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We use experiment and computational modeling to understand the defect structure and director
configuration in a nematic liquid crystal capillary bridge confined between two parallel plates. We
find that tuning of the aspect ratio of the bridge drives a transition between a ring defect and a point
defect. This transition exhibits hysteresis, due to the metastability of the point-defect structure.
In addition, we see that the shape of the capillary-bridge surface determines whether the defect is
hyperbolic or radial, with waist-like bridges containing hyperbolic defects and barrel-like bridges
containing radial defects.

Uniaxial nematic liquid crystals (NLC) are an or-
dered phase characterized by apolar orientational
order, where, on average, the individual mesogens
align along a preferred axis, the director n. As in
other types of ordered media, defects in NLC of-
ten appear as regions where the characteristic lo-
cal order becomes undefined and are fundamental
to the physics of the system [1]. Line defects, for
example, can be entangled to both study knot the-
ory [2, 3] and generate topological materials [4, 5],
and point defects have been recently shown to me-
diate cell growth [6, 7]. In addition, the understand-
ing and control of defects in liquid-crystalline mate-
rials continues to yield technological developments,
such as controlled self-assembly of colloidal parti-
cles [8–10] and new display technologies based on
blue phases [11]. In all of these examples, confine-
ment plays a significant role, as it introduces con-
straints that force the presence of defects in the di-
rector field. Clearly, confining a NLC to within a
spherical volume and enforcing homeotropic bound-
ary conditions, such that n is everywhere perpendic-
ular to the surface, will result in at least one singular-
ity within the volume. Because smooth deformations
of n cannot remove a singularity, the defect is topo-
logical and can be characterized by its “hedgehog
charge”, defined as Q = 1

4π

∫
S2 dθ dφn · [∂θn× ∂φn],

where the integral is taken over a spherical surface
enclosing the defect, and θ and φ are, respectively,
the polar and azimuthal angles on that surface [12].
Geometrically, Q relates the orientations of n taken
on a surface that is equivalent, topologically, to a
sphere enclosing the defect to the number of times
the orientations of n cover the unit sphere [12].
Thus, we see that confining a NLC to a volume that
is topologically spherical with homeotropic bound-
ary conditions must yield a total “hedgehog charge”
|Q| = 1. This condition is satisfied by Q = −1
hyperbolic ring defects or hyperbolic point defects,

shown from the side in the schematics in Figs. 1(a,d)
and from the top in Figs. 1(c,f), and also by Q = +1
radial ring defects or radial point defects, shown
from the side in the schematics in Figs. 1(b,e) and
from the top in Figs. 1(c,f) [13].

FIG. 1: (a,b,d,e) Cross-sections of (a) hyperbolic
and (b) radial rings, and of (d) hyperbolic and (f)

radial point defects, viewed from the side. (c,f)
Cross-sections of (c) ring and (f) point defects,

viewed from the top.

The myriad of possible defect configurations gives
topologically confined systems a richness that has
been well explored for the case of geometrically
spherical boundaries, where the confinement can
only be modified through changing the sphere ra-
dius [14, 15]. However, the role of shape when con-
fining NLC in geometries with more than one char-
acteristic lengthscale is not completely understood.
Consider the case of a cylindrical geometry of as-
pect ratio Γ = 2R/H, where R is the radius of
the cylinder and H is its height. With this nota-
tion, the classic case of a cylindrical capillary cor-
responds to Γ � 1. The Γ � 1 situation corre-
sponds to confinement between narrowly separated
plates. When Γ ∼ O (1), the equilibrium defect con-
figuration undergoes a transition from a ring defect,
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found when Γ � 1, to the point defect, seen when
Γ � 1. Prior experimental work investigating this
ring-to-point transition used liquid crystal capillary
bridges made with the NLC pentylcyanobiphenyl
(5CB) [16, 17]. However, since Refs. [16, 17] only
observed the bridge structures from above, where
the radial and hyperbolic defect structures look sim-
ilar, as demonstrated schematically in Fig. 1(c) and
Fig. 1(f) for ring defects and point defects, respec-
tively, they were unable to determine if the defects
were radial or hyperbolic. Prior theoretical work
used computational modeling to explore the defect
configuration within a cylindrical bridge as a func-
tion of Γ and K11/K33, where K11 and K33 are the
Frank elastic constants corresponding to splay and
bend distortions, respectively [18, 19]. For 5CB,
which has K11/K33 = 0.74, they predicted that the
bridge should transition between a radial ring defect
and a hyperbolic point defect. Since the capillary
bridges in Refs. [16, 17] were likely not cylindrical,
the equilibrium defect configuration in nematic cap-
illary bridges remains unknown.

In this paper, we address this question and per-
form both experiments and computations pertaining
to a confined NLC within a capillary bridge sand-
wiched between two parallel plates of adjustable sep-
aration and hence of varying Γ. By observing our ex-
perimental bridges from both the top and the side,
and comparing our observations with results from
our computations, we find that shape of the free sur-
face controls whether the defect is radial or hyper-
bolic: waist-like bridges contain hyperbolic defects,
and barrel-like bridges contain radial defects. In ad-
dition, we find good agreement between experiment
and theory for the critical aspect ratio Γc at which
the defect in the waist-shaped bridge undergoes a
transition between a ring defect and a point defect.
Finally, we see that this transition is hysteretic due
to the metastability of the point defect. Our results
clarify the role of shape and elasticity in dictating
the defect structure in confined homeotropic nemat-
ics.

We first model a cylindrical nematic bridge using
a modified version of the finite difference method
laid out in Ref. [19]. Although the free energy in
the algorithm presented there depends on the cut-
off length of the defect core, the equilibrium defect
configuration is independent of this length scale pro-
vided it is reasonably small. We modify the algo-
rithm to treat the small region containing the defect
separately from the remainder of the computation
volume, such that the calculated free energy con-
verges as the mesh size grows [20, 21]. We find that
a cylindrical bridge with K11/K33 = 0.74 should un-
dergo a defect transition between a radial ring and a
hyperbolic point, as highlighted by the dashed line

FIG. 2: (a,b) Phase diagram of the equilibrium
defect structure in (a) a cylinder and (b) a

waist-shaped bridge in terms of aspect ratio Γ and
the ratio, K11/K33, of the splay and bend elastic
constants. The dashed line indicates K11/K33 for
5CB. HP: hyperbolic point; HR: hyperbolic ring;

RR: radial ring. (c) Free energy of a director
configuration in a waist-shaped bridge relative to
the free energy in the presence of the point defect
and normalized by HK33, as a function of scaled

ring radius Rring/Rbridge. (squares) Γ = 3.0;
(circles) Γ = 2.8; (up-triangles) Γ = 2.5;

(down-triangles) Γ = 2.0.

in the phase diagram in Fig. 2(a), consistent with
prior computational modeling [19]. However, we pre-
dict ring-to-point defect transitions at aspect ratios
that are significantly smaller than those in Ref. [19].
In addition, our phase diagram has no radial point
structure, and the line separating the radial and hy-
perbolic rings occurs for K11/K33 < 1 [see Fig. 2(a)];
these features are all in contrast to the diagram in
Ref. [19], where there is a stable radial point and
the transition between radial and hyperbolic rings
always occurs at K11/K33 = 1.

To address the problem experimentally, we con-
fine 5CB (Hebei Mason Chemical Co.) between two
parallel glass microscope slides (Thermo Scientific)
to form a capillary bridge. Prior to use, the slides
are dip-coated with 0.1% w/w lecithin (granular,
Acros) in hexane (98.5% purity, BDH) and left to
dry to enforce homeotropic anchoring [22]. We set
up the experiment by first placing both microscope
slides stacked on top of each other on the microscope
stage. We then epoxy the top plate to a rod affixed
to a micromanipulator such that we can adjust the
distance between the slides. Note that this simple
protocol ensures that the two microscope slides are
parallel to each other and to the microscope stage.
After the epoxy hardens, we raise the top slide and
use a glass capillary to place a ∼nl-volume drop of
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5CB onto the bottom plate. We then bring the top
plate down until it makes contact with the sessile
droplet and forms a capillary bridge. The final ex-
perimental setup is depicted schematically from the
side in Fig. 3(a).

We can then view the bridge from the top and de-
termine whether the defect is a ring or a point; ex-
amples of these situations are shown in the bright-
field images in Figs. 3(b,d) and the corresponding
crossed-polar images in Figs. 3(c,e). To calculate
an effective aspect ratio Γ, we take R as the radius
of the circular cross-section of the bridge midway
between the two confining plates, and H as the dis-
tance between the plates. We start at large Γ, where
we observe a ring defect, and determine the radius
of the ring, Rring, as we decrease Γ by increasing
H in discrete steps. At each H, we monitor the
bridge over time to ensure that the defect state no
longer changes and the system is in equilibrium. For
each bridge, we also determine, as we decrease Γ, the
effective aspect ratio for the defect transition, Γc.
Using results for 21 different bridges, we find an av-
erage Γc = 2.7± 0.3, as shown in the upper contour
in Fig. 3(f), where we have plotted each observation
of a stable ring defect with open circles and of a sta-
ble point defect with x symbols. The ring radius,
scaled by the bridge height, varies linearly with Γ
for Γ > Γc, as indicated by the squares in Fig. 3(g),
where we have again plotted every measurement we
have performed. At Γc, the ring becomes unstable,
and collapses to a point defect, yielding the disconti-
nuity in Rring shown with a dashed line in Fig. 3(g),
where the point defect is represented as having a
vanishing Rring.

To determine whether the defects are radial or hy-
perbolic we can look at the bridges from the side.
We thus change our setup so that the microscope
slides are held orthogonal to the microscope stage, as
shown schematically in Fig. S1(a) [20]. When viewed
from the side, we first see that our bridges are waist-
shaped, as shown in the example bright-field image
in Fig. 4(a), and are surfaces of constant mean cur-
vature where the contact angle sets the shape [20].
We then rotate the crossed polarizer and analyzer to
determine whether the defect is radial or hyperbolic.
However, due to the large curvature of the waist
shape when Γ is large, we cannot clearly distinguish
the rotation of the brushes. As an alternative to
this approach, we introduce anisotropic fluorophores
and use polarized epifluorescent microscopy (PFM)
to see whether the defect is radial or hyperbolic, as
shown schematically in Fig. S1(a) [20]. We add 0.01
wt% Nile red (Sigma Aldrich) to 5CB; at this con-
centration, Nile red does not affect the director con-
figuration. Furthermore, the long axes of the fluo-
rophores align along the director [23, 24]. Because

the emission dipole of Nile red lies along the long
axis of the molecule, the fluorescent emission of the
mixed Nile red and 5CB solution will be linearly po-
larized along the director [25]. We excite the sample
with isotropic light from a short-arc lamp (X-Cite
120Q), and record the output color image as a func-
tion of analyzer angle ΦA. We convert the color
image to grayscale using a common weighted sum
of the red (R), green (G), and blue (B) channels:
0.29889*R + 0.5870*G + 0.1140*B [26].

The emitted intensity from each point in the sam-
ple will be ∝ cos2 (ΦA − δ), where δ is the orien-
tation of n in the plane of the output image [25].
As we use wide-field fluorescent microscopy, the in-
tensity at each point in the output images reflects
an averaging of the director along the light path.
This technique is a simplified version of the polar-
ized fluorescent confocal microscopy (PCFM) pio-
neered in Ref. [23]. Here, we sacrifice the three-
dimensional spatial resolution of PCFM for the sim-
plicity of PFM.

We validate our technique using a cylindrical cap-
illary (World Precision Instruments) filled with Nile
red-doped 5CB [20]. The capillary has an escaped-
radial configuration with a point defect separating
two regions that escape in the opposite direction [20].
We find that we capture reasonably well the ex-
pected escaped-radial texture as well as the radial
character of the defect between the two escaped do-
mains, indicating that we can use PFM to determine
if the defect in a bridge is hyperbolic or radial.

We then consider the example Nile red-doped
NLC bridge seen under bright-field illumination in
Fig. 4(a) and in PFM in Figs. 4(b–d), where each im-
age has already been converted to grayscale with the
analyzer angle depicted schematically in the lower-
right corner. For this example, we focus on the win-
dow of interrogation highlighted by the white square
in Figs. 4(b–d), and plot the mean grayscale inten-
sity in this region as a function of analyzer angle, as
shown in Fig. 4(e). We then fit this averaged output
intensity, I, as a function of ΦA in the window to
the form:

I = A+B cos2 (ΦA − δ′), (1)

where A, B and δ′ are fitting parameters; A and B
set the minimum value and range of I, respectively,
and δ′ reflects an average of the director orientation
along the light path and over the window of inter-
rogation. The side length of the window sets the
spatial resolution of the technique; in all our exper-
iments, we take a 10 px × 10 px window, which
translates to a spatial resolution of 50 µm. From
the fit, we find δ′ = −45o. We do this for every win-
dow of interrogation in the whole image, and plot
the director orientations on top of an epifluorescent
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FIG. 3: (a) Schematic of the experimental setup with sample oriented for a top view. The distance
between the plates can be increased and decreased, as indicated by the arrows near the top of the sample.

(b-e) Example bright-field and crossed-polar images of a waist-shaped bridge with (b,c) ring and (d,e)
point defects. (f) Experimental phase diagram for the defect state. Starting at a large Γ in the ring-defect

state (open circles) and decreasing Γ leads to a transition to a point defect (x symbols) at a value of
Γc = 2.7± 0.3, which we obtain by averaging the result for all bridges. The error is the standard error of
the mean. In contrast, when starting at small Γ in a point-defect state and increasing Γ, the point-defect
state persists; this is represented with a line. (g) Twice the ring defect diameter in a waist-shaped bridge
scaled by height of the bridge, plotted as a function of the bridge aspect ratio. A vanishing ring radius
corresponds to a point defect. The squares are experimental measurements. The circles correspond to

computations in a waist structure using the elastic constants for 5CB. Scale bars in (b,d): 250 µm.

image in Fig. 4(f). We find that the defect is clearly
hyperbolic. Note that we are unable to distinguish
the actual singularity due to the wide-field nature of
our technique and the spatial averaging; however, we
clearly detect the presence of a hyperbolic defect in
the bridge. We do this for bridges spanning Γ� Γc
to Γ� Γc, and find that the defect is always hyper-
bolic, implying that our bridges undergo transitions
from a hyperbolic ring to a hyperbolic point as Γ
decreases.

This transition appears to conflict with our com-
putations, in which a radial ring is predicted to
evolve into a hyperbolic point as Γ decreases for
K11/K33 = 0.74. However, the geometry in these
computations is cylindrical. We therefore hypoth-
esize that, due to the homeotropic boundary con-
ditions, the shape of the boundary acts as a level
surface for the director. Thus, the waist-like shape
of the bounding surface of the bridges in our exper-
iments will force any defect to be hyperbolic. To
confirm this, we repeat our computations in a waist-
like structure, and find that radial defects disappear
for all values of K11/K33 that we used, as shown in
Fig. 2(b). Furthermore, we find that the ring de-
fect radius predicted by our computations [circles,
Fig. 3(g)] for a waist-like shape agrees well with our
experimental data [squares, Fig. 3(g)]. In addition,
we see that the hyperbolic ring to hyperbolic point
transition happens at Γc = 2.7 for K11/K33 = 0.74,

in agreement with our experimental measurement
for 5CB for decreasing Γ. However, we note that
there is hysteresis in the experimental transition.
When we start at Γ < Γc in the point-defect state
and increase Γ, the point defect never transitions
to a ring, as seen in the lower contour in Fig. 3(f).
Interestingly, if for Γ > Γc, we melt the nematic
phase in a bridge containing a point defect, we al-
ways recover a ring defect state when we let the
bridge cool back to the nematic phase. This sug-
gests that the point defect is metastable for Γ > Γc.
To test this possibility, we compute the energy land-
scape of a waist-shaped nematic bridge as a function
of ring radius; we show the result for two bridges
having Γ > Γc and for two bridges having Γ < Γc in
Fig. 2(c), where we have taken K11/K33 = 0.74. Re-
call that the point defect is represented by the free
energy for a vanishing ring radius. We indeed see
that the point defect is metastable for Γ > Γc, con-
sistent with our interpretation of the experimental
results. In addition, given a representative bridge
height of H = 100 µm and K33 ≈ 10−11 N, we note
that the height of the barrier is always O

(
104 kBT

)
,

implying that a point defect will not be observed
to spontaneously transform into a ring defect, also
consistent with our experimental observations. For
Γ < Γc, this metastability disappears, and the point
defect is the only stable defect state.

To further confirm that the shape of the bounding
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FIG. 4: (a) Bright-field image of a waist-shaped
bridge. (b–d) Epifluorescent images of the central
region of the bridge in (a). The analyzer direction
is indicated in the lower right corner of the images.
(e) Grayscale intensity I, as a function of analyzer
angle φA, for the small square region highlighted in
images (b–d). An intensity of 1 is mapped to white
and 0 to black. The curve is a fit that allows us to
obtain δ′, and hence the approximate director in

the region. (f) Director orientation plotted on top
of an epifluorescent image with no analyzer in the
emitted light path. Scale bars in (a,b) is 250 µm.

surface determines whether the defect is radial or
hyperbolic, we examine barrel-shaped bridges. In
this case, we expect that only radial defects should
be present. In these experiments, we use Nile red-
doped bridges with water as the outer medium. The
water contains 8 mM sodium dodecyl sulfate (Sigma
Aldrich) to enforce homeotropic anchoring. Viewed
from the side, the bridge has a clear barrel shape,
as shown by the bright-field image of an example
bridge in Fig. S2(a) [20]. Just as all the waist-shaped
bridges at all measured Γ were hyperbolic, we find
that all the barrel-shaped bridges at all measured Γ
have radial defects. Viewed from the top, we only
observe ring defect structures [20]. We have repeated
our computations in a barrel-like structure, and find
that the only stable state is a radial ring defect. This
agrees with our experiments and further confirms
that the shape of the bounding surface determines
whether the enclosed defect structure is radial or
hyperbolic.

In conclusion, the equilibrium defect structure in a
nematic capillary bridge under homeotropic bound-
ary conditions is found to depend on both the shape
of the bounding surface as well as the aspect ratio
of the bridge. The aspect ratio determines whether
the defect is a ring defect or a point defect, and the
boundary shape determines whether the defect is ra-
dial or hyperbolic, with waist-like shapes containing

hyperbolic defects and barrel-like shapes containing
radial defects. In addition, we find that in a waist
structure the point defect can be metastable, caus-
ing the transition between a ring defect and a point
defect to exhibit hysteresis. Starting at Γ > Γc and
decreasing Γ to below Γc brings about the collapse
of the ring defect to a point defect, with the col-
lapse occurring at a nonzero value of the ring radius.
However, starting with a point defect at Γ < Γc and
increasing Γ never yields a transition from a point
defect to a ring defect.

Although prior computations with thin films [27]
or perforated sheets [28] have been used to attribute
the radial or hyperbolic character of defects to
confinement shape, our work provides the first
experimental evidence of this phenomenon. We
accomplish this by developing PFM, a simpler
technique than its confocal counterpart that en-
ables, despite refraction, the determination of the
director field when viewing the bridge from the
side. Thus, our work confirms that shape can
be used to influence and control the equilibrium
defect states in confined NLC under homeotropic
boundary conditions. Due to the ability of shape
to bias the defect structure, the cylindrical bridge
with Γ ∼ O (1) becomes an interestingly peculiar
case, as the shape is neither a waist nor a barrel.
In fact, our computations in a cylindrical bridge
predict transitions from a radial ring to a hyperbolic
point, as well as from a hyperbolic ring to a radial
ring [see Fig. 2(a)], emphasizing the interesting
scenarios that could arise for this shape; this
would be technically difficult to investigate in our
experiments, however, as one would need to enforce
a θ of exactly π/2. Further interesting results in a
cylinder include the sensitivity of the phase diagram
in Fig. 2(a) to slight deviations from θ = π/2 as
well as the equilibrium shape of the bridge when
nematic elasticity is comparable or larger than the
surface tension force [29]. In addition, the absence
of a stable radial point defect in our phase diagrams
regardless of the shape of the bridge is an intriguing
feature that merits further work. Our work thus
not only brings further understanding to the role
of shape and elasticity in confined NLC, but also
highlights the relevance of future work
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S. Žumer, Science 313, 954 (2006).
[11] Y. Huang, H. Chen, G. Tan, H. Tobata, S.-i. Ya-

mamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-
T. Wu, Optical Materials Express 7, 641 (2017).

[12] G. P. Alexander, B. G.-g. Chen, E. A. Matsumoto,
and R. D. Kamien, Reviews of Modern Physics 84,
497 (2012).

[13] We note while the top view of the radial and hyper-
bolic defects appear the same in the schematics in
Figs. 1(c,f), there are in reality subtle differences in
the the molecular tilt that we have not depicted [?
].

[14] P. S. Drzaic, Liquid crystal dispersions, Vol. 1

(World Scientific, 1995).
[15] T. Lopez-Leon and A. Fernandez-Nieves, Colloid

and Polymer Science 289, 345 (2011).
[16] J. Gilli, S. Thiberge, A. Vierheilig, and F. Fried,

Liquid crystals 23, 619 (1997).
[17] S. Thiberge, C. Chevallard, J. Gilli, and A. Buka,

Liquid crystals 26, 1225 (1999).
[18] S.-H. Chen and B. Liang, Applied physics letters 59,

1173 (1991).
[19] B.-J. Liang and S.-H. Chen, Journal of applied

physics 71, 2189 (1992).
[20] See Supplemental Material at [url] for details on the

simulation algorithm.
[21] W. H. Press, B. P. Flannery, S. A. Teukolsky, and

W. T. Vetterling, Numerical recipes in C: the art of
scientific computing (Cambridge University Press,
Cambridge, 1996).

[22] K. Hiltrop and H. Stegemeyer, Molecular Crystals
and Liquid Crystals 49, 61 (1978).

[23] I. I. Smalyukh, S. Shiyanovskii, and O. Lavren-
tovich, Chemical Physics Letters 336, 88 (2001).

[24] I. I. Smalyukh, S. Chernyshuk, B. Lev, A. Nych,
U. Ognysta, V. Nazarenko, and O. Lavrentovich,
Physical review letters 93, 117801 (2004).

[25] I. I. Smalyukh, B. I. Senyuk, M. Gu, and O. D.
Lavrentovich, in Congress on Optics and Optoelec-
tronics (International Society for Optics and Pho-
tonics, 2005) pp. 594707–594707–11.

[26] Studio encoding paramters of digital television for
standard 4:3 and wide-screen 16:9 aspect ratios,
Recommendation ITU-R BT.601-7 (2011).

[27] J. Ignés-Mullol, J. Baudry, L. Lejcek, and P. Os-
wald, Physical Review E 59, 568 (1999).

[28] L. Tran, M. O. Lavrentovich, D. A. Beller, N. Li,
K. J. Stebe, and R. D. Kamien, Proceedings of the
National Academy of Sciences 113, 7106 (2016).

[29] L. Giomi, Physical Review Letters 109, 136101
(2012).


