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We show that stability of planetary systems is intimately connected with their internal order. An
arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either
collide or are ejected from the planetary system. These instabilities are a fundamental consequence
of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions.
To ensure stability over astronomical time scale of a realistic planetary system – in which planets
have masses comparable to those of planets in the solar system – the motion must be quasi-periodic.
A dynamical mechanism is proposed which naturally evolves a planetary system to a quasi-periodic
state from an arbitrary initial condition. A planetary self-organization predicted by the theory is
similar to the one found in our solar system.

INTRODUCTION

Stability of solar system has been a subject of great
debate since the time that Isaac Newton first wrote his
famous law of universal gravitation [1]. Newton realized
that the interaction between planets will perturb their or-
bits from a simple elliptical shape postulated by Kepler.
Over millions of years this small perturbations will accu-
mulate leading to catastrophic events such as collisions
between planets or ejection of planets from the solar sys-
tem [2]. Newton’s solution to this difficulty was to invoke
Divine Intervention in which God would adjust the plan-
etary orbits to keep the solar system stable. Newton’s
contemporary, Leibnitz, objected strongly to Newton’s
theological solution: “Was God an inferior watchmaker,
he demanded, who could not get things right from the
beginning?” [3] Over the centuries the question of stabil-
ity has attracted attention of both physicists and mathe-
maticians, without a definite solution. An apparently un-
related puzzle is a seeming regularity of spacing of plan-
etary orbits [4], see Fig. 1. In 1766 Titius noticed that
the orbits of then known planets followed a geometric se-
quence, if a “missing” planet was inserted between Mars
and Jupiter [5]. Subsequent discovery of the asteroid belt
and of Uranus at the positions predicted by the Titius-
Bode “law” gave further credence to the belief that there
is a hidden order in the solar system. The modern ver-
sion of the Titius-Bode law can be written as rn = r01.7

n,
with n = 1 being Mercury, n = 2 Venus, n = 3 Earth,
etc., see Fig. 1. The normalization r0 = 0.2294 A.U. was
chosen so that n = 1 corresponds exactly to the orbit of
Mercury in Astronomical Units (A.U.) [6].

In this paper we will show that stability of planetary
systems is intimately connected with their internal order.
The dynamical simulations demonstrate that a generic
arrangement of planets is unstable to small perturbations
resulting from interplanetary interactions which lead to
catastrophic events. We argue that a planetary system
will remain stable over astronomical time scales only
if its dynamics is quasi-periodic. Indeed various near-

commensurabilities have been observed for satellites and
planets in the solar system [7, 8] and already in 1970
Hill suggested that there is a dynamical origin to the
Titius-Bode law [9]. In this paper we will argue that
a specific requirement of quasi-periodicity results in a
planetary distribution almost identical to the one ob-
served in the solar system. Furthermore, we will pro-
vide a dynamical mechanism that leads to spontaneous
self-organization of a planetary system into a periodic
state. This is different from other approaches used pre-
viously to explain mass distribution in the solar system
which rely either on statistics or hydrodynamic instabil-
ities [6, 10–12]. Even if such approaches can account for
geometrical progression of planetary distances, they can
not explain stability of planetary systems. The Titius-
Bode law is not a condition of stability, but rather a
consequence of self-organization, as will be demonstrated
in the present paper. Finally we should mention that
according to Kolmogorov-Arnold-Moser (KAM) theorem
there is a dense set of initial conditions for a many body
gravitational system that lead to a stable quasi-periodic
trajectories. However, as was already demonstrated by
Henon in 1966, the KAM stability only applies to plane-
tary systems with unrealistically small planetary masses
of less than 10−320 of solar mass [13]. A generic initial
condition for a realistic planetary system will, therefore,
result in a chaotic dynamics, such that in the infinite time
limit planets will either collide or will be ejected from the
system.

THEORY

The stability of planetary systems is an outstanding
problem. Since Newton’s gravitational potential is bound
from above and is unbound from below [14, 15], orbits of
planets are in general unstable – some planets can gain
enough kinetic energy to escape altogether from the plan-
etary system [16], while others will fall into sun or collide
with each other, see Fig. 2. This type of instability driven
by chaos and Arnold diffusion [17], is a fundamental char-
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FIG. 1. Mean radii of planets in our solar system on a semi-
log scale: (Me) Mercury, (V) Venus, (E) Earth, (Ma) Mars,
(Ast) Asteroid belt, (J) Jupiter, (S) Saturn, (U) Uranus, (N)
Neptune, (P) Pluto. Straight line is the modern version of
Titius-Bode law.

acteristic of many body celestial dynamics. On the other
hand it is possible to find very special initial conditions
— correspond to a set of measure zero, since KAM theo-
rem does not apply to realistic planetary systems [13] —
for which the dynamics of a non-linear interacting sys-
tem is purely periodic. This periodic solutions will per-
sist indefinitely, with the relative configuration of planets
repeating itself after a synodic period of time T . The fun-
damental difficulty is to obtain initial conditions which
lead to periodic dynamics of a fully interacting gravita-
tional system. Furthermore, since the probability that a
planetary system will be “born”with planets at precisely
the correct positions is highly improbable, there must be
a mechanism that makes a planetary system evolve to-
wards a stable periodic orbit. Motivated by the theories
of control of chaos [19, 20], we suggest that periodic or-
bits can be stabilized by energy non-conserving pertur-
bations [21]. Such perturbations could have originated
from the interaction of newborn planetesimals with the
gas and dust of the protoplanetary disk. The angular
frequency of dust particles at a distance r from the star
has a simple Keplerian form [22, 23]

ω(r) =

√

GM

r3
, (1)

whereM is the star mass and G is Newton’s gravitational
constant. For concreteness we will take the star mass to
be that of our sun and will measure all the distances in
astronomical units and time in earth years. To simplify
the calculations we will suppose that all the planetary
orbits are restricted to the ecliptic plane and all planets
have the same mass m. To speed up the simulations we
will take the planetary mass m to be a few times that of
Jupiter. We will see, however, that our conclusions do
not depend on the planetary mass as long as it is much

0.0 0.5 1.0 1.5

TIME (10
4
 EARTH YEARS)

0

200

400

600

O
R

B
IT

A
L

 R
A

D
IU

S
 (

A
.U

.)

FIG. 2. Radial coordinate evolution of 8 planets of mass
0.005M originally distributed uniformly between 1 and 8 A.U.
in their respective Keplerian orbits. After a short time we
start seeing catastrophic events (the almost vertical trajecto-
ries) in which planets begin to be ejected from the planetary
system. The resulting planetary system remains with only 2
planets.

smaller than the star mass.
Newton’s equations of motion for the coordinates x and

y of a planet i are

mẍi = −
GMmxi

r3i
−
∑

j

Gm2(xi − xj)

r3ij
− fθ

i

yi

ri
(2)

mÿi = −
GMmyi

r3i
−
∑

j

Gm2(yi − yj)

r3ij
+ fθ

i

xi

ri
,

where ri =
√

x2

i + y2i is the distance of i’th planet from

the star and rij =
√

(xi − xj)2 + (yi − yj)2 is the sepa-
ration between planet i and planet j. The purely angu-
lar force fff

θ
i = fθ

i θ̂θθ, where θ̂θθ is the unit angular vector,
is responsible for the interaction of a planet i with the
residual dust of the protoplanetary disk. Here we will
use a simple phenomenological expression for such non-
conservative force: if the angular velocity of a planet is
lower than the Keplerian velocity of the surrounding dust
in the same orbit, the planet will gain energy from dust; if
the planetary velocity is larger than the velocity of dust,
it will loose energy. The simplest possible mathematical
expression with this characteristic is:

fθ
i = −β

(

riω(ri)− vθi
)

[

L−m
∑

i

vθi ri

]

, (3)

where β is a small phenomenological constant which con-
trols the interaction between dust and planets, vdusti =
riω(ri) is the angular velocity of dust at the location of
planet i, and vθi is the angular velocity of the planet i,

vθi =
ẏixi − yiẋi

ri
. (4)
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The expression Eq. (3) is analogous to viscous dissi-
pation of an object in a rotating fluid. The term in
square brackets of Eq.(3) is included so that the non-
conservative force “turns off” when the net planetary an-
gular momentum reaches a predetermined value L. This
is designed to model a progressive depletion of dust/gas
from the protoplanetary disk which will result in a con-
tinuously decreasing value of fθ. In our simulations we
used β = 10−3 − 10−2 A.U.−2. To integrate the equa-
tions numerically we employed a Runge-Kutta algorithm
with adaptive time-step that uses embedded fifth order
and sixth order Runge-Kutta estimates to compute the
solution and the relative error [24]. To speed up the
simulation and avoid numerical instabilities the singular
form of the Newton’s gravitational potential between the
planets is regularized to,

V (r) = −
(2d3 − 2dr2 + r3)Gm2

d4
for r ≤ d (5)

V (r) = −
Gm2

r
for r > d ,

where d is an arbitrary short distance cutoff whose pre-
cise value does not affect our conclusions. In our simu-
lations we used d on the order of 10−3 A.U. With this
modification, we do not need to introduce any specific
“collision model”, since the integrator will have enough
resolution to deal with the fast dynamics resulting from
catastrophic planetary collisions. Indeed, the dynamics
of planets interacting through Eq. (5) can result in plan-
etary collision in which two or more trajectories merge
into one. We shall call such events “planetary coales-
cence”, which are analogous to non-elastic collisions. The
advantage of regularized Newton potential Eq.(5) is that
such singular events can be handled using the adaptive
step size Runge-Kutta integrator without any numerical
instabilities.
We stress that our goal is to find the simplest possible

mechanism that can drive a planetary system towards a
stable quasi-periodic state. During the formation of solar
system, more complicated gravitational, electromagnetic,
and collisional processes have certainly taken place. Here,
however, our aim is to provide a proof of concept that
energy non-conserving perturbation can drive a planetary
system into a self-organized quasi-periodic state. In the
simulations we observe that the angular force given by
Eq. (3) leads to a self-organized periodic state if β → 0
and t → ∞. In practice, however, the simulation time
is finite, so that β can not be too small. In Fig. 3 we
show the dynamical evolution described by Eqs. (2) of a
system with 3 planets, initially placed in Keplerian orbits
uniformly distributed from 1 A.U. to 3 A.U.
We see that the dynamics is very complex, but after

t = 104 years, this planetary system relaxes to a peri-
odic state with synodic period T = 1.6 years, in which
adjacent planetary orbits exhibit a perfect synchroniza-
tion, with the time between two consecutive perihelions
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FIG. 3. Temporal evolution of radial coordinates of 3 planets
under the action of Eqs. (3). The dynamics is very complex
with two of the planets switching their relative order in the
sequence.
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FIG. 4. Temporal evolution of the radial coordinates of the
3 planet system of Fig. 3 after a self-organized periodic state
has been established.

— anomalistic period — increasing in the ratio of 2:1,
see Fig. 4. The mean orbital distance of each planet
in this synchronized state follows the Titius-Bode law
rn ∼ 1.69n, see Fig. (5).

In Fig. 6 we show a periodic orbit to which a plane-
tary system with 4 planets evolves. From the figure we
see that the orbits of planets once again exhibit a perfect
synchronization, with the anomalistic period of adjacent
planets increasing in the ratio of 2:1. To make this ob-
servation more quantitative we define a radial and an
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FIG. 5. The mean radial distance from the star of three plan-
ets for different initial conditions (symbols), after the self-
organized periodic state is established. In all cases the final
planetary distribution follows the Titius-Bode law rn ∼ 1.69n,
shown by parallel lines.
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FIG. 6. Temporal evolution of radial coordinates of planets
in a self-organized periodic planetary system with 4 planets.
Note that the orbits of adjacent planets exhibit a perfect 2:1
synchronization.

angular winding numbers:

ωr
i = lim

t→∞

Nperi(t)

t
(6)

ωθ
i = lim

t→∞

Nθ(t)

t
,

where Nperi(t) is the number of times that the orbit of
planet i passes through a perihelion during a time inter-
val t, and Nθ(t) is the number of times that the planet i
completes a full rotation around the star. It is important
to keep in mind that because of the interplanetary grav-
itational attraction the dynamics is very complicated,

TABLE I. Normalized radial and angular winding numbers of
a 4 planet system.

Planet 1 2 3 4

ωr 1.000 2.000 4.000 8.000

ωθ 1.000 2.275 4.827 9.929
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FIG. 7. The mean radial distance of four planets from the
star, which agrees precisely with the Titius-Bode law, the
solid line.

with the orbit of a planet precessing around the star.
The planetary year, therefore, will not be equal to the
anomalistic period, amount of time between two consecu-
tive perihelions. This dichotomy is clearly demonstrated
by the normalized radial and angular winding numbers
(winding number of planet i divide by the winding num-
ber of the outermost planet), see Table I, which shows a
perfect 2:1 synchronization of anomalistic periods of ad-
jacent orbits, but no synchronization of rotational peri-
ods. Furthermore, Fig. 7 shows that the mean planetary
distances from the star in this self-organized planetary
system follow a geometric progression – Titius-Bode law
– rn ∼ 1.67n, very similar to the one observed in our so-
lar system. The synodic period for this planetary system
is T = 2.2 years.

We next study a planetary system which starts with 9
planets of mass m = 0.002M uniformly distributed from
1 A.U. to 9 A.U. After a period of dynamical evolution
this system once again self-organized into a complex pe-
riodic structure. During the evolution, planets 1 and 2
collided producing a new planet of mass 2m. This planet,
in turn, formed a binary with the planet 3. Planets 4 and
5 also collided forming a new planet of mass 2m, as did
planets 6 and 7. The resulting planetary system contains
6 planets with synodic period T = 6.5 years. In spite of a
distinct mass distribution and a very complex dynamics,
the planetary distances are found to, once again, follow
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FIG. 8. Mean radial planetary distance from the star in a self-
organized system which originally contained 9 planets. Vari-
ous planets have collided forming new planets of mass 2m, so
that only 5 distinct radial positions appear in the plot. These
follow the Titius-Bode distribution.

TABLE II. Radial and angular winding numbers of a self-
organized system with 9 planets.

Planet 1 2 3 4 5 6 7 8 9

ωr 1.000 1.000 1.000 2.000 2.000 4.000 4.000 8.000 16.000

ωθ 1.000 1.000 1.000 2.146 2.146 4.439 4.439 9.024 18.195

a geometric progression rn ∼ 1.63n, see Fig. 8. Further-
more, the radial winding numbers indicate a perfect 2:1
syncronization between anomalistic periods, while the or-
bital periods do not show any clear structure, see Table
II. Finally, we should note that it is very difficult to ob-
tain large planetary systems, even if we start with a very
large number of planetesimals, very fast most of them
will either fall into the sun, coalesce, or will be ejected.
The final planetary system will have only a small number
of planets. In spite of a diligent effort we were not able to
find a stable planetary system with more than 6 planets.

CONCLUSIONS

We have shown that stability of planetary systems
is intimately connected with the orbital arrangement of
planets. An arbitrary initial distribution of planets is
susceptible to catastrophic events in which planets are
ejected from the planetary system or collide with each
other. These catastrophic events are an unavoidable con-
sequence of chaotic dynamics and of Arnold diffusion
characteristic of celestial mechanics in the t → ∞ limit.
We note that even if the planets are placed at radial po-
sitions consistent with the Titius-Bode law, a planetary
system will still, in general, be unstable unless the orbits
of planets are properly synchronized and the dynamics
is periodic. In this paper we presented a mechanism

which leads to self-organization of a planetary system
into a stable periodic state. The mechanism proposed
is probably not unique and should rather be viewed as
a proof of concept which demonstrates that energy non-
conserving perturbations can drive a planetary system
into a self-organized periodic state from an arbitrary ini-
tial condition. In such state anomalistic periods between
all planets are synchronized, while orbital periods do not
indicate any synchronous structure. When the anomalis-
tic periods between the radially adjacent planets are syn-
chronized in 2:1 ratio, the mean orbital distance is found
to follow a geometric progression, rn ∼ 1.7n, the same as
the one observed in our solar system. In principle, how-
ever, there is no a priori reason why all the planets should
have 2:1 synchronization, and indeed other synchronized
states are possible. For such planetary systems Titius-
Bode law will not be valid. We stress again that it is
the anomalistic, and not the orbital periods, which show
synchronous behavior in the self organized state. Indeed,
if orbital periods would be synchronized, the explanation
of the Titus-Bode law would be quite straight forward.
For small planetary masses, the planetary year is related
to the length of the semi-major axis through the Kepler’s
law T 2 ∼ a3, if the planetary years would be locked in 2:1
resonance, the ratio of semi-major axis would then fol-
low a geometric progression rn ∼ 22n/3 ≈ 1.5874n, which
is very similar to the observed Titus-Bode law. How-
ever, the Tables 1 and 2, show that there is no synchrony
of orbital periods and only anomalistic periods that are
synchronized. Therefore, this simple argument can not
be used to account for the orbital structure inside the
self-organized state observed in our simulations.
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