable 

motifs stabilizes the nodes in 𝑆𝑟𝑒𝑑 

Let 𝑆𝑟𝑒𝑑 ⊂ 𝑆 be the set of nodes constructed in 

Lemma 1. Then (1) Network reduction based on 

stable motifs composed only of nodes from 𝑆𝑟𝑒𝑑 

can only stabilize nodes in 𝑆𝑟𝑒𝑑. Moreover, (2) if 

a node i in 𝑆𝑟𝑒𝑑 stabilizes during the reduction, it 

has to stabilize at its state specified in A; if a node 

i does not stabilize during the reduction, then after 

the reduction, its function  𝑓𝑖
(𝑙𝑠)

, where 𝑙𝑠 is the 

node’s stabilized state in A, must have a 

conjunctive clause that depends only on nodes’ 

states specified in 𝑆𝑟𝑒𝑑 in A that did not stabilize 

during reduction.  

Sketch of proof: We first prove (1) by showing 

that the other nodes, i.e. nodes in S0 − 𝑆𝑟𝑒𝑑  and 

𝑆𝑜𝑠𝑐, cannot stabilize from stable motifs composed 

only of nodes from  𝑆𝑟𝑒𝑑 . This statement is 

straightforward from the definitions of  S0 − 𝑆𝑟𝑒𝑑 

and  𝑆𝑜𝑠𝑐 . Nodes in  S0 − 𝑆𝑟𝑒𝑑  do not have any 

conjunctive clauses that depend only on nodes’ 

states from 𝑆𝑟𝑒𝑑 , otherwise the nodes would be 

in 𝑆𝑟𝑒𝑑. According to Proposition 3, nodes in 𝑆𝑜𝑠𝑐 

do not have any conjunctive clauses that depend 

only on nodes’ states from  𝑆𝑟𝑒𝑑 . Therefore 

reduction based on stable motifs composed only of 

nodes from 𝑆𝑟𝑒𝑑 is not sufficient to stabilize these 

nodes. To show (2), consider the iterative process 

of reduction by plugging in the stabilized nodes’ 

states. One starts with a chosen SCC in 𝑆𝑟𝑒𝑑, and 

then nodes with at least one conjunctive clause 

depending only on nodes states from 𝑆𝑟𝑒𝑑  will 

stabilize in their value in A. When this reduction 

is applied iteratively until it cannot be done 

anymore, the resulting  𝑆𝑟𝑒𝑑  contains only non-

stabilized nodes, whose functions do not have any 

dependence on the reduced nodes. Then these 

functions must have a conjunctive clause that 

depends only on nodes’ states specified in 𝑆𝑟𝑒𝑑 in 

A that did not stabilize during reduction.  

 

Lemma 3. In a system/reduced system with no 

stable motifs, all nodes are influenced by 

oscillating nodes.  

Let 𝐴 be an attractor of a multi-level dynamical 

system under general asynchronous update, and 



 

 

let 𝑆 and 𝑂 be the stabilized and oscillating nodes, 

respectively. Let  𝑆𝑟𝑒𝑑 ⊂ 𝑆  be the set of nodes 

constructed in Lemma 1. Assume  𝑆𝑟𝑒𝑑  is empty 

and O is not empty. Then in the original system, 

all nodes in O and S must all be a part of, or 

downstream of, a set of source SCCs, each of 

which contains at least one oscillating motif. 

Moreover, the oscillating motifs will contain the 

virtual nodes corresponding to all the states 

visited by the oscillating nodes. 

Sketch of proof: We can assume that there are 

no source nodes in the network corresponding to 

the dynamical system, because if there are any, 

one can reduce them and substitute their values of 

the source nodes into the regulatory functions of 

their downstream nodes. The network contains 

one or more source SCCs. Then, any source SCC 

in the network must contain at least one oscillating 

node, otherwise this source SCC would contain 

only stabilized nodes, meaning a non-empty 𝑆𝑟𝑒𝑑.  

We then show that any of these source SCCs 

corresponds to at least one oscillating motif in the 

expanded network. Suppose that a pair of sibling 

virtual nodes 𝑣1
(𝑙1)

, 𝑣1
(𝑙2)

  correspond to an 

oscillating node 𝑣1 in the source SCC. Since it is 

a source SCC, all regulators of 𝑣1 are from this 

SCC, and 𝑣1 regulates at least one other node from 

this SCC. Consider the expanded network 

around  𝑣1
(𝑙1)

. We construct an oscillating motif 

candidate starting with marking its regulators and 

selected targets. First we mark all inputs of 𝑣1
(𝑙1)

, 

including inputs directly connected to  𝑣1
(𝑙1)

 and 

inputs connected to 𝑣1
(𝑙1)

 via composite nodes. All 

marked virtual nodes correspond to nodes in the 

source SCC. Then we mark the target virtual nodes 

of  𝑣1
(𝑙1)

 that satisfy: (1) the target is regulated 

directly by 𝑣1
(𝑙1)

 or via one composite node; (2) the 

target corresponds to a node in the source SCC. 

We iteratively continue this marking process for 

all marked virtual nodes. Since in each step only 

virtual nodes corresponding to nodes in the source 

SCC are marked, and each node marked must have 

at least one regulator and one selected target, we 

will obtain an SCC in the expanded network all of 

whose virtual nodes correspond to the source SCC 

in the original graph. Because we started the 

process in a source SCC in the original network, if 

a composite node is marked, all of its inputs will 

satisfy the marking condition, and will be marked 

as well. We refer to this SCC in the expanded 

network as the expanded motif, and will show that 

it can be used to construct an oscillating motif. 

Notice that for both 𝑣1
(𝑙1)

 and  𝑣1
(𝑙2)

, one can 

construct the corresponding expanded motif, 

respectively. Because this pair of virtual nodes 

represents oscillating states under a general 

asynchronous complex attractor, they must be 

connected to each other, otherwise they cannot 

oscillate. Thus their expanded motifs are strongly 

connected, and can be merged to obtain a larger 

strongly connected motif that includes both 𝑣1
(𝑙1)

 

and 𝑣1
(𝑙2)

. In cases where more than two virtual 

nodes corresponding to the same node are 

involved in an oscillation, the same merging can 

be applied, and it similarly results in a single 

expanded motif. This merging can be done for 

each pair of oscillating sibling nodes. The 

resulting merged motif is an oscillating motif, 

because the marking process guarantees that all 

inputs of composite nodes are marked; and the 

merging guarantees that at least two states of 

oscillating nodes are marked. In addition, all 

oscillating virtual nodes in the oscillation are 

marked, i.e. the oscillating motif covers all the 

oscillating states of each oscillating node in the 

oscillation.  

Therefore, after the reduction of stable motifs, 

in a reduced network any source SCC corresponds 

to at least one oscillating motif, and all nodes in 

the expanded network are either part of an 

oscillating motif or downstream of an oscillating 

motif.  

Remark: It is worth pointing out that complex 

attractors of a dynamic model depend on the 

update scheme. Some complex attractors only 

exist if a specific update scheme is imposed (see 

Appendix D1). Therefore, a timing-independent 

method like ours is not able to find candidates of 

all complex attractors, but only candidates for 

timing-independent complex attractors, i.e. 

complex attractors under asynchronous update. In 

the proof of Lemma 3, this is reflected by the 

condition “Because this pair of virtual nodes 

represents oscillating states under a general 

asynchronous complex attractor, they must be 

connected to each other, otherwise they cannot 

oscillate.” Everything else in the proof applies for 

arbitrary update schemes. In addition, the actual 

oscillation may be different from the 

corresponding oscillating motifs, so no exact 

conclusions can be made regarding nodes 

downstream of an oscillating motif.  

 

The following theorem is the main result of this 

section, and it combines the results of Lemma 1, 2, 

and 3. It shows that for every attractor of the 



 

 

system, our motif-based method will find a 

corresponding quasi-attractor in which:  

(1) The state of the nodes in 𝑆𝑟𝑒𝑑 is the same as in 

the attractor 

(2) There is at least one oscillating motif that 

corresponds to the oscillating part of each 

complex attractor.  

 

Theorem 1. Conservation of attractors in motif 

reduction 

Let 𝐴 be an attractor of a multi-level dynamical 

system under general asynchronous update, and 

let 𝑆 and 𝑂 be the stabilized and oscillating nodes, 

respectively. Let  𝑆𝑟𝑒𝑑 ⊂ 𝑆  be the set of nodes 

constructed in Lemma 1. Then, there exists a set of 

stable motifs such that, by applying network 

reduction, all the nodes in  𝑆𝑟𝑒𝑑  will stabilize in 

their steady state in A, while the rest of the nodes 

will be part of the final reduced network. This final 

reduced network will be such that all nodes in O 

and S must all be a part of, or downstream of a set 

of source SCCs, each of which contains at least 

one oscillating motif. Moreover, the oscillating 

motifs will contain the virtual nodes 

corresponding to all the states visited by the 

oscillating nodes. 

 

Sketch of proof: Using Lemma 2, the network 

obtained after reducing any stable motif composed 

only of the corresponding states of 𝑆𝑟𝑒𝑑 in A will 

have a new 𝑆𝑟𝑒𝑑 containing only the nodes in the 

previous  𝑆𝑟𝑒𝑑  that did not stabilize. One can 

iteratively plug in the stable motifs until 𝑆𝑟𝑒𝑑  is 

empty. Because of Lemma 1, there is always a 

stable motif as long as 𝑆𝑟𝑒𝑑  is not empty. In the 

reduction process only nodes in 𝑆𝑟𝑒𝑑 can stabilize. 

By Lemma 3, the source SCCs in the resulting 

reduced network contains oscillating motifs that 

cover all virtual nodes corresponding to oscillating 

states of oscillating nodes.  

 

Finally we list some straightforward corollaries 

of the theorem that help demonstrate the 

properties of attractors.  

Corollary 1. If a multi-level dynamic system 

does not have oscillating motifs in its expanded 

network, the system does not have complex 

attractors. 

Corollary 2. If a multi-level system does not 

have fixed point attractors, it must have at least 

one oscillating motif. 

Corollary 3. A quasi-attractor can correspond 

to multiple complex attractors. Examples in 

Appendix D illustrate this corollary.  

 

 

Appendix D. Oscillating Motif Examples 

Here we illustrate certain properties of 

oscillating motifs with examples. Because certain 

regulatory relationships between nodes are non-

monotonic (their sign depends on the node state), 

for simplicity we use the same type of arrow for 

all edges. For better visualization, we omitted the 

names of composite nodes in complicated 

expanded networks.  

 

1. Timing-dependent complex attractor 

Figure 9 shows an example of a dynamical 

system with different attractors under different 

update schemes.  

In synchronous update al nodes are updated 

simultaneously, thus state transitions are 

deterministic. Each state has only one successor 

(i.e. each node of the state transition graph has a 

single outgoing edge). In the state transition graph 

corresponding to general asynchronous update, a 

given state has as many potential state transitions 

as many nodes there are in the system (because 

each node has a chance to be updated). 

In this example a complex attractor exists for 

synchronous update, but not for general 

asynchronous update. This complex attractor is 

induced by positive feedback, not negative 

feedback, and requires that nodes A and B are 

updated at exactly the same time. So it is timing-

dependent and will not be preserved under 

fluctuations in timing. This type of timing-

dependent complex attractor will not be identified 

by our motif-based method. 

 
FIG. 9. An example of a timing-dependent complex 

attractor. (A) The network and regulatory functions. (B) 

The state transition graph under synchronous update. 

Each node of the state transition graph is a state, given 

in the order A, B, and each edge is a state transition 

allowed by synchronous update. The system has two 

fixed points, (0,0) and (1,1). It also has a complex 

attractor formed by the states (0,1) and (1,0). (C) The 

state transition graph under general asynchronous 



 

 

update (i.e. when one node is updated at a time). Only 

the two fixed point attractors exist. The synchronous 

complex attractor is timing-dependent and does not 

exist in this update scheme.  
 

2. The existence of an oscillating motif does 

not guarantee the existence of a complex 

attractor 

Figure 10 demonstrates a simple example 

where the oscillating motif corresponds to a 

transient oscillation, which will converge into a 

fixed point attractor.  

 
FIG. 10. An example of an oscillating motif without a 

complex attractor. (A) The network and regulatory 

functions. (B) The expanded network and motifs. There 

is a stable motif formed by A0 and B0, and an 

oscillating motif made up by A1, A2, B1. (C) The state 

transition graph using general asynchronous update. 

There is only one attractor, which is a fixed point. The 

transient oscillation between states (2,1) and (1,1) will 

eventually converge into the fixed point.  
 

3. Oscillating nodes can have stabilized 

downstream nodes 

Figure 11 shows a Boolean example adapted 

from  [30] in (A)(B) and a multi-level example in 

(C). In the system on Figure 11(A), nodes A and 

B do not visit the state A=1, B=1 unless starting 

from there, which causes the stabilization of C=0. 

Such situations are expected to be more common 

in multi-level systems than in Boolean systems. In 

the system of Figure 11(C) the regulator node A 

has more states than the regulated node B, thus the 

oscillation in A does not affect B This situation is 

expected to be observed in biological systems.  

 

 
FIG. 11. Examples of stabilized nodes downstream of 

oscillating node(s). (A) A Boolean example where A 

and B oscillate but their downstream C is stable under 

that oscillation. (B) The general asynchronous state 

transition graph of nodes A and B. The state (A=1,B=1) 

is not visited in the long term, leading to the 

stabilization of C=0. (C) A multi-level example where 

A is oscillating between 1 and 2, leading to B 

stabilizing at 1. This example arises because of 

asymmetry in the nodes’ number of states: A has three 

states but B only has two states.  

 

4.  Co-existence of a fixed point and a complex 

attractor 

If a dynamical system has input variables 

(source nodes with sustained states), it can have a 

different attractor for different values of the input 

variables. Here we consider a dynamical system 

with a given choice of input variables, or 

equivalently, no input variables. Co-existence of a 

fixed point attractor and a complex attractor for 

such a system is possible but rare in Boolean 

systems. Zañudo et al. [30] referred to this 

situation as  unstable oscillation. We reproduce the 

example given in as Figure 12. Notice that the 

nodes involved in the two attractors share node 

states, i.e. A is fixed at 1 in the fixed point attractor, 

but also enters state 1 in the complex attractor. In 

multi-level dynamical systems the fixed point and 

complex attractor do not need to share node states 

(see Figure 5 and Figure 6 in section II-G). Thus 

we expect that coexistence of (potentially multiple) 

fixed point(s) and complex attractor(s) is more 

frequently observed. 



 

 

 
FIG. 12. An example of an unstable oscillation. The 

system has a fixed point and a complex attractor. (A) 

The network and regulatory functions. (B) The 

expanded network and motifs. The entire expanded 

network forms an oscillating motif, containing the 

stable motif by two nodes A1, B1, and one composite 

node. (C) The state transition graph using general 

synchronous update. There is a fixed point attractor 

A=1, B=1, and a complex attractor. Note that in the 

complex attractor, although both A and B are allowed 

to enter state 1, they cannot be in state 1 simultaneously.  
 

 

5. One oscillating motif can correspond to 

multiple attractors 

  Figure 12 also illustrates that the same 

oscillating motif can correspond to multiple 

attractors, in this case a complex attractor and a 

fixed point. In multi-level cases, multiple complex 

attractors can also be found within the same 

oscillating motif. Figure 13 shows such an 

example. Combined with the property that an 

oscillating motif does not guarantee a complex 

attractor, the conclusion is that there is no exact 

match between the actual number of complex 

attractors and the number of quasi-attractors found, 

i.e. there may be more actual attractors than quasi-

attractors found, and there may be less actual 

attractors than quasi-attractors found.  

 

 
FIG. 13. An example of an oscillating motif containing 

two complex attractors. (A) The network and 

regulatory functions. (B) The expanded network and 

motifs. The entire expanded network forms an 

oscillating motif. (C) The state transition graph. For 

simplicity self-loops representing self-transitions are 

not shown in the graph. There are two complex 

attractors, the first attractor is B=0, A=0 or 1, and the 

second attractor is B=1, A =2 or 3.  

 

Appendix E. Generation of regulatory 

functions in synthetic networks 

Here we describe how we randomly generated 

regulatory functions among those consistent with 

the number of regulators and number of states for 

each node.  

In the network generation part, each node’s 

regulators are generated. In the benchmarks, we 

generated networks where each node has two 

input nodes. For each target node, we assign to 

each combination of different states of the 

regulator nodes a randomly selected state of the 

target node. For example, if Boolean target node 

A is regulated by Boolean nodes B and C, each of 

the four state combinations of B and C will be 

randomly assigned to either the function of A0 or 

A1. Different input combinations assigned to the 

same target state will be separated by an ‘or’ 

operator. For example, combinations B0 C0 and 

B1 C0 are assigned to A0, then the function of A0 

is just fA
(0) = (B0 and C0) or (B1 and C0). If at the 



 

 

end of the assignment a target state did not get any 

assigned combination, this function is ineffective, 

and we discard all the functions of this target node 

and start over to generate a new set of functions. 
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