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Flows in hoppers and silos are susceptible to clogging due to the formation of arches at the
exit. The failure of these arches is the key to re-initiation of flow; yet the physical mechanism of
failure is not well understood. Experiments on vibrated hoppers exhibit a broad distribution of the
duration of clogs. Using numerical simulations of a hopper in two dimensions, we show that arches
become trapped in locally stable shapes that are explored dynamically under vibrations. The shape
dynamics, preceding failure, break ergodicity and can be modeled as a continuous time random walk
(CTRW) with a broad distribution of waiting, or trapping times. We argue that arch failure occurs
as a result of this random walk crossing a stability boundary, which is a first-passage process that
naturally gives rise to a broad distribution of unclogging times.

Introduction Flows constrained by boundaries and
driven towards an opening can arrest spontaneously due
to the formation of an arch spanning the outlet [1, 2]. Un-
derstanding the physical properties of arches is thus cru-
cial for preventing clogging of grains in silos or pedestrian
traffic [1, 3–5]. The distribution of time intervals between
clogging events is observed to be exponential [6–10]. In
contrast, clog durations in vibrated silos [1, 2] or inter-
mittent flows [11, 12], exhibit a broad distribution, which
poses a challenge for devising efficient unclogging proto-
cols. In this work, we identify the physical mechanism
underlying the unclogging process as activated dynamics
in a space of arch shapes. Using molecular dynamics sim-
ulations (MD) of a vibrated hopper (Fig. 1), we map out
the dynamics of arches in a landscape of “shape” traps.

We observe a large variation in the stability of shapes
(Fig. 2). The simplest mathematical representation of
the dynamics is a continuous time random walk (CTRW)
with a broad distribution of waiting times between steps,
ψ(t), which we determine through analysis of the arch dy-
namics. Such CTRWs are known to break ergodicity [13],
and arise in trap models of glasses [14]. We demonstrate
that the arch-dynamics indeed breaks ergodicity. The
distribution of unclogging times is compatible with the
distribution of times of “first passage”[15] of the CTRW
to a boundary of stability in the space of arch shapes.
Our numerical results are consistent with a recent anal-
ysis of unclogging experiments [16] using a trap model
description of arch failure where the distribution of trap
depths is broader than an exponential. To our knowl-
edge, our simulations are the first to provide a detailed
view of the dynamics of arch shapes leading up to the
failure.

Numerical Simulations We perform MD simulations
using LAMMPS [17] in a quasi two-dimensional (2D)
hopper geometry (Fig 1). Analogous to experiments,
where spherical grains are enclosed between two plates [1,
2], we constrain grains to move in the plane of the hop-
per. The grains interact via a Hertzian force law. The

coefficient of static friction between the grains is µg = 0.8.
A 50−50 mixture of bidisperse spheres with diameter ra-
tio 1 ∶ 1.2 are randomly distributed inside the hopper,
allowed to settle under gravity with the opening closed,
then allowed to flow until a clog forms. The ensemble
of clogged configurations that had a grain depth of at
least 1.5 times the hopper width, W (details in [18]),
are subjected to vibrations to unclog the flow. The
inclined walls at the base are displaced vertically at a
fixed frequency f = 10 (g/d1)

1/2, and varying amplitudes
A = 1–5 × 10−3 d1. The vibration strength is charac-
terized by the maximum acceleration, Γ = 4π2f2A that
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FIG. 1: (color online) (a) Hopper geometry with width
W = 20, height H = 100 filled with a bidisperse mixture of
∼ 1600 spherical grains. (b) Complementary cumulative
distribution function P (τ ; Γ, L) of the unclogging times for
opening size L = 4.2 and varying vibration amplitudes Γ. (c)
Sample five-angle arch with a single opening angle φ1

marked. The lower walls are formed from static, overlapping
grains of size d1, angled at 45○.
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falls in the range of Γ = 3.9–19.7 in units of the gravi-
tational acceleration g. All times are measured in units
of the vibration period Tvib = f

−1, and lengths are mea-
sured in units of d1, the small grain diameter. The ini-
tiation of flow is observed to be caused by arch fail-
ures except in rare cases where the entire arch slides
out through the opening before collapsing. The unclog-
ging time, τ , defined as the time between the start of
the vibrations to the first time the center of any grain
exits the outlet, is measured for each arch, and used
to estimate the probability distribution function (PDF),
p(t; Γ, L), and the complementary cumulative distribu-
tion function (CCDF), P (τ ; Γ, L) = ∫

∞

τ p(t; Γ, L)dt [19].
The distributions are constructed from ensembles with
N = 1744,1389,2718,1506,and 1469 different arches for
Γ = 3.9,7.9,11.8,15.8,19.7, respectively.

As shown in Fig. 1(b), P (τ ; Γ,4.2) reveals broad dis-
tributions of unclogging times that show a distinct trend
even over the limited range of driving amplitudes stud-
ied. As observed in experiments [2], P (τ ; Γ,4.2) becomes
broader as Γ is reduced, and the mean unclogging time
grows from ⟨t⟩ = 1.58 × 103 (Γ = 19.7) to ⟨t⟩ = 2.5 × 105

(Γ = 3.9). The shape of P (τ ; Γ,4.2) is characterized
by three distinct regions: (i) a fast decay due to arches
that break quickly, (ii) a slower decay characterized by a
plateau extending over several decades, and (iii) a final
fast decay. For the smallest amplitude, Γ = 3.9, 11 of
1744 arches remained clogged for longer than the maxi-
mum simulation time used Tsim = 2 × 106, and the shape
of P (τ ; Γ,4.2) can only be estimated up to Tsim. For all
other Γ, the simulation time was sufficient to break all
the arches. Unlike the experiments [2], we observe a fi-
nite cutoff time in these distributions. We investigate the
dynamics of the clogging arch at L = 4.2 to understand
the origin of the broad distributions of τ and their evo-
lution with Γ. For the hopper geometry used, P (τ ; Γ, L)
shows only a weak dependence on L. [18]
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FIG. 2: (color online) Time series of changes ∆φi(t) (in
radians, relative to the initial opening angle φi(0)) to the
opening angles for two distinct five-angle arches (Nφ = 5)
unclogged using the same vibration amplitude Γ = 11.8. The
unclogging times are t = 89,107 (a) and t > 100,000 (b). The
different angles within the arch (different colors within a
panel) show correlated evolution in time. The arches
undergo a series of reconfigurations, with changes to the
angles as large as 30○ = 0.52 rad.

Arch Shape Dynamics The clogging arch is identified
as the lowest chain of Ng grains spanning the distance
between the outlet walls. The shape of the arch is pa-
rameterized by Nφ = Ng−2 opening angles φi(t) (Fig. 1c).
At L = 4.2, arches with Nφ = 3,4,and 5 dominated the
ensemble [18]. In response to vibrations, multiple φi(t)
reconfigure simultaneously to change the shape of the
arch (Fig. 2, and [18]). Reconfigurations of arch shape
are characterized by bursts of large changes interspersed
with interludes of relatively small changes. Fig. 2 shows
that there are large variations in the dynamics from arch
to arch. To study the dynamics, we characterize the arch
shape by the Nφ dimensional vector of opening angles
∣φ(t)⟩ = (φ1(t), .., φNφ(t)). Since a large enough defor-
mation of the arch should always break it, we expect
that the phase space of stable arch shapes has a finite
size. A wide range of stable arch shapes are observed, in-
cluding cases with grains hanging below their neighbors,
i.e., φi > 180○, which suggests the stability boundary in
this space has a complicated shape.

TAMSD and Ergodicity Breaking At a given (Γ, L),
we construct an ensemble of arches with a given, fixed
number of grains, and treat them as random walkers at
“positions” ∣φ(t)⟩. The distribution of unclogging times
is given by the distribution of first-passage times to a
boundary of stability in this space.

The time-averaged mean-squared displacement
(TAMSD)[20–23] for each arch is defined as:

δ2
(∆, T ) =

1

T −∆
∫

T−∆

0
⟨δφ(t,∆)∣δφ(t,∆)⟩dt, (1)

where ∣δφ(t,∆)⟩ ≡ ∣φ(t +∆)⟩ − ∣φ(t)⟩ is the dis-
placement vector, ∆ the lag time, and T the total
time elapsed since the initiation of vibration. The
ensemble-averaged mean-squared displacement (MSD),
without any time averaging, is calculated as ⟨φ2(t)⟩ =

1
N(t) ∑

m=N(t)
m=1 ⟨φ(t) − φ(0)∣φ(t) − φ(0)⟩m, where the index

m indicates individual arches [18]. Properties of the
stochastic process can be inferred from the ensemble-
averaged TAMSD, ⟨δ2(∆, T )⟩, and the MSD.

For a simple random walk, the δ2(∆, T ) are narrowly
distributed around their mean ⟨δ2(∆, T )⟩. Consequently,
the TAMSD for a single walker approaches the ensemble-
averaged MSD: limT→∞ δ2(∆, T → ∞) = ⟨φ2(t = ∆)⟩,
which grows linearly with time. In a CTRW, the TAMSD
are random variables [21, 24, 25]. For a waiting time
distribution limt→∞ ψ(t) ∼ t−1−α, with 0 < α < 1, CTRWs
break ergodicity: ⟨δ2(∆, T )⟩ differs from MSD [21, 24].
In addition, ⟨φ2(t)⟩ is found to be sub-diffusive with an
anomalous exponent α: ⟨φ2(t)⟩∝ tα [25], but ⟨δ2(∆, T )⟩
is diffusive in ∆, with the scaling form ⟨δ2(∆, T )⟩ ∼ ∆

T 1−α
(∆ << T ) [21, 24–26]. In our case, analysis of ∣φ(t)⟩
shows a sub-diffusive MSD [18] and diffusive or slightly
super-diffusive growth of ⟨δ2(∆, T )⟩ (Fig. 3), suggesting
a CTRW description for the arch dynamics. The waiting
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FIG. 3: (color online) (a), (b), (c), (d): Time-averaged
mean-squared displacements (TAMSD), δ2(∆, T ) and their
ensemble average, ⟨δ2(∆, T )⟩ (▲) shown for two sets of
five-angle arches unclogged with vibration amplitudes
Γ = 11.8 (left) and Γ = 3.9 (right). We contrast ensembles for
an intermediate and a long total averaging time, T = 5 × 103

(a), (b) and T = 4.5 × 104 (c), (d). All arches that survive for
times ≥ T are included. The black lines show a linear slope
∼ ∆, as expected for a subdiffusive CTRW with a power law
waiting time distribution. (e), (f): Scaling of ⟨δ2(∆, T )⟩ for
both sets of arches. The different symbols show ⟨δ2(∆, T )⟩
evaluated for fixed values of the lag time ∆ = 24 (∗), ∆ = 44
(●), ∆ = 81 (+), ∆ = 149 (▲), ∆ = 272 (▷), ∆ = 496 (▶),
∆ = 904 (▽), ∆ = 1649 (▼), ∆ = 3007 (◁), ∆ = 5,484 (◀).
The black line indicates a T dependence ∼ T −0.7=−1+0.3.

times in the CTRW are the times between significant
reconfigurations of the arch shapes. We infer the form of
ψ(t) from TAMSD and MSD measurements.

Fig. 3 shows δ2(∆, T ), and the ensemble average,
⟨δ2(∆, T )⟩, for two different ensembles with Nφ = 5 at
Γ = 11.8 and Γ = 3.9. These amplitudes were chosen
because their p(t; Γ, L) differ significantly. In addition,
there are a sufficient number of long-lived arches to pro-
vide adequate statistics for time and ensemble averag-
ing [18]. For T = 5000, there is a broad scatter in δ2(∆, T )
around ⟨δ2(∆, T )⟩ at both values of Γ. This broad scat-
ter is a signature of ergodicity breaking [21, 22, 27]. Some
details in the TAMSD behavior differ from the known fea-
tures of an ideal CTRW. For the longer averaging time
T = 45000, the broad scatter is still present at Γ = 3.9,
but there is narrowing at Γ = 11.8, which hints at a pos-

sible recovery of ergodicity. In addition, the ∆ scaling
of ⟨δ2(∆, T )⟩ emerges only for ∆ > ∆0 ≈ 102, indicating
a short-time cutoff in the the waiting time distribution.
Finally, for both amplitudes, the TAMSD shows a super-
diffusive slope in ∆ at long T . These details indicate ways
in which the arch dynamics differ from those of an ideal
CTRW. As we show below, the differences are heightened
in the first-passage process, and some can be reconciled
within a CTRW model by changing the form of ψ(t) from
a pure power law to an even broader distribution.

Effects of changing Γ Figs. 3 (e) and (f) illustrate
the T dependence of ⟨δ2(∆, T )⟩ for five-angle arches at
Γ = 11.8 and Γ = 3.9, over a range of ∆. The pre-
dicted scaling form, ⟨δ2(∆, T )⟩ ∼ ∆

T 1−α , is obeyed for
∆0 < ∆ << T . Within statistical errors, α ≃ 0.3 for
both values of Γ. However, ⟨δ2(∆, T )⟩ shows a change
in magnitude of ≈ 10, which corresponds to a decrease
in the effective diffusion coefficient Dα as the vibration
amplitude is decreased from Γ = 11.8 to 3.9. The same
reduction in magnitude is observed in ⟨φ2(t)⟩ [18].

In a CTRW, the properties of the random variable,
δ2(∆, T ), are characterized by the distribution φ(ξ) of
the scaled quantity ξ(∆, T ) = δ2(∆, T )/⟨δ2(∆, T )⟩. For
a pure random walk, this distribution approaches a delta
function δ(ξ − 1) at large T . In contrast, for a CTRW
with a power law distribution of waiting times, φ(ξ) ap-
proaches a universal form parametrized by the anomalous
exponent α at large ∆ and T [24]. φ(ξ) is a more sen-
sitive probe of the stochastic dynamics than ⟨δ2(∆, T )⟩.
In particular, the variance EB ≡ ⟨ξ2⟩ − ⟨ξ⟩2 provides a
quantitative measure of ergodicity breaking [24]. Mea-
surements of φ(ξ) for the same ensembles of arches used
in the TAMSD analysis are shown in Fig. 4. We find that
φ(ξ) depends only on the ratio ∆/T over a broad range
of ∆ and T [18]. We therefore compute φ(ξ), and EB
as a function of ∆/T , by averaging over different values
of ∆ and T . For ∆/T = 0.1–0.4, the results are roughly
independent of ∆/T . In this regime, EB is a sensitive
function of Γ, with values of 40 (6) at Γ = 11.8 (3.9).
Both values are much larger than the asymptotic pre-
diction, EB = 0.8, for the pure power law ψ(t) ≃ t−1−α

with α = 0.3 [24]. Fig 5 demonstrates that the distribu-
tions of unclogging times p(t; Γ, L), which correspond to
first passage times, are also broader than expected from
a power law CTRW with ψ(t) ∝ t−1−α, α = 0.3, and de-
velop extended plateaus as Γ decreases. These results
suggest that the waiting time distribution ψ(t) is itself
becoming broader as the vibration amplitude decreases
even though the TAMSD measurements are consistent
with α = 0.3, independent of Γ. We report below on the
first-passage properties of one particular model of ψ(t)
that reconciles the TAMSD and these p(t; Γ, L) results.

First Passage Time Simulations We performed nu-
merical simulations to compute the first-passage-time
distribution for a broadened waiting time distribution

ψ(t) ∝ ( α
at
)(αln(t))1/a−1e−(αln(t))

1/a
e−λt, with a ≥ 1,
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FIG. 4: (color online) Distributions φ(ξ) of the normalized

TAMSD ξ = δ2

⟨δ2⟩ for Γ = 11.8 (a) and Γ = 3.9 (b). The shapes

of the distributions, shown here for ∆/T = 0.1 and the
different T values in the legend, depend on the ratio ∆/T .
The averaged φ(ξ), black solid line, is used to compute the
EB at ∆/T = 0.1. Inset to (b): the EB parameter, ⟨ξ2⟩ − ⟨ξ⟩2

for amplitudes Γ = 3.9 (●) and Γ = 11.8 (▲) as a function of
∆/T , computed using averaged φ(ξ) over a range of
∆/T [18], is roughly constant in the range ∆/T = 0.1–0.4.
The dashed black line indicates the expected EB value for a
power law ψ(t) with α = 0.3.

which asymptotes to ∼ t−1−αe−λt for a = 1. This dis-
tribution, which can be derived from a trap model with
a stretched exponential distribution of barriers, becomes
increasingly heavy-tailed as a is increased. A stretched
exponential distribution of barriers has been shown to be
consistent with experimental results on unclogging [16].
The effect of increasing a is reasonably approximated by
a power law with exponent, αeff(a) that appears smaller
than the nominal α [18].

For simplicity, we investigate the process on a finite
1d lattice [18]. As expected [28, 29], the first passage
time distribution f(t) decays asymptotically as ∼ t−1−α

at a = 1. In contrast, for a > 1, the decay is slower than
∼ t−1−α, and the asymptotic forms depend on the lattice
size and the cutoff time scale 1/λ.

The distributions obtained from this model compare
well to the distribution, p(t; Γ, L), of unclogging times,
and indicate a increasing from 1 to ≃ 2 as Γ decreases
from 19.7 to 3.9 ( Fig. 5). The increasingly slower decay
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FIG. 5: (color online) Probability distribution functions
p(t; Γ, L) for the unclogging times measured for varying
vibration strengths Γ. These distributions are seen to have a
peak at short times followed by a broad, slow decay, and an
upper cutoff time at long times. Inset: Examples of
numerical first passage time distributions f(t) for a finite 1d
interval, see SI material [18]. For a pure power law waiting
time distribution ψ(t) (inset a = 1), the first passage time
distribution f(t) has the same power law, but a “stretched”
ψ(t) (inset a = 2) produces a broader tail in f(t). Solid lines
are included as guides for the eye.

of the distributions is consistent with EB increasing with
decreasing Γ. Ensemble averaged measurements such as
the TAMSD (Fig. 3) are not sensitive to the precise
form of the asymptotic decay of ψ(t) [18], and therefore,
cannot provide information about the changing dynamics
with Γ.

Discussion We have presented a detailed analysis of
the dynamics of arches leading to collapse in simulations
of vibrated hoppers. The physical picture that emerges
is that, in response to vibrations, arches evolve in a land-
scape of locally stable shapes reminiscent of trap mod-
els [14] with an anomalously broad distribution of trap
depths. The random environment created by the grains
above the arch, including weak and strong force-bearing
networks [9, 30] presumably leads to this large variabil-
ity. Vibrations induce changes in the shape of the arches,
which can be modeled as an activated escape from a
trap; a locally stable shape. The exploration of this land-
scape of shapes leads to a broad distribution of unclog-
ging times, which is, therefore, a direct reflection of the
disordered nature of clogged states.

Our simulations show that the distribution of unclog-
ging times is sensitive to the details of the landscape ex-
plored by the arches. The CTRW model we propose is
the simplest stochastic model that captures the dynam-
ics of the arches in our simulations. It is possible that a
more sophisticated model such as one in which the wait-
ing time depends on the arch shape would provide a bet-
ter description of arch failure. In addition to providing a
physical picture of the dynamics, our work shows that the
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CTRW or trap-model paradigm provides a useful inter-
pretive framework for analyzing experiments on unclog-
ging and provides an important tool for devising methods
to unclog flows.
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