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                                                              ABSTRACT 

Work fluctuations and work probability distributions are fundamentally different in systems 
with short- ranged versus long-ranged correlations. Specifically, in systems with long-ranged 
correlations the work distribution is extraordinarily broad compared to systems with short-
ranged correlations. This difference profoundly affects the possible applicability of 
fluctuation theorems like the Jarzynski fluctuation theorem. The Heisenberg ferromagnet , 
well below its Curie temperature, is a system with long-ranged correlations in very low 
magnetic fields due to the presence of Goldstone modes. As the magnetic field is increased 
the correlations gradually become short-ranged. Hence, such a ferromagnet is an ideal 
system for elucidating the changes of the work probability distribution as one goes from a 
domain with long-ranged correlations to a domain with short-ranged correlations by tuning 
the magnetic field. A quantitative analysis of this crossover behaviour of the work 
probability distribution and the associated fluctuations is presented. 

 

I   INTRODUCTION 

One of the most significant developments in non-equilibrium statistical  mechanics in the 
last few decades has been the emergence of a set of fluctuation theorems [1-6], some of 
which [4-6] concern the fluctuations in the work done as a system moves from an initial 
thermodynamic state at temperature T  to a final thermodynamic state at the same 
temperature. The passage from the initial to the final state can occur along any one of the 
infinitely available paths. Hence one needs to  average over an ensemble of paths, when 
one considers any function of the work (W ) done in the transition from the initial to the 
final state. A primary example of such a fluctuation- dissipation theorem is Jarzynski’s 
equality [4] which  yields 

 B B

W F
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where  W  is the work done in going from state 1 ( initial ) to state 2 ( final), Bk is 

Boltzmann’s constant and where 2 1F F FΔ = − , with 1F  and 2F  being the thermodynamic 

free energies ( Helmholtz  energies) associated with states 1 and 2, respectively. 

The appearance of an expectation value on the left- hand side of Eq. (1.1) raises questions 
about the probability distribution of the work fluctuations. The fact that extreme events can 
play a role in determining  the possible non-Gaussian tail of the distribution has motivated 
researchers to find the distribution both theoretically and experimentally [7-11]. Crooks and 
Jarzynski [12] have considered  a particularly illuminating  example involving the adiabatic 
compression of an ideal monatomic gas from an initial volume 0V  to a final volume 1.V  In 

terms of a parameter α defined by the relation ( )2/30 11 /V Vα+ = ; they found for the work 

probability distribution ( )Wρ  in this case ( note that 0W >  in this case )   
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           (1.2) 

where N is the number of molecules of the gas. 

As noted recently by Kirkpatrick et .al  [13], this distribution is centered at 3 / 2W Nα=  

and around the centre can be approximated by the Gaussian form 

 

2
3 1
4

approx ( )
N W

WW eρ
⎛ ⎞

− −⎜ ⎟⎜ ⎟
⎝ ⎠∝                 (1.3) 

With the distribution peaked at W  which is ( )O N  and with a width which is O ( N ),

( )Wρ is sharply peaked at its maximum for N >>1. Around the maximum of the 

distribution, the function exp( / )BW k TΩ = −  is already very small and hence fluctuations in 

it can be significant. The root- mean- square fluctuationεΩ  of Ω  is defined as 

 
2

2 2

exp( 2 / )
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Ω −
= − = −

Ω −
            (1.4) 

Using the distribution, given by Eq. (1.2), we get , 

                                                     

23exp[ ln(1 )]
2 1 2
N αε

αΩ = +
+

             (1.5) 

What is striking about the above equation is that the fluctuation is exponentially large in the 
system size N  and thus makes the usefulness of the equality shown in Eq. (1.1) , which is 
formally correct, questionable. This will become a problem for large systems where N >>1 
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and εΩ  needs to be vanishingly small if the system is supposed to be well -behaved.   

Instead we have in this case exponentially large ( in the system size ) fluctuations around the 
mean. Even for systems where N is of (1)O , the fluctuations are of the same order as the 

mean, which makes the approach to the mean value difficult. The Gaussian approximation 

of Eq. ( 1.4) yields 2exp[3 / 2]Nε αΩ = , which agrees with the result obtained from the 

exact distribution for 1α <<  as expected. The difficulty with an experimental 
implementation of the Jarzynski equality has been carefully examined by Suarez et al. [14]. 

These authors have found the lower bound cM  on the number of times an experiment 

must be repeated to faithfully construct the average value shown in Eq. (1.1). For N  

particles, the number cM  was found to be of ( )NO e  , consistent with our measure of 

fluctuation around the mean. The difficulty in approaching the mean in numerical works 
have been pointed out in references [15-18].  These very large fluctuations result from  the 
short- range nature of the correlations in the systems considered. This feature can also be 
seen  in a situation with a set of independent oscillators envisaged by Hijar and Ortiz de 
Zárate[ 19]. 

We now discuss what happens if the correlations are of a long- ranged nature.  As shown in 
a series of papers  in the case of a fluid  under a fixed temperature gradient [20-23],  one 
has a non-equilibrium steady state (NESS) with generic long- range correlations. These long- 
ranged correlations are capable of producing large Casimir type forces in confined fluid 
layers [24-27].  Recently it was found that the work  probability distribution in such  cases  
can be significantly different [13 ]. This prompted us to look at systems with long-ranged 
correlations in both equilibrium and non-equilibrium situations [28]. A natural candidate for 
an equilibrium system was a Heisenberg ferromagnet, well below the Curie temperature, in 
an infinitesimal magnetic field, where the transverse magnetization fluctuations are the 
Goldstone modes of the system. These  modes , being massless ,  lead to the fluctuations 
having long- ranged correlations. As anticipated, the long- ranged correlation between the 
fluctuations lead to a work probability distribution similar to the  case of NESS with generic 
long-ranged fluctuation correlations. The important point about the probability distributions 
in the case of systems with these long-ranged correlations is that the distribution is wider by 

orders of magnitude and this greatly reduces the fluctuations εΩ  around exp ( / )BW k T−  . 

The  Heisenberg ferromagnet  at  temperatures well below the Curie temperature actually 
provides a single system where both short- ranged and long- ranged correlations can be 
probed.  Specifically, one can use the external magnetic field as a tuning parameter to go 
from long-ranged to short-ranged fluctuations. Consequently, this is an ideal testing ground 
for studying the crossover in the probability distribution of the work and in the fluctuation 

εΩ , as one goes from long- ranged correlations to short- ranged ones. 
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The factors of N in Eqs. (1.2), (1.3) and (1.5) are directly related to the fact that the root-

mean-squared fluctuations in a system with short- ranged correlations scale as 1/ N . The 

work distribution function and εΩ  are fundamentally different when there are long- ranged 

correlations. For example in the case considered here the local work distribution function in 
three dimensions has correlations that decay as the square of the distance for small 
magnetic fields. This in turn determines that the total work fluctuations scale as  

 
( )2

2 2/3 2

1 1W

N LW

δ
∝ ∝                     (1.6) 

with L a length characterizing the system size. This leads to a Gaussian distribution near the 
mean that has the form 

 

2

2( ) exp 1WW cL
W

ρ
⎡ ⎤⎛ ⎞
⎢ ⎥∝ − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

            (1.7) 

with c  a constant of (1)O . Fundamentally the power of L in the distribution has changed 

making this distribution much broader than the work distribution for systems with short-

ranged correlations. This in turn suggests that in this case 
2'c LeεΩ ∝ , with c’ a constant of  

(1)O . That is long-ranged correlations make εΩ  much smaller than it is in the short –ranged 

case in the limit of large system size. Things actually are more complicated than indicated 

here. We show that the detailed form of εΩ  is determined by the tails of the distribution 

and not by the Gaussian distribution near the mean. Nevertheless the above argument 

strongly suggest that εΩ  in systems with long-ranged correlations is in general smaller than 

it is in the short-ranged case , and this will extend the usefulness of the Jarzynski fluctuation 
theorem. 

  In this work we will consider a slab of ferromagnetic material where the extensions ( linear 

dimension L⊥ ) in the x-y plane will  be taken to be large while the extension in the z -

direction ( also the direction of the external magnetic field ) is a smaller length L  . We will 

define the dimensionless area A  as 2 2/A L L⊥= . This dimensionless area A can be large if 

L L⊥ >> but can also be of (1)O when the two lengths are comparable.  The comparison 

between L  and the  correlation length ξ  will determine whether the system is long-ranged 

( long- ranged correlation implies Lξ >> ) or not. We will see that the transition from long-

ranged to short-ranged correlations  will be governed  by  a dimensionless parameter 
2 2 /hL hL MJ=  where M  is the magnetization and J  is the exchange coupling between the 

local magnetic moments . For large values of 2
hL ( short- ranged correlations ), it will be seen 

that the probability distribution is very  sharp and centered around 3/2h . This will be 
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analogous to the short-ranged cases discussed above and one will find large fluctuations  
around  the quantity exp( / )BW k T< − > , similar to the result shown in Eq. (1.5).  For small 

values of 2
hL  , the distribution will become broad  reducing considerably  the fluctuations  

εΩ  as defined in  Eq. (1.4). 

 The primary result of this work is that 

 exp( ( ))hAf LεΩ ∝            (1.8) 

where  ( )f x  is a crossover function . For infinitesimal magnetic fields when correlations are 

long- ranged and 1hL << , 4( )h hf L L∝ , while for larger magnetic fields , when correlations 

are short ranged and 1hL >> , we find 3( )h hf L L∝ . In the latter case we are back to Eq. (1.5) 

and the usefulness of the equality in Eq. (1.1) becomes restricted to single molecules and 

nano scales , while in the former case we have a smaller value of εΩ  and the usefulness of 

the equality can be expanded to mesoscopic and even macroscopic systems. It should be 
borne is mind though that for 0W >  the expectation value shown in Eq. (1.1) is at most 
unity while the root –mean- square  fluctuation around the expectation value as defined in 
Eq. (1.4) is always greater than unity.  

The paper is organized as follows. In Sec II we review the nature of the thermal fluctuations 
in a ferromagnet . The moments of the work fluctuations are considered in Sec III and the 
resulting probability  distribution  in Sec IV. Our results are summarized in Sec V. Details 
about the average work and the shape of the work probability distribution are further 
elucidated in an Appendix.  

 

II A.    THERMAL FLUCTUATIONS IN A FERROMAGNET      

 Recalling the statistical mechanics  of a three- dimensional ferromagnet in an external 
magnetic field in the z- direction at very low temperatures , we note that the total 

magnetization M
r

can be considered to be of fixed magnitude with most of its contribution 
coming from the large value 0M  in the z-direction. The transverse magnetization 

components ( the Goldstone modes of the system) constitute a two- dimensional vector mr  
with components 1 2,m m   which at these low temperatures can be considered to be small 

fluctuations. The components of the magnetization vector satisfy the constraint  

  

 2 2 2 2
1 2 0m m M M+ + =                        (2.1)  
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with M  treated as a constant as explained. The free energy of the system ( non-linear 
sigma model) can be written as [29-31] 

 ( )3 2 2 2
1 2 0 0

1 ( ) ( ) ( )
2
JF d r m m M hM

V
⎡ ⎤= ∇ + ∇ + ∇ −∫ ⎢ ⎥⎣ ⎦

r r r
                     (2.2) 

where  J  is the strength of the coupling between the neighbouring transverse fluctuations 

and 2V L L⊥=  is the volume of the system. From Eq. (2.1), 2 2
0 1 2( ) / 2M M m m M≅ − +   and, 

hence, to quadratic  order the free energy becomes 

 
23 2 2

1

1 ( )
2 2i i

i

J hF d r m m
V M=

⎡ ⎤= ∇ +∑∫ ⎢ ⎥⎣ ⎦

r
               (2.3) 

An  important question is whether or not the quadratic expression given by Eq. (2.3) is 
sufficient for our purposes. Since we are deep in the ordered phase, the system can be 
characterized by a stable low- temperature renormalization group (RG) fixed point ( see 
appendices in refs [32], [33] and [35]). In these references it is shown that the non-quadratic 
corrections to Eq. (2.3) are RG irrelevant at this fixed point. 

The correlation function ( ) ( )i jm x m x r+r r r
 defines the properties of the system and can be 

found  from the corresponding correlation function in Fourier space. The dependence of the 

latter on the wave vector k
r

 can be easily deduced from Eq. (2.3) :  

 
2

( ) ( ') ( ')B
i j ij

k T
m k m k k k

hJk
M

δ δ= +
+

r r r r
            (2.4) 

where T  is the temperature at which the system is kept. The crossover that we mentioned 
earlier is evident from the above formula. For 0h→  ( infinitesimal magnetic field), the 

correlation function is proportional to 2k− , which in co-ordinate space leads to a long-

ranged  1r−  behaviour. For finite values of the magnetic field h , the correlation function 

falls off exponentially in space with a correlation length equal to 1/2( / )MJ h . 

 The system is now taken to be of finite extent in the z-direction by considering the 
extension in that direction  to be of length L  which forces the magnetization fluctuations to 
be described by a Fourier series in the z- direction while the Fourier transform can still be 

used in the horizontal plane  with area  2L⊥ . The  dimensionless  area is 2 2/A L L⊥= . In the z- 

direction large and small lengths are defined with respect to the correlation length . The 
Fourier decomposition of the magnetization fluctuation ( 1m or 2 )m  which we will simply 

denote by ( )m rr , unless it is essential to differentiate between the components, can be 

written as  
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2

1

2( ) sin ( , )
(2 )

ip r

n

d p n zm r e m p n
L L

π
π

⊥
∞

=
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r rr r
                        (2.5) 

where pr is a two- dimensional vector in the horizontal ( x y− ) plane and we have taken the 

magnetization fluctuations to vanish at the surfaces 0z =  and z L= . The correlation 
function of Eq. (2.4) now becomes 

 '2 2
2

2

/ 2
( , ) ( , ') ( )

( )

B
nn

k TL
m p n m q n p q

n hJ p
ML

δ δ
π

= +
+ +

r r r r
         (2.6)  

IIB.  WORK DONE IN FERROMAGNETS AS THE MAGNETIC FIELD IS CHANGED   

We now consider the work done as the magnetic field in which a ferromagnet is placed is 
changed from an initial 0h =  to a final value ‘h ’ . It will be defined as   

 2 2
0 1 2

0 0
' '( ) / 2

h h

EW dh M Mh dh m m M= − ≅ − + +∫ ∫               (2.7) 

We need to comment on the definition of the work W  above for the magnetic system. In 
analogy with the work done for the expanding gas discussed in section I, one would have 
expected the differential work for the magnetic system to be dW hdM= . However, it is 
simpler to do calculations with  Eq. (2.7). To this end we define a Gibbs free-energy 

G U TS hM= − − , so that for an isothermal process, the dissipative entropy satisfies 

ETdS dQ dW dG− = − . Here EdW  is an ‘enthalpy’ work, U is the internal energy and dQ is 

the heat energy. The Jarzynski equality (Eq. (1.1) ), when the magnetic work is EW  of Eq. 

(2.7), becomes / /EW kT G kTe e− −Δ= . The Gibbs free energy appears on the right- hand side of 

Eq. (1.1) when the work done is the ‘enthalpy’ work defined above. In what follows we drop 
the subscript E . Returning to Eq. (2.7) , the first term is a constant and the second, when 
averaged over the thermal fluctuations, is the local work fluctuation fl ( )W rr  to the lowest 

order. We define 

2 2
fl 1 2( ) ' ( ( ) ( ) ) /2W r dh m r m r M= < + >∫
r r r

                      (2.8) 

where the angular brackets above refer to an average over the thermal fluctuations. We are 

ignoring the higher- order terms arising from the binomial expansion of 2 2 2 1/2
1 2( )M m m− −

in Eq. (2.7).  Our interest is in the probability distribution for fl,TW  , where the subscript T 

indicates that we are considering the total magnetic work in the volume V, defined as  

 3 2 2
fl,T 1 2

0
' ( ) ( ) / 2

h
W dh d r m r m r M= +∫ ∫

r r
                           (2.9) 
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The probability distribution will be accessed by calculating the various moments . The n -th 
moment will be defined as  

 3 3 2 2 2 2
fl,T 1 1 1 1 2 1 1 2

0 0

1 .. ... ( ( ) ( ))......( ( ) ( )
2

n h h
n

n n n nW dh dh d r d r m r m r m r m r
M

⎛ ⎞= + +∫ ∫ ∫ ∫⎜ ⎟
⎝ ⎠

r r r r
        (2.10) 

For n=1, the average value fl,TW is found on calculation to be much smaller than Mh, 

which justifies ignoring the higher order terms coming from the binomial expansion of 
2 2 2

1 2M m m− −  in Eq.(2.7). Since fluctuations in directions ‘1’ and ‘2’ are not correlated, 

Eq.(2.10)  can be written as 

 ( ) ( ) ( )3 3 2 2 2
fl,T 1 1 1 2

0 0

12 .. .. ....
2

n h h
n

n n nW dh dh d r d r m r m r m r
M

⎛ ⎞= ∫ ∫ ∫ ∫⎜ ⎟
⎝ ⎠

r r r
               (2.11) 

In the next section we shall calculate the moments ( actually only the cumulants )  and in 
Section IV we shall obtain the asymptotic  form of the probability distribution. 

 

 III. MOMENTS OF THE  WORK FLUCTUATIONS 

We start with the first moment which is the average of the work fluctuations ( n =1 in Eq. 
(2.11)) and find 

  

3 2
fl,T

0

1 ' ( )
h

W dh d r m r
MV

= ∫ ∫
r

 

 
1 2

2 2
3 ( ).1 2

1 22 2 2,0

1 4' sin sin ( , ) ( , )
(2 ) (2 )

h
i p q r

n n

n z n z d p d qdh d r e m p n m q n
M L LL

π π
π π

+= ∑∫ ∫ ∫ ∫
r r r r r

 

2
3 2

2 2 2 210 2
2

2 ' sin
(2 ) '( )

h
B

n

k TLd p n zdh d r
LML n hJ p

ML

π
π π

∞

=
= ∑∫ ∫ ∫

+ +
 

2 2 2

2 2 210 2 2 2 2

( )'
(2 ) '

h
B

n

L k TL d pLdh
MJL h Lp L n

MJ
π π

∞⊥

=
= ∑∫ ∫

+ +
                                (3.1) 

From now on we label the dimensionless wave number  pL  as q   and define  

 
2 2

2 2 2 2' 'h L h Lp L q
MJ MJ

γ = + = + ,                           (3.2) 
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After performing the summation  over ‘ n ’  and introducing an ultraviolet cut-off at 
1p a−= Λ ≈ ( here ‘a’ is the lattice spacing ), we write Eq. (3.1) as 

 
2 22 2 2

fl,T 2
0 0

( ) 1 1' (coth )
4 2

h L

B
L L d qW k T dh
MJL

γ
π γ γ

Λ
⊥= −∫ ∫  

 
1/22

1
2

0

1 1(coth )
4

L

B h
hL
MJ

k TAL dx dγ γ
π γ

Λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= −∫ ∫                 (3.3) 

where as defined before 2 2/A L L⊥=  and  2 2 /hL hL MJ= . Evaluating the integral in Eq. (3.3), 

we now have 

 
22 1

fl,T 20

sinhsinhln ln
4

hh
B

h

xLAL LW k T dx
L xLπ

⎡ ⎤Λ⎢ ⎥= −∫ Λ⎢ ⎥
⎣ ⎦

 

 
22 1

20

sinh
ln(2 ) ln

4
hh

B
h

xLAL
k T L L dx

xLπ

⎡ ⎤
⎢ ⎥= Λ − Λ − ∫
⎢ ⎥
⎣ ⎦

             (3.4) 

The first two terms in the square bracket above, which are cut-off dependent, arise from the 
divergence of the integral. We note that this divergence stems from the large wave- number 
dependence of the integrand and thus corresponds to the short- ranged correlations. It 
should be noted that the average work is proportional to the volume of the system because 
of this divergence and is very different from the higher moments. We will return to this 
issue in the Appendix.  The crossover effect is present in the finite part represented by the 

integral which is zero for 2 1hL << , while for 2 1hL >>  the dominant term comes from the 

growing exponential inside the log and it  is easily seen to be 2 / 3hL . We note that the high- 

momentum divergence that we see in the first moment will not occur in the higher 

moments. It should also be noted  that in the high- field limit  the dependence 3
hL  that has 

emerged will remain throughout regardless of the degree of the moment. 

We now turn to the second moment ( actually the cumulant ) which will be the prototype 
for all other cumulants  since it will not have the divergence that plagues the first moment. 
We will do this in some detail and then generalize to the higher moments. Setting n =2 in 
Eq. (2.11), we consider 

 
2

2 3 3 2 2
fl,T 1 2 ' 1 '' 2

0 0

12 ' ' ' ( ) ( )
2

h h

h hW dh dh d r d r m r m r
M

⎛ ⎞= ∫ ∫ ∫ ∫⎜ ⎟
⎝ ⎠

r r
                         (3.5) 
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The subscripts associated with the two different 2 ( )m rr  above make it clear that the process 

' 0h =  to 'h h=  will in general be different for the different 2( )m rr . A Gaussian distribution 

for the magnetization fluctuations will imply a factorization of the correlation function 
shown above and we have for the second-order cumulant 

 
2

22 3 3
fl,T 1 2 ' 1 '' 2cum 0 0

12 2 '' ' ( ) ( )
2

h h

h hW dh dh d r d r m r m r
M

⎛ ⎞= × ∫ ∫ ∫ ∫⎜ ⎟
⎝ ⎠

        (3.6) 

In the above we have shown the first factor of 2 separately as it is a combinatorial factor 
that will change with n . To find the equilibrium equal- time correlation that we need in Eq. 

(3.6), it is simplest to do the calculation in Fourier space and evaluate '( , ) ( , )h hm k t m k t−
r r

.  

We begin by  writing the evolution equation for the Fourier transform ( , )hm k t
r

. The 

dynamics is the usual Langevin dynamics with the noise having the appropriate  statistical  
property to give the equilibrium correlation function of Eq. (2.4 ). Explicitly, 

 2( , ) ( ) ( , ) ( , )h
hm k t Jk m k t k t
M

ς= −Γ + +
r r r

&                                (3.7) 

where ( , )k tς
r

is the delta-correlated Gaussian white noise with the correlation function 

 2
1 1 2 2 1 1 2 1 2( , ) ( , ) 2 ( ) ( ) ( )B

hk t k t k TV Jk k k t t
M

ς ς δ δ= Γ + + −
r r r r

       (3.8) 

After integrating  

 
2 2( )( ') ( )

( , ) ' ( , ') ( ,0)
h hJk t t Jk t
M M

h hm k t dt k t e m k eς
−Γ + − −Γ +

= +∫
r r r

      (3.9) 

The  equilibrium correlation function is obtained as the equal- time correlation function at 
long times and is seen to be  

 '
2

( ) ( ') ( ')'
2

B
h h

k TVm k m k k kh hJk
M

δ= +++

r r r r
,             ( 3.10) 

giving the standard equilibrium correlation function of Eq. (2.4 ) when 'h h= . 

Returning  to Eq. (3.6), we write  

 

1 2

1 2

2 2
. .1 2

' 1 '' 2 ' 1 '' 22 2 21 1

4( ) ( ) sin sin ( , ) ( , )
(2 ) (2 )

ip r iq r
h h h h

n n

n z n z d p d qm r m r e m p n m q n
L LL
π π

π π
⊥ ⊥

∞ ∞ +

= =
= ∑ ∑ ∫ ∫

r r rr r r r
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2
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2

2 sin sin
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2
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n

n z n z k Td p e
L L L n h hJ p

ML

π π
π π

⊥ ⊥
∞ −

=
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++ +

r r r

      (3.11) 

To evaluate the integral in Eq. (3.6), we need another such factor withn  replaced by 'n  and 
pr replaced by qr . The integral over 1z  will then yield a factor of ' / 2nnLδ  and the integration 

over 2z  gives / 2L . Similarly, integration over 1r ⊥  yields ( )p qδ +r r
and the integration over 

2r ⊥  gives 2L⊥ . This allows us to write Eq. (3.6) as  

 

2

2 2
2
fl,T 2 2 2cum 10 0 2

2

12 2 '' '
2 (2 ) '' '( )

2

h h
B

n

k Td pW dh dh
M n h hJ p

ML
π π

∞

=

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎢ ⎥= × ∑∫ ∫ ∫⎜ ⎟ ⎢ ⎥+⎝ ⎠ + +⎢ ⎥⎣ ⎦

        (3.12) 

Carrying  out the rescalings described in the calculation of flW  above , we write Eq. (3.12) 

as  

 

2

21 1
2 2 2
fl,T cum 1 2 2 2 20 0

1 ( ) 12 (2 ) '' '
'' '2 4
2

B h
n

h

d qW k TL A dx dx
x xq n Lπ π

∞

=

⎛ ⎞
⎜ ⎟

= × ∑ ⎜ ⎟∫ ∫ ∫ +⎜ ⎟+ +⎜ ⎟
⎝ ⎠

 

1 1
2 2

1 2 2 20 0

1 1(2 ) '' '
'' '4
2

B h
n

h

k TL A dx dx
x xn Lπ π

∞

=
= ∑∫ ∫ ++

 

1 1
2 2

0 0

1 1 1(2 ) '' ' (coth ' )
4 2 ' 'B hk TL A dx dx γ
π γ γ

= −∫ ∫                          (3.13) 

The 'γ  in the last line of Eq. (3.13)  is defined as 2 2' ( '' ') / 2hL x xγ = + .  We now examine this 

formula in the two limiting cases of  2 1hL <<  and 2 1hL >> . 

i) 2 1hL << :  In this limit ' 0γ →  and the first non- vanishing term of the integrand 

in Eq. (3.13) is seen to be 1/3 and, hence, 

 2 2 2 4
fl,T cum

1 1(2 ) ( )
4 6B h hW k TL A O L
π

⎡ ⎤= +⎢ ⎥⎣ ⎦
                          (3.14) 

ii) 2 1hL >> :  In this limit 'γ → ∞  and the leading contribution comes from the 

region where coth ' 1γ =  and we find 
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1 1

2 2 3 2 3
fl,T 1/2cum 0 0

1 1 1 4(2 ) '' ' (2 ) ( 2 1)
4 4 32( '' ')B h B hW k T AL dx dx k T AL

x xπ π
= = −∫ ∫

+
   (3.15) 

In this limit the next term is of 2( )hO L . 

We  note that while the finite part of fl,TW  would be 2( )hO L  [ it is accidental that the 

coefficient is zero] in the small hL  limit, the corresponding dependence of 2
fl,T cum

W  is 

4( )hO L (Eq. (3.14)) and for fl,T cum
nW  it will be 2( )nhO L  as we will argue below. However, for 

very large values of hL  , the dependence of fl,T cum
nW  will always be 3

hL  regardless of n . 

For any ‘ n ’,we can write 

 ( )
1 2

1 3 3
fl,T 1 1 1 2cum 0 0

12 1 ! 2 ... ... ( ) ( ) ...........
2

n h h
n n

n n h hW n dh dh d r d r m r m r
M

− ⎛ ⎞= − × ∫ ∫ ∫ ∫⎜ ⎟
⎝ ⎠

r r
 

 
1 1.......... ( ) ( )

nh n hm r m rr r
                                              (3.16) 

Inserting the appropriate Fourier expansions and performing  the spatial integrations , we 
obtain 

 
1 1

2 2
fl,T 1cum 1 2 2 2 2 2 2 2 20 0 0 1 2 2 3

1 1 1( 1)! (2 ) ... ( ) ....
4

2 2

n n
B h n

s
h h

W n A k TL dx dx d q
x x x x

q s L q s Lπ π π

∞∞

=
= − ∑∫ ∫ ∫ + +

+ + + +

                                                                                         .....
2 2 2 2 1

1

2
n

h
x x

q s Lπ +
+ +

                 (3.17) 

In the limit of infinitesimal fields , 0hL → , we find ( 2n ≥ ) 

 2
fl,T 2cum

2
( 0) ( 2)! (2 2)

4

n
n nB

h h
k T

W L n A L nπ ς
π

⎛ ⎞→ = − −⎜ ⎟
⎝ ⎠

                                                   (3.18) 

 where ( )xς is the usual Riemann zeta function. On the other hand, in the limit of large hL , 

the scaling behaviour can be inferred by noting that the integrand in Eq. (3.17) can be 

written as partial fractions where each term has the form 2 2 2 2 1( )
2

i j
h
x x

q s Lπ −+
+ +  

multiplied by  1n −  terms of the form 2 1( )
2

l k
h
x x

L −−
. These n -1 terms reduce the power of 

2
hL  in the prefactor of Eq. (3.17) to unity and the remaining hL  dependence comes from the 



13 
 

sum and integral 2 2 2 2 2 1

1
( )[ ]

2
i j

h
s

x x
d q q s Lπ

∞ −

=

+
+ +∑ ∫ , which after summation over ' 's  can 

be written in the leading order for large 2
hL  as 2 2 2 1/2( ) / [ ]

2
i j

h
x x

d q q L
+

+∫ . This integral  

scales as hL  and hence for 1hL >> , the leading term of Eq. (3.17 ) is 

 3
fl,T 2cum

2
( ) ( 2)!

n
n B

h n h
k T

W L n A C L
π

⎛ ⎞→ ∞ = − ⎜ ⎟
⎝ ⎠

           (3.19)       

where nC  is a number of order unity. The  dependence on h  follows from the general result 

that the Goldstone-mode-dominated susceptibility scales as 1
hL
−  [34,35]. We note that  all 

the moments are proportional to the system size 2L L⊥  as happens always in a system with 

short- ranged correlations. In sharp contrast , when one is dealing with long- ranged 

correlations ( 0hL → ) , all the moments ( except the average work ) are proportional to 
2 2/L L⊥  as shown in Eq. (3.18). 

What  kind of a crossover function are we finding ? To answer this it is easiest to examine 

higher- order terms in Eq. (3.17) as hL  is increased. Expanding the denominator of each 

factor in the integrand , it is clear that the series is going to be alternating and the first 
correction is  

 2 4
fl,T fl,Tcum cum

1 (2 4)( 0) 1 ( )
2 (2 2)

n n
h h h

n nW W L L O L
n

ζ
ζ

⎡ ⎤− −= → − +⎢ ⎥−⎣ ⎦
             (3.20) 

An interpolation which guarantees that coefficients come out correctly for large n  ( in 
practice n >4, when the zeta functions are effectively unity) is   

23/22
fl,T fl,Tcum cum

( 0) 1 / 1
2

n
n n h

h h
L

W W L L
⎡ ⎤

⎡ ⎤= → + +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
                            (3.21) 

For the special case of n=2, we introduce the crossover function ( )hf L which gets the 

coefficients correctly in both the small and large hL  limits and write 

2 2
fl,T cum

( ) ( )B hW k T Af L=             (3.22) 

An explicit interpolation form for ( )hf L  is 

4

( )
6 1

8( 2 1)

h
h

h

L
f L

Lπ
=

⎛ ⎞
+⎜ ⎟⎜ ⎟−⎝ ⎠

        (3.23) 
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which as we will see below is the function that will describe the crossover of the fluctuation 

εΩ , introduced in Eq. (1.8). Having obtained  the moments we now construct the 

probability distribution in the next section. 

 

IV   THE PROBABILITY DISTRIBUTION 

We find the work probability distribution ( )Wρ  by constructing a cumulant generating 

function ( )K t  defined by  

 
fl,T cum

1
( )

!

n n

n

W t
K t

n
∞

=
= ∑            (4.1) 

In this sum the terms  2n ≥  are determined from Eqs. (3.18) and (3.21), while for n =1, we 
need the leading term ( proportional to the size of the system ) of Eq. (3.4). It should be 

noted that though for large n, the cumulants fl,T
nW  are very large, the series for K(t) is 

always convergent due to the factor of !n  in the denominator of the right hand side of  
Eq.(4.1). Indeed, the precise condition [36] for the moments to determine the distribution 
function is that the moment generating function K(t) above has a finite radius of 
convergence. The probability distribution function is then obtained by takingthe inverse 
Laplace transform  

 ( )

0
( ) Wt K tW e dtρ

∞
− += ∫               (4.2) 

The integral in Eq. (4.2) will be evaluated by the method of steepest descent, since the 
evaluations  of ( )K t  or ( )Wρ can not be done exactly. In the sum shown in Eq. (4.1), the 

first two terms determine the Gaussian approximation to the distribution function. The 
higher- order terms ( n >2) are responsible for the tails of the distribution function. To get 
the tails accurately, we need the larger values of n  and as a result  n -1 can be replaced by 

n  and the zeta functions set to unity ( 4(4) / 90ς π=  is already very close to unity). For W
>0, we have 

 
2

2 3/2
2 2

2

2
( ) (1 ) ( )

4
(1 )

2

n

n
n h

h B
n h

L tK t A L k T
L n

π

π

⎛ ⎞
⎜ ⎟
⎜ ⎟= + ∑
⎜ ⎟

+⎜ ⎟
⎝ ⎠

 

 2
( )n

n

bta
n

= ∑                        (4.3) 

with  
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2

2 3/2
2 2
4

(1 ) / 4,
(2 )

h
h B

h

L
a A L b k T

L
π

π
= + =

+
                (4.4) 

It should be noted that the ( )K t  of Eq. (4.3) gives an average value of W  that is W ab= , 

different from the result obtained in  Eq. ( 3.4). This will be important when we discuss the 
Gaussian approximation  below. 

From Eq. (4.3),we see that  

 
1'( ) ln

(1 )
dK aK t
dt t bt

≡ =
−

                               (4.5) 

The saddle- point method for obtaining ( )Wρ requires finding the saddle point 0t  where 

 0'( )W K t=                                  (4.6) 

and  writing   

 0 0( )( ) Wt K tW Ceρ − +=                     (4.7) 

where  C  is a constant obtained from normalization . We need to find 0t  from the 

requirement 

 0 0
0 0
ln(1 ) ln(1 )ab abW bt x

bt x
= − − = − −             (4.8) 

where  x bt=  . The scale of W  is set by ab  . We need to emphasize again that this scale is 

not necessarily the average value of flW . For small values of 2
hL  the dimensionless scale (

/ Bab k T ) is set  by 2 / 2hAL π , which scales as 3/hV L . For large values of 2
hL , the scale is set 

by 3 /hAL π  which scales as 3/2h V . This scale , like the average work in Eq. (3.4), is  

proportional to the system size . In this case , things are reasonably clear- all the action is 
centred around the scale ‘ ab ’. Regions close to this scale and far away from it can be 
explored by expanding the right- hand side of Eq. (4.8) in a Taylor series and determining 0x

. The probability distribution follows from Eq. ( 4.7 ). We represent  the scale factor by the 
crossover form (see Eq. (4.4) ) 

 
( )3/22

2

1
( )

21

h
h

B

h

Lab A A S L
k T

L

π π

+
= =

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

                        (4.9) 

Writing  the dimensionless work in units of Bk T in Eq. ( 4.8) , we find  
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 0

0

ln(1 )
( )h

x
W AS L

x
π −

= −                            (4.10) 

For both 1hL >>  and 1hL << ,  large values of W  correspond to 0 1x ≅ . Writing 0 1x ε= − , 

we see that [ ]exp /W ASε π≅ − . The integral of Eq. ( 4.5 ) can be written as  

 0
ln( ) ln ln(1 )
1
xK t a x x dx K
x

⎡ ⎤= − − + +∫⎢ ⎥−⎣ ⎦
        (4.11) 

where 0K  is a constant.  All terms in (1 )K ε−  are at least ( )O ε and hence the asymptotic  

large W  behaviour of ( )Wρ  is exp( / )W b− . The scale of W  in Eq. (4.8) changes with 

changing hL  but the form of ( )Wρ  is unaltered. 

For 0 1x << , one is in the vicinity of  ( ) /hW AS L π= , which is proportional to 2
hL  for small 

magnetic fields and to 3
hL  for large fields. In this range, 0 2 1

( )h

Wx
AS L

π⎛ ⎞
≅ −⎜ ⎟

⎝ ⎠
 and the 

distribution, in this approximation, is a Gaussian centered at ( )hAS L . This, as expected , is 

different from the exact Gaussian obtained by keeping the n =1 and n =2 terms in Eq. (4.1). 

 The limit of very small W  needs to be handled carefully and we note that the only way one 

can achieve small values of 0

0

ln(1 )x
x
−

−  is by going to large negative values of 0x  so that  Eq. 

( 4.8 ) becomes 

 0

0

ln(1 )
( )h

x
W AS L

x
π

+
=                  (4.12) 

Inverting , we obtain 

 
1 1

0
ln( ( ) )

( ) h
h

AS L W
x AS L

W
π

π

− −

≅               (4.13) 

 Integration of   Eq. (4.5)  for large negative values of t , yields 

 ( )2( ) ln
2
aK t x= −                                  (4.14) 

For 0W → ,  we use Eq. (4.13)  to calculate the exponent 0 0( )Wt K t− +  ( we are not 

showing any prefactors since they will not be relevant ) and get 

 

2( ) ( )ln ln
2( 0)

h hAS L AS La a
W WW e π πρ

⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠→ ∝               (4.15) 
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For W in the vicinity of ab , we have the Gaussian form ( note that this Gaussian form stems 
from the approximate  form of ( )K t in  Eq. ( 4.3)) given by  

 
2

2
( )( ) exp W abW
ab

ρ
⎛ ⎞−∝ −⎜ ⎟
⎝ ⎠

               (4.16) 

Using the n =1 and n =2 terms of Eq. (4.1), we obtain  the more general Gaussian form,      
2

22 22

2 2

(
1 12 2 2 ( )( ) fl fl h

W W W W W W
W WW Af L WW e e eρ

− < > ⎛ ⎞ < > ⎛ ⎞− − − − −⎜ ⎟ ⎜ ⎟< >< >⎝ ⎠ < >⎝ ⎠∝ = =               (4.16a) 

For W ab>> , we find 

 ( ) exp( / )W W bρ ∝ −                          (4.17) 

Eqs. (4.15)-(4.17) constitute the basis for the primary result of this paper quoted in Eq. (1.8). 

Specifically, for the work distribution in the case of long- ranged correlation ( 1hL < )  we 

obtain : 

i) 2 / 2hW AL π<< ,     
22 2

( ) exp ln ln
8 2 4 2

h hAL ALA AW
W W

π πρ
π π

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥∝ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

          (4.18a) 

ii) 2 / 2hW W AL π≈< >= ,               

2
2

2( 1)
( ) exp

4
h

WA
AL

W

ππ
ρ

⎡ ⎤−⎢ ⎥
⎢ ⎥∝ −
⎢ ⎥
⎢ ⎥
⎣ ⎦

                    (4.18b) 

iii) 2 / 2hW AL π>> ( )2 2( ) exp / 2 hW W Lρ π∝ −                                        (4.18c)  

The results i) and iii)  are identical to what was reported in Kirkpatrick et .al  [23]. For ii), the 
Gaussian form shown in Eq. (4.18b) is based on Eq. (4.16) while the form shown in reference 
[28] was based  on Eq. (4.16a) . The difference does not matter in establishing the primary 
point , which is the scale of the probability distribution. The difference between Eqs. (4.16a) 
and (4.18b) will be commented upon in the Appendix. 

 The corresponding results SRρ  for the short- ranged correlations, as follows  from Crooks 

and Jarzynski [ 12 ], are 

 
3 ln
2

SR ( 0)
N W

WW eρ
< >⎛ ⎞− ⎜ ⎟

⎝ ⎠→ ∝                          (4.19a) 

 
23 ( 1)

2
SR ( )

N W
WW W eρ

− −
< >≈< > ∝                   (4.19b) 
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3
2

SR ( )
NW
WW W eρ

−
< >>>< > ∝                               (4.19c) 

The important difference between these short- ranged probability distributions and the 
long- ranged ones of Eqs. (4.18a) and (4.18b) lies in the scale of the distribution. In the long-

ranged case it is set by A  which is proportional to 3/V L and for the short- ranged case it is 

set by N  which is equal to 3/V a where a is the lattice spacing . For  W W>> , the 

distributions are similar. In the evaluation of the moments of Ω , it is the W ≤ W  parts 

which matter and hence the suppression of the probability distribution for the short- ranged 

correlation leads to a larger εΩ . 

The fact that the long-ranged correlations lead to a much larger tail than the short-ranged 
ones is best seen through a numerical example. We consider  a specific case of a typical 

protein for which 10L a⊥ =   and 4L a= . This makes A= 6.25. We consider two values of W  

such that  W W<<  and W W≈ , to make our point. The value of N for this case can be 

found from 3 2Na V L L⊥= = and is seen to be 400.  For / 100W W= , which is far from the 

peak, 1317( ) / ( )SRW W eρ ρ ≈ , showing that in the tail of the probability distribution, for the 

long-ranged case the probability is enormous when compared to the short-ranged case. For 

/ 2W W= ,which is close to the peak, this ratio is 149e and the long-ranged case probability 

is still much greater than the short-ranged case. This makes the point that the systems with 
long-ranged correlations have a much broader probability distribution for the work done. 

We now turn to the calculation of the fluctuation εΩ  defined in Eq. (1.5). We use the 

distribution shown in Eq. (4.16a) for this purpose.  Carrying out the Gaussian integrals, 

 
2 ( )/2hn Af LnWe e− =         (4.20) 

Consequently, 

 
2 2

( )
2 21 hAf LeεΩ

Ω Ω
= − ≅ =

Ω Ω
            (4.21) 

with ( )f x  defined in Eqs. (3.22) and (3.23). We have thus established Eq. ( 1.6) which was 

stated to be  the primary result of the paper. If we take the example cited above ( 6.25A = , 

400N = ) then for the long-ranged case ( 1hL <<  ),   
42 /3hLe πεΩ ≈  which can be quite close 

to unity for 1hL << .  For the short –ranged case, using Eq. (1.5) with 400N =  and assuming 

smallα , we find 
2600e α which is astronomical unless α is very small . The root-mean-square 

fluctuation about the average of Ω  is 
2300e α much greater than < Ω >  itself which is 

2600e α−

.  If one reduces the number of particles still further ( in terms of system size, considering 
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nano scales and beyond )  one can make  the root-mean- square fluctuation smaller for 
short-ranged fluctuations but it will still be greater than the average value.  

In order to provide numbers to be able to see the short-ranged to long-ranged crossover in 
an actual experimental set-up, it is necessary to ask the question how small must  the 

external magnetic field be to allow us to use the long-ranged approximation , 2 1.hL <<  For 

this we need an estimate for L , which can be taken to be the typical size of ferromagnetic 

domains. Free- energy considerations restrict the domain size to 710− m to 810− m. To be 

definite, we take 810−  m as our .L  If we denote a microscopic length by ,l then 100L l= . 

Writing 2 2 2 2/ /h HL hL MJ L L= = , we have 2 2 2/ / /H B BL MJ h M J Mh k Tl hμ= = = , where in 

the last step we have replaced the magnetization in the denominator by the Bohr magneton 

Bμ  and estimated 2JM by appealing to Eq. (2.3) and writing Bk T  for the free energy. At 

100T = K , 2110Bk T
−≈ Joules and with h in teslas , 2310Bμ −≈ Joules/tesla. We thus estimate 

2 2100 /HL l h≈  and 2 100hL h≈  , so that the condition 2 1hL <  implies 210h −< teslas which is 
210 Gauss. 

It should be noted that the kind of experiments used to test the Jarzynski equality have 
been primarily single- molecule experiments ( . .e g , Refs. [37-39 ]) where the probability 

distribution has been used to determine the free- energy difference between initial and final 
states [ . .e g , the folded and unfolded states of a DNA hairpin] or the energy fluctuations in a 

single harmonic  oscillator driven out of equilibrium by an external torque. An example of 
the latter is the thermal rheometer [40-43] which is a torsion pendulum whose minute 
angular displacements are measured by a highly sensitive interferometer. The pendulum is 
driven out of equilibrium by an external torque which amounts to a few pico newton-
metres. The thermal fluctuations amount to a root- mean- square angular displacement of a 
few nano radians. This gives an idea of the scale of the system. The torsion pendulum 
operates in the linear regime, the probability distributions are Gaussian and the test of the 
fluctuations dissipation theorems depends only on the width of the distribution. What we 
are pointing out is that even for a mesoscopic  system ( the example given above)  the 
Jarzynski equality will be difficult to test because of the large fluctuations, but if the 

fluctuations are long-ranged then even for a macroscopically large system ( 2310N  ), the 

fluctuation εΩ can be reduced to be of (1)O . 

The result for εΩ  shown in Eq. (4.21) is not a consequence of the Gaussian form for the 

probability distribution. We will get a similar result if we use the low-W  form of the 

distribution Eq. (4.18a). We are interested in calculating nΩ  and we will use the 

probability distribution of  Eq. (4.18a) to the leading order only. We need 
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 ( ) / ( )n nW dW W dWρ ρΩ = Ω∫ ∫  

 ( ) / ( )nWW e dW W dWρ ρ−= ∫ ∫                    (4.22) 

The calculation will entail ignoring all non-exponential pre-factors and hence the 
normalizing integral in the denominator will contribute unity. The numerator will be 
calculated in the saddle- point approximation described before. We need the integral  

 
22

0 0

8exp{ ln } exp ( )
8 2 8

h
n n

ALA nW AI dW g W dW
W A

π π
π π

∞ ∞⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥= − + = −⎜ ⎟∫ ∫ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦
   (4.23) 

In terms of the variable 22 / hx W ALπ= , the function ( )g W  can be written as

 
2 22

2
41 1( ) ln lnh

n
L

g x n x n x
x x

μ
π

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                   (4.24) 

where 2 24 / 1hLμ π= <<  in the infinitesimal magnetic- field range where 2 1hL << . For very 

small values of μ , the above function has a minimum very near 1x =  and this dominates 

the integrand in Eq. (4.24). The minimum is at 1mx δ= − , where to the lowest order in μ , it 

is seen that / 2δ μ= . Up to  O ( 2μ ), the minimum value of ( )ng x is found as  

 
2 2

( )
4n m

ng x n μμ= −                                  (4.25) 

Keeping only the exponential terms, we have in this approximation 

 
2 2

exp ( )
8 4n
A nI nπ μμ

⎡ ⎤
≅ − −⎢ ⎥

⎣ ⎦
                          (4.26) 

Thus we have, 

 
2 4

22
2 2 3

1

1 1 exp exp
16

hLI A A
I

πε μ
πΩ

Ω ⎡ ⎤⎡ ⎤= − = − ≅ = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥Ω ⎣ ⎦
         (4.27) 

We have obtained for 1hL << , the same result as before with a different numerical factor. 

Turning to the other extreme, where 2 1hL >>  and the energy scale as well as the scale of 

the distribution for small W  is set by the system size , we note that  

i) For 3
hW AL<< :           

23 3

( ) exp ln
8
h hAL AL

W
W

πρ
π

⎡ ⎤
∝ − ⎢ ⎥

⎢ ⎥⎣ ⎦
              (4.28a) 
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ii) For 3
hW AL≅

( )23

3

4
( ) exp

16
h

h

W AL
W

AL

π
ρ

π

⎡ ⎤−⎢ ⎥≅ −⎢ ⎥
⎢ ⎥⎣ ⎦

                 (4.28b) 

iii) For 3
hW AL>> ( )2( ) exp / 4W Wρ π≅ −                                    (4.28c) 

In the range of large magnetic field ( short- ranged correlations )  the factor 3
hAL  is like 

3/2h V  and the probability distribution is tremendously suppressed for the relevant regions. 
This completes what we wanted to describe- the passage of the work probability 
distribution from a broad distribution  for long- ranged correlations to a very sharp 
distribution around a  mean value for short- ranged correlations. The passage can be 
experimentally checked by tuning the external magnetic field for a ferromagnet at  
temperatures well below the Curie temperature. 

 

V.   CONCLUSIONS 

The probability distribution for the work done in taking  a system from one thermodynamic 
state to another has often been studied analytically [7,12,19],  but surprisingly the 

fluctuations around the average of the quantity exp( / )BW k TΩ = − has not been looked at 

before the investigation in Ref. [13] . There was general consensus that the probability 

distribution would be sharply centred around some average value W  which would be of 

( )O N , where N  is the system size, and would have a exponential (exp( / )BW k T−  ) tail for 

W W>>  indicative of dominance of extreme events. The fact that a quantity like Ω , which 
is vanishingly small where the probability distribution peaks, can have very large 
fluctuations was generally overlooked. In Ref. [13], it was pointed out that this large 
fluctuation, as would follow from the explicit distributions in Refs. [12] and [19], is primarily 
a feature of the short-ranged correlations of the fluctuations. It was also pointed out that if 
the correlations were long  ranged , as happens in NESS for driven fluids , then results would 
be substantially different. What was clarified in Ref. [28] was the fact that long- ranged 
correlations , whether coming from NESS in driven fluids or from Goldstone modes in  
ferromagnets at low temperatures, have the ability to set the scale of the work probability 
distribution  to much lower values  and thus provide a much broader distribution. For 

0W → , the distribution ( ) 0Wρ → as 3( ) exp[ (ln ) / ]nW
W V L

W
ρ ∝ − , where n is a number 

which is system specific.  The scale is reduced from V  to a potentially much smaller 

quantity  3/V L  where L  can be several lattice spacings and thus for small systems at least,  

the fluctuations in Ω  are significantly reduced, and when L L⊥  it is very strongly reduced 

even for macroscopic systems. It would be interesting to revisit earlier experiments [36-41] 
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which confirmed or utilized the Jarzynski equality, Eq. (1.1), with the large fluctuations in 
mind . 

Ferromagnets have the interesting  feature that by tuning the external magnetic field from 
infinitesimal to finite values the correlations can be changed from long- ranged ones  to 
short- ranged ones. Consequently, it would be the ideal system for studying the crossover in 
the fluctuations around the mean value that appears on one side of the Jarzynski equality 
[4]. We have provided the explicit forms of the probability distributions at small fields ( long- 
ranged correlations ) which means fields less than 100 Gauss in practical terms in Eqs. ( 
4.18a) to (4.18c) and at fields which are larger than 100 Gauss  ( short ranged correlations ) 

in Eqs. (4.28a) to (4.28c). The fluctuation  is seen to be 
2

4
2(exp( ))h
L

O L
L

⊥  for small fields ( small 

2
hL ). For larger magnetic fields, when the correlations are short ranged , this small W  

behaviour is severely suppressed and  the fluctuation εΩ  is enormous and 3/2 2(exp( )O h L L⊥ ) 

as happens in other short ranged systems. The ferromagnet at low temperatures provide a 
unique opportunity to study the crossover shown in Eq. (4.21) by tuning the external 
magnetic field. 
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APPENDIX:      AVERAGE WORK AND SHAPE OF THE PROBABILITY DISTRIBUTION 

We want to discuss the consequences of  the fact that the average, W< > , of the work done 
by the magnetization fluctuations  is of ( )O V  , as seen from Eq. (3.4), even when the 

correlations are long-ranged making  all the other moments of the work fluctuations  

proportional to 2 2 3/ /L L V L⊥ = .  In Sec IV, we saw the effect of this showing up in the 

construction of the work probability distribution ( )Wρ from the moment generating 

function ( )K t . If we use only the 1n =  and 2n =  terms of the infinite series in Eq. ( 4.1 ), 

we get the Gaussian probability distribution shown in Eq. (4. 16a). If we want to calculate 
the tail of ( )Wρ ,then we need a closed form for ( )K t which can be obtained from the 

large- n  terms of Eq. (4.1 ). The average value of W that one infers from this exercise is 
necessarily of ( / )O V L . This Appendix  describes how one interpolates the probability 

distribution from the very small values of W to values of the ( / )O V L  and to even larger 

ones.  
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In the case of  short- ranged correlations, as shown in Eq. (1.3), the average W  is of ( )O N  

which is the same as ( )O V and the distribution is centred round this average. The 

distribution is also very sharp and a departure of (1)O from the mean results in a 

suppression of the probability by the factor (exp( ))O N− . This is what causes the large value 

of εΩ , the fluctuation in ( )exp W− which is almost negligible at the peak of the distribution .  

For the long- ranged correlations  we see that the distribution for 0W → is given by the 

structure ( see Eq. ( 4.18a) ), 
22

2( ) exp ln
L WW

WL
ρ ⊥

⎛ ⎞⎡ ⎤⎜ ⎟∝ − ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
, where the scale  W is  found to 

be  proportional to 2L⊥  ( ( / )O V L ) and  the overall scale of the distribution is 
2 2 3/ /L L V L⊥ ∝ . This form holds for W <<W  and  produces a long-lived tail compared to the 

short-ranged case where the prefactor of the logarithm is proportional to V . We note that 

if W and W  are of the same order, then the magnitude ( )Wρ  is 
2

2(exp ( ))
L

O
L

⊥− . This is the 

same kind of probability distribution that one obtains from the ( )Wρ  of Eq. (4.18b ) . Thus 

the low- W  form of Eq. (4.18a ) merges into the Gaussian of Eq. ( 4.18b ). However , using 
the Gaussian of Eq. (4. 16a ) which gives the average of W correctly, we get a similar order 

of ( )Wρ only when 1/W W L− ≈ . 

Thus , the picture that emerges is that one has  a  Gaussian distribution  which actually takes 
note of the fact that W〈 〉 is ( )O V  and we can  write this distribution as  

2 2( ) exp( ( 1) )WW L
W

ρ ⊥∝ − −
< >

 in the vicinity of W  .  Clearly , if we consider values of 

1W
W

−  which are (1 / )O L , then the probability coming from such a distribution merges  

with  the values obtained from the distribution found in Eq. (4.16) which in turn merges with 
the small W tail ( as also the large W tail) in the appropriate limit.  Given this, if we write the 
work probability distribution as 

 

2

2 1)

( )
WL
WW eρ

⊥

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠∝                (A1) 

then  

 ( )2 22 2/ 2flW W W W L⊥= − =            (A2) 

Setting 2W L Lσ ⊥= , where σ  is a number of O(1),  2 2 2 2 / 2flW L Lσ ⊥=  and comparing 

with the exact answer of Eq. ( 3.14  )  we find that  
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2

2 1
3

h
MJ

σ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                     (A3) 

 We can now evaluate the moments nWe−  and find 

 

22 2
4

2
1 1
6 6 h

L hL
ALMJLe eπ πε

⊥ ⎛ ⎞
⎜ ⎟
⎝ ⎠

Ω = =          (A4) 

in exact accordance with what was reported in Ref [28] and obtained in Eq. (4.21 ). This is 

also of the same form as in Eq. (4.24) , the only difference being  in the prefactor of 4
hAL .  

As for W >> W , we note that the tail expressed by Eq. (4.18c) gives a ( )Wρ of 

2

(exp )
L

O
L
⊥⎛ ⎞

− ⎜ ⎟⎜ ⎟
⎝ ⎠

. The distribution ( )Wρ of Eq. (A1) gives a result of same order for 

11W O
W L

⎛ ⎞− ≈ ⎜ ⎟
⎝ ⎠

. The above discussion supports the following picture for the work 

distribution function: 

i) It is centred at W  of (O W  with W  proportional to the volume of the system 

as shown in Eq. (A1) and its width is proportional to 2 2L L⊥ . 

ii) The tail of the distribution ( 0W → . .i e 2W L⊥<< ) is proportional to 

21exp lnA
W

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 and the distribution of Eq. (A1) merges into this tail for 

1W W
L

− >  

iii) For 
1( )W W O
L

− > , the distribution of Eq. (A1) merges with the large W tail 

of Eq. (4.18c) 

The weakening of the mean square fluctuation is due to the presence of the prolonged 
0W ≈ tail in the distribution function. 
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