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ABSTRACT 1	

We establish the kinetics of the ballistic-to-diffusive (BD) transition observed in 2-dimensional 2	

random walk using directional statistics. Directional correlation is parameterized using the 3	

walker’s turning angle distribution which follows the commonly adopted wrapped Cauchy 4	

distribution (WCD) function. During the BD transition, the concentration factor (ρ) governing 5	

the WCD shape is observed to decrease from its initial value. We next analytically derive the 6	

relationship between effective ρ and time, which essentially quantifies the BD transition rate. 7	

The prediction of our kinetic expression agrees well with the empirical datasets obtained from 8	

correlated random walk simulation. We further connect our formulation with the conventionally 9	

used scaling relationship between the walker’s mean-square displacement and time. 	  10	
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I. INTRODUCTION 11	

A century ago, Einstein theorized the existence of a ballistic regime in Brownian motion 12	

at infinitesimally small timescales [1,2]. This prediction was recently validated in experiments 13	

involving high temporal-resolution particle-tracking techniques [2,3] or conducted in rarefied 14	

surrounding environment [4,5]. The ballistic-to-diffusive (BD) transition, however, is not limited 15	

to Brownian systems driven by thermal fluctuation. A vast body of multidisciplinary research 16	

findings have witnessed a transient ballistic regime before the full-development of diffusive 17	

motions. Examples include the random walk of atom clusters [6,7], particle advection in weak 18	

turbulence [8,9], bacterial migration [10] and animal foraging activities [11,12]. The kinetics of 19	

BD transition determines the critical timescale corresponding to the onset of diffusion and 20	

subsequent applicability of the diffusive approximation. Despite its wide practical significance, a 21	

generalized mathematical formulation of the transition kinetics remains elusive. Langevin’s 22	

formulation, involving an exponentially decaying velocity auto-correlation function [1-3], has 23	

limited applicability in describing the BD transition observed in semi-empirical, non-Brownian 24	

systems. When formulating a generalized kinetic expression, the difficulty arises from the 25	

multitude of system-specific driving mechanisms, as well as the order-of-magnitude variances in 26	

system length-scales [7,8,10,11]. One viable approach is to interpret the BD transition from a 27	

statistical perspective, and past attempts have been made on this front using the central limit 28	

theorem (CLT) [7,13]. Although it can satisfactorily explain the diffusive tendency of the 29	

random walk at large timescale, CLT ultimately fails to capture and parameterize the transition 30	

kinetics.  31	

 Here we interpret the BD transition in 2-dimensional (2-d) space using directional 32	

statistics [14-16]. More specifically, the subject of investigation is the probability distribution (P) 33	
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of the walker’s turning angle (θ) which describes the correlation between the successive steps of 34	

motion. Experimentally, the acquisition of P(θ) is done using single-particle tracking techniques; 35	

currently, such techniques find extensive use in the study of cell dynamics [17-21]. In the field of 36	

ecology, knowledge of P(θ) is critical for in reconstructing the trajectory of animal movement 37	

based on which search strategies are inferred [11, 12]. Given the importance of P(θ), here, we 38	

emphasize its role on broadly characterizing stochastic motion itself. If the motion is strictly 39	

ballistic, angle θ could only take value of 0 and the probability density of θ = 0 is infinitely large; 40	

thus, P(θ) is a Dirac delta function written as δ(0) [11,14-16]. The 2-d diffusion, on the other 41	

hand, is random walk manifesting an equiprobability of θ within the complete range between -π 42	

to π, and therefore, P(θ) is a constant function of 1/(2π) [11,14-16]. During the BD transition, the 43	

dissipation in the correlation of the random walk could be captured by the evolution of P(θ) from 44	

δ(0) to 1/(2π) when the timescale increases by order-of-magnitude. In directional statistics, one 45	

of the mathematical expressions that could capture this evolution is the wrapped Cauchy 46	

distribution (WCD) function [11,14-16]. Eq. (1) shows the formulation of WCD function 47	

centered at θ = 0, 48	

𝑃 θ,𝜌 =
1− 𝜌!

2𝜋 1+ 𝜌! − 2𝜌 cos θ ;  θ ∈ −𝜋, 𝜋                                    (1)	

where ρ ∈ [0, 1] is the concentration factor that governs the shape of the distribution [11,14-16]. 49	

When ρ approaches 1 and 0, the WCD function asymptotes to the two extremities, δ(0) and 50	

1/(2π), respectively. The kinetics of BD transition could therefore be established by relating ρ 51	

with a timescale parameter.   52	

 We show in the subsequent paragraphs the BD transition observed in the stochastic 53	

motion which was numerically simulated using the correlated random walk (CRW) model. The 54	
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transition is tracked using the time-evolution of the random walker’s reorientation statistics, as 55	

well as the inflection observed in the scaling relationship of the walker’s mean-square 56	

displacement. Next, we formulate the kinetics of BD transition by establishing the mathematical 57	

relationship between the effective value of ρ and timescale. We conclude this paper by 58	

connecting our kinetic formulation with the spatio-temporal scaling relationship conventionally 59	

adopted in previous work [1,2,6-12].     	60	

II. METHODS 61	

 The CRW simulation follows the procedure introduced in Refs [11,22]. A 2-dimensional 62	

(2-d) unbounded, Cartesian space was created and the random walker was initially placed at the 63	

origin O (x = 0, y = 0, t = 0), where x and y represent the 2-d coordinates. The parameter t 64	

represents simulation time which increments by unit timescale τ1.  At the beginning of each 65	

timestep, a turning angle θ is randomly generated per the WCD function governed by a fixed 66	

shape factor ρ1, where subscript 1 indicates its correspondence to the unit timescale τ1. The 67	

random generation of θ follows the cumulative inversion method outlined in Ref [22]. Next, the 68	

random walker moves according to the direction designated by θ with a constant step-length δ1. 69	

The algorithm repeats this procedure until the last timestep tn = 106τ1 is reached and the 70	

trajectory of the random walker is recorded as the set [x(t), y(t)].  71	

 From the trajectory dataset [x(t), y(t)], the walker’s time-averaged mean-square 72	

displacement 𝛿!  was calculated in a manner similar to that introduced in Ref [23,24]: 73	

𝛿! =
𝜏!

𝑡! − 𝜏
𝑥 𝑡 + 𝜏 − 𝑥 𝑡 ! + 𝑦 𝑡 + 𝜏 − 𝑦 𝑡 !

!!!!

!!!! 

                          (2) 
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where τ represents a finite time interval divisible by τ1. The walker’s turning angle θ 74	

corresponding to timescale τ was calculated from its trajectory, specifically every three 75	

successive locations written as 𝑥 𝑡 ,𝑦 𝑡 , 𝑥 𝑡 + 𝜏 ,𝑦 𝑡 + 𝜏  and 𝑥 𝑡 + 2𝜏 ,𝑦 𝑡 + 2𝜏 . The 76	

detailed numerical method for this calculation is included in appendix A. We next divided the 77	

complete range of θ from -π to π equally into 500 bins and obtained P(θ) empirically by counting 78	

the frequency of θ within each bin. The effective value of ρ at τ was determined by performing 79	

the least square fit to the corresponding P(θ) datasets per Eq. (1).  80	

III. RESULTS AND DISCUSSION 81	

Figure 1 shows the random walk generated using a WCD function with ρ1 = 0.95.  The 82	

walker’s trajectories observed under different timescales are colored in gray [τ = τ1] and black [τ 83	

= 103τ1]. When τ increases by order-of-magnitude, the correlation between successive steps of 84	

the motion becomes elusive and a Brownian-like random walk behavior manifests.  85	

 

FIG 1. Examples of the random walk simulated using a WCD function with ρ1 = 0.95. The 
walker’s trajectories observed under normalized timescale τ/τ1 = 1 and 103

 are colored in gray 
and black, respectively.  
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Figure 2 (a) shows the scaling relationship between the walker’s normalized mean-square 86	

displacement and timescale  𝛿! 𝛿!! ∝ 𝜏 𝜏! !. The BD transition could be inferred from the 87	

inflection in the power-law relationship, which is signified by the decrease in the exponent γ 88	

from 2 to 1 [1,2,6-12]. Corresponding to the regime in which the inflection takes place, we show 89	

the evolution of the walker’s P(θ) in Figure 2(b). When timescale of observation is small, for e.g. 90	

τ/τ1 = 4, P(θ) is centralized at θ = 0 and manifests a sharp peak. With increase in τ/τ1 by two 91	

orders of magnitude, P(θ) broadens and approaches uniformity. This evolution has been 92	

previously observed from particle tracking experiments conducted in biological systems [25]. 93	

Qualitatively, one could predict the onset of normal diffusion based on the increase in the width 94	

at half minimum of P(θ). Quantitatively, we performed least square fitting on the measured P(θ) 95	

datasets [circles] per the WCD function [red lines] and good agreement was observed. The 96	

effective value of ρ is seen to decrease from ρ1 as τ/τ1 increases [These values are labeled in the 97	

sub-panels of Figure 2 (b)]. 98	
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FIG. 2 (a) Normalized time-averaged mean-square displacement 𝛿! 𝛿!!  as a function of 
normalized timescale 𝜏 𝜏!for the random walk simulated with ρ1 = 0.95. Straight lines in the 
log-log plot have slopes of 2 and 1, corresponding to the values of scaling exponent γ for ballistic 
motion and diffusion, respectively. (b) Evolution of the walker’s turning angle distribution P(θ) 
with 𝜏 𝜏! increasing from 4 to 128. Circles represent the P(θ) datasets empirically obtained from 
the CRW simulation. Red lines follow the WCD function [Eq. (1)] parameterized by the 
corresponding values of ρ shown in each subpanel. 

The WCD function is not only limited to parameterizing the shape of P(θ) at unit 99	

timescale, it also accurately predicts the evolution of distribution shape with increasing τ. We 100	

analytically derive the mathematical relationship between the effective ρ value and τ. Our 101	
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derivation is based on correlating the probability density of turning angles observed with 102	

increasing timescales as: 103	

𝜏!! = 2𝜏!                                                                        (3) 

where τi represents any arbitrary timescale and τ2i represents the timescale twice larger than τi. 104	

Our goal here is to establish the relationship between the corresponding ρ2i and ρi. Figure 3(a) 105	

shows that when the motion is observed with timescale τi, the random walker is seen at five 106	

successive locations [black dots]. From these five locations, three successive turning angles 107	

could be identified and they are written as θi,1, θi,2 and θi,3. When the timescale increases by two 108	

[that is τ2i], the walker could only be seen at three locations [blue dots in Figure 3(b)], giving rise 109	

to one turning angle written as θ2i. This geometric presentation in Figure 3 implies that once 110	

three successive turning angles {θi,1, θi,2, θi,3} are observed at any timescale, one definite turning 111	

angle θ2i will be conceived at the timescale twice larger. Assuming the magnitude of 112	

displacement δi during τi to be constant, those turning angles could be related per the following 113	

relationship: 114	

θ!" = θ!,! +
1
2 (θ!,! + θ!,!)                                                         (4) 

where counter clock-wise is regarded as the positive direction for angles. Noting the probabilities 115	

for the onset of θi,1, θi,2 and θi,3 to be P(θi,1), P(θi,2) and P(θi,3), respectively, we write the 116	

probability for the successive occurrence of {θi,1, θi,2, θi,3} as the product P(θi,1)P(θi,2)P(θi,3). Here 117	

we assumed the onset of successive turning angles to be independent events, which differs 118	

fundamentally from the persistent random walk model introduced and adopted elsewhere [26]. 119	

The probability P(θ2i) then could be calculated by summing P(θi,1)P(θi,2)P(θi,3) for all exclusive 120	

combinations of {θi,1, θi,2, θi,3} that satisfies Eq. (4). This relationship could be written as: 121	
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𝑃 θ!",𝜌!" = 𝑃 θ!,!,𝜌! 𝑃 θ!,!,𝜌! 𝑃 θ!,!,𝜌!
!!,!!

!
! !!,!!!!,! !!!"

                       (5) 

Solving Eq. (5) with any arbitrary θ2i yields the relationship between ρ2i and ρi.  122	

 

 FIG. 3 (a) The random walker is seen at five locations (black dots) when the motion is observed 
with timescale τi, which gives rise to three successive turning angles θi,1, θi,2 and θi,3. (b) When 
the timescale increases by two, that is τ2i, the walker could only be seen at three locations (blue 
dots). Correspondingly one turning angle θ2i is conceived. Vectors shown in black δi and blue δ2i 
represent the net displacements of the walker during τi and τ2i, respectively. The magnitude of δi 
is assumed to be constant. 

 We demonstrate the solution to Eq. (5) with θ!" = 0 as an example [and note that solving 123	

the equation with other θ!" should yield the same result]. The first independent variable θi,1 takes 124	

value freely within the complete range between -π to π, however, it takes value from the 125	

complete range twice until all exclusive outcomes are exhausted. The second independent 126	
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variable θi,2 takes value in the range defined by θi,1, specifically, θ!,!,!"# = − !
!
θ!,! + 𝜋  and 127	

θ!,!,!"# = − !
!
θ!,! − 𝜋  [ Enumeration of θi,1 and θi,2 is detailed in Appendix B and C 128	

respectively]. Once both θi,1 and θi,2 are specified, there exists a unique θ!,! = −θ!,! − 2θ!,! 129	

which satisfies the premise θ!" = 0. The Eq. (5) therefore yields to: 130	

𝑃 θ!" = 0,𝜌!" = 2 𝑃 θ!,!,𝜌!
!!! !!,!!!

!!,!!!
!
! !!,!!!

𝑃 θ!,!,𝜌! 𝑃 − θ!,! + 2θ!,! ,𝜌! dθ!,!dθ!,!
!

!!,!!!!
 

(6) 

The right-hand side of Eq. (6) was solved using Monte-Carlo integration [27] and the resultant 131	

relationship between ρ2i and ρi is plotted in Figure 4 as the solid line. The empirical datasets of 132	

ρ2i(ρi) determined from CRW simulation (shown as circles) agrees with the solution to Eq. (6). 133	

The dash-dot line in Figure 4 follows a hypothetical relationship 𝜌!" = 𝜌! and it connects with 134	

the solution of Eq. (6) only at the two extremities: 𝜌!" = 𝜌! = 1 and 𝜌!" = 𝜌! = 0. These two 135	

connections imply that strict ballistic motion and fully-developed diffusion will remain so, 136	

independent of the changing timescale. On the other hand, when 0 < 𝜌! < 1, the solution to Eq. 137	

(6) always resides below the hypothetical 𝜌!" = 𝜌! line. This dictates that ρ will always decrease 138	

with increasing τ, or in other words, the correlated random walk appearing ballistic will 139	

eventually manifest as diffusive upon prolonged observation. Our findings here agree with 140	

Bartumeus et. al’s work wherein they showed that the inflection in the random walker’s 𝛿!  141	

scaling relationship [decrease in γ from 2 to 1] is inevitable, regardless of how close ρ1 is to unity 142	

[11]. To conclude this part of discussion, we put forth the simpler expression in Eq. (7) which is 143	

obtained by performing a least square fit on the numerical solution to Eq. (6):  144	
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𝜌!!
𝜌!

=
1
2 𝜌!! + 1                                                                (7) 

Note that the aforementioned deductions based on Eq.(6) is also captured by Eq. (7). Figure 5 (a), 145	

(b) and (c) shows the decrease in the effective value of ρ as a function of normalized timescale 146	

τ/τ1 for random walkers starting with ρ1 = 0.99, 0.95 and 0.50, respectively. The ρ values 147	

calculated using Eq. (6) and (7) are compared with that determined from CRW simulation. 148	

 

FIG 4. Relationship between ρ2i and ρi. Solid line follows the solution to the analytical equation 
(6). Circles represent empirical datasets obtained from CRW simulation by performing least 
square fitting to the measured P(θ) at changing τ. Dotted line follow Eq. (7). The dash-dot line 
represents a hypothetical relationship 𝜌!" = 𝜌!. 

We next connect the directional statistic interpretation of BD transition with the 149	

conventional spatio-temporal scaling relationship 𝛿!  ∝ τγ of the random walker. Per Figure 3(b) 150	
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the walker’s net displacement δ2i during τ2i could be related to the turning angle θi observed with 151	

τi [assuming constant net displacement δi during τi], that is 𝛿!"(θ!) = 2𝛿!cos θ! 2 . Substitute 152	

the constant δi by 𝛿!! !/! and the relationship yields to 𝛿!"(θ!) = 2 𝛿!! !/!cos θ! 2 . Next, the 153	

ratio 𝛿!"! 𝛿!!  equals to the trigonometric moment of the WCD function parameterized by ρi: 154	

                                  𝛿!"! 𝛿!! = 4 cos! θ! 2 𝑃 θ!,𝜌!
!

!!
dθ!                                            (8) 

The exact analytical solution to Eq. (8) is: 155	

                                  𝛿!"! 𝛿!! = 2 𝜌! + 1                                                             (9) 

Generalization of Eq. (9) yields the expression for the walker’s normalized mean-square 156	

displacement 𝛿!!
! 𝛿!! corresponding to timescale 𝜏!!/𝜏! (where n is positive integer): 157	

𝛿!!
! 𝛿!! = 2! 𝜌!!!! + 1

!

!!!

                                                          (10) 

The solutions to equation sets (10) and (6) with ρ1 = 0.99, 0.95 and 0.50 are plotted in Figure 5 158	

(d)-(i) as the solid lines. Circles represent the empirical dataset obtained from the simulated 159	

random walk [ 𝛿! 𝛿!! is calculated using Eq. (2) for simulation]. The comparison shows that 160	

our analytical solution gives accurate prediction to magnitude of the walkers 𝛿!  as well as the 161	

earliness of BD transition. Eq. (10) could be also solved along with the simple expression of Eq. 162	

(7), which gives reasonably accurate results (squares). Fig. 5 also shows that although the 163	

diffusive regime manifests earlier in the case of smaller ρ1, the shape of the decreasing trends of 164	

γ and ρ appears invariant. This is because it always takes a fixed amount of time for ρ to decrease 165	

from one specific value to another per Eq. (6) [or (7)].  166	
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FIG 5. (a), (b) and (c) show the decrease in the effective value of ρ for random walker starting 
with ρ1 = 0.99, 0.95 and 0.50, respectively. (d)-(f) show the corresponding normalized 
𝛿! 𝛿!!~ 𝜏 𝜏! ! scaling relationship. (g)-(i) show the evolution of the scaling exponent γ. In 

(a)-(c) solid lines represent solutions to equation Eq. (6). Circles represent empirical datasets 
obtained from CRW simulation. Squares follow Eq. (7). In (d)-(i) solid line represents solution to 
equation sets (6) and (10). Circles represent empirical datasets calculated from CRW simulation 
using Eq. (2). Squares represent solution to equation sets (7) and (10). 

Rearranging Eq. (9) yields the relationship between γ2i and ρi: 167	

𝛾!" = 1+ log! 𝜌! + 1                                                              (11) 

which when solved with Eq. (6) or (7) provides the relationship between γ and ρ at a given τ. 168	

Figure 6 shows the relationship between γ and ρ obtained using our analytical formulations (solid 169	
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and dotted lines) and from CRW simulation (circles). Good agreement is observed between the 170	

datasets.   171	

 

FIG 6. Relationship between γ and ρ. Solid line represents the solution to the equation set (11) 
and (6). Circles represent empirical datasets obtained from CRW simulation. Dotted line 
represents the solution to equation set (11) and (7).  

V. CONCLUSION 172	

We now bring together our major findings and conclude this work. Relationship between 173	

the two parameters ρ and τ is formulated using Eq. (6) [or (7)], and therefore the kinetics of BD 174	

transition is quantified. The one-to-one correspondence between ρ and γ is established using Eq. 175	

(11), such that our kinetic expression is tied to the conventionally used spatial-temporal scaling 176	
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power-law. Figure 7 shows the contour plots for γ as a function of ρ1 and τ/τ1. Using this figure, 177	

one could roughly estimate the value of γ corresponding to a particular timescale. Use of the 178	

contour lines, however, is not recommended if an exact solution is desired. An accurate 179	

estimation of γ requires solving of the equation set (6) [or (7)] and (11). In addition, we 180	

emphasize that the robustness of WCD function in describing the walker’s turning angle 181	

distribution remains to be tested experimentally for more complicated random walk processes, 182	

for example, particle motion in three-dimensional space with or without geometric confinements. 183	

The evolution of reorientation statistics for the random walk characterized with changing step-184	

length distribution also requires further investigations [11]. We also point out that WCD is not 185	

the only function that finds applications in parametrizing random walk observed experimentally; 186	

future work will be directed toward generalizing the formulation presented in this work to the 187	

family of wrapped distribution functions [14-16].  188	
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FIG 7. Contour plots of γ as a function of ρ1 and normalized timescale τ/τ1.	  
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APPENDIX A: DETERMINING θ FROM TRAJECTORY 226	

The turning angle θ of could be determined from three successive positions of the walker, 227	

𝑥 𝑡 ,𝑦 𝑡 , 𝑥 𝑡 + 𝜏 ,𝑦 𝑡 + 𝜏  and 𝑥 𝑡 + 2𝜏 ,𝑦 𝑡 + 2𝜏 , which are termed as A, B, and C, 228	

respectively. We calculate θ by finding the angle of BC relative to AB. Note that θ takes value 229	

between -π to π and counterclockwise is regarded positive for angle. Define φAB to be the angle 230	

of vector AB relative to positive x-axis. Note that φAB ∈ [0, 2π), and it increases as AB rotates 231	

around A along counterclockwise direction [φAB = 0 when AB is parallel to x and points to the 232	

positive direction]. We calculate the φAB as follows: 233	

𝜑!" = 𝑘π+ arctan
𝑦 𝑡 + 𝜏 − 𝑦 𝑡
𝑥 𝑡 + 𝜏 − 𝑥 𝑡  

and  𝑘 =
0      if 𝑥 𝑡 + 𝜏 > 𝑥 𝑡  and 𝑦 𝑡 + 𝜏 > 𝑦 𝑡  
1                                              if 𝑥 𝑡 + 𝜏 < 𝑥 𝑡
2      if 𝑥 𝑡 + 𝜏 > 𝑥 𝑡  and 𝑦 𝑡 + 𝜏 < 𝑦 𝑡

                           (A1) 234	

Similarly, we calculate the angle φBC of vector BC relative to positive x-axis: 235	

𝜑!" = 𝑘π+ arctan
𝑦 𝑡 + 2𝜏 − 𝑦 𝑡 + 𝜏
𝑥 𝑡 + 2𝜏 − 𝑥 𝑡 + 𝜏  

and  𝑘 =
0      if 𝑥 𝑡 + 2𝜏 > 𝑥 𝑡 + 𝜏  and 𝑦 𝑡 + 2𝜏 > 𝑦 𝑡 + 𝜏  
1                                                        if 𝑥 𝑡 + 2𝜏 < 𝑥 𝑡 + 𝜏
2      if 𝑥 𝑡 + 2𝜏 > 𝑥 𝑡 + 𝜏  and 𝑦 𝑡 + 2𝜏 < 𝑦 𝑡 + 𝜏

               (A2) 236	

At last, we calculate θ using φAB and φBC: 237	

θ = 2𝑚π+ 𝜑!" − 𝜑!" 

and  𝑚 =
0                                           if 𝜑!" − 𝜑!" < 𝜋
−1        if  𝜑!" − 𝜑!" > 𝜋 and 𝜑!" > 𝜑!"
1            if  𝜑!" − 𝜑!" > 𝜋 and 𝜑!" < 𝜑!"

                            (A3)  238	



20	
	

APPENDIX B: ENUMERATION OF θi,1 239	

Define that a walker is seen at positions O, A, B, C and D when t increments by τi. Fig. 8 240	

demonstrates the relationship between the turning angles and the corresponding vector pairs. 241	

Note that the following discussion is based on the assumption that the net displacement δi during 242	

τi is constant, or OA = AB =  BC = CD = 𝛿!. The counter-clockwise direction is regarded 243	

positive for angles. 244	

 

FIG. 8. When the walker is observed with timescale τi, it is seen at five successive locations O, 
A, B, C and D.  

Next, set up a Cartesian coordinate with O serving as the origin and OB representing the 245	

positive x-axis [Fig. 9]. Define ω to be the angle of OA relative to positive y-axis. One could 246	

observe that the range for θi,1 is unrestricted, and θi,1 takes value from 0 to −2𝜋 twice before all 247	

possible configurations are exhausted. Specifically, an enumeration is outlined in the following: 248	

(i). When ω decreases from 0 to −𝜋/2, correspondingly A migrates from (0, 𝛿!) through 249	

the 1st quadrant to (𝛿!, 0),  θ!,! increases from −𝜋 to 0.  250	

(ii) When ω decreases from −𝜋/2 to −𝜋, correspondingly A migrates from (𝛿!, 0) 251	

through the 2nd quadrant to (0, −𝛿!),  θ!,! increases from 0 to 𝜋. 252	
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(iii). When ω decreases from  −𝜋 to −3𝜋/2, correspondingly A migrates from (0, −𝛿!) 253	

through the 3rd quadrant to (−𝛿!, 0), θ!,! increases from −𝜋 to 0.  254	

(iv). When ω decreases from  −3𝜋/2 to −2𝜋, correspondingly A migrates from (−𝛿!, 0) 255	

through the 4th quadrant to (0, 𝛿!), θ!,! increases from 0 to 𝜋.  256	

 

FIG. 9. Enumeration of θi,1.	  
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APPENDIX C: ENUMERATION OF θi,2  257	

 The range for θi,2 is discussed under the condition that both θi,1 and θ2i are specified. Note 258	

that θi,1 could take any arbitrary value but θ2i = 0. Per Fig. 10 segment PQ which is perpendicular 259	

to x-axis passes it through B. The half-circle [dashed curve] has a radius of 𝛿! and it intercepts 260	

with the x-axis at R. Note that since vector OB is set as positive x, the condition θ2i = 0 requires 261	

that BD also resides on x-axis and points to the positive direction. In other words, vector CD has 262	

to connect with x-axis at the position D satisfying xD > xB. 263	

  

FIG. 10. Enumeration of θi,2. 

The half circle 𝑃𝑅𝑄 exhausts all possible positions for C under the premise of θ2i = 0. In other 264	

words, C could only reside on 𝑃𝑅𝑄 such that the vector CD could subsequently connect x-axis at 265	

D with a constant length 𝛿!. The maximum and minimum of θi,2 [indicated in Fig. 10 by the red 266	
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arrows] are dictated by the value of θi,1, which could be written as: θ!,!,!"# = − !
!
θ!,! + 𝜋  and 267	

θ!,!,!"# = − !
!
θ!,! − 𝜋 . 268	


