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We introduce a minimal model for the evolution of functional protein-interaction networks using
a sequence-based mutational algorithm, and apply the model to study neutral drift in networks
that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift
increases network complexity even in the absence of specific selective pressures. Surprisingly, we
uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying
strong constraints on network evolution due to the topology of accessible sequence space.

Within even the simplest living cells there is a highly
complex web of interacting molecules, with biological
function typically emerging from the actions of a large
number of different factors [1, 2]. What is the relation-
ship between the architecture of such interaction net-
works and the underlying processes of evolution? Much
of the theory related to evolution focuses on the evolution
of individual phenotypic traits or on population dynam-
ics (see, for example, [3]); however, in general, individual
genes do not determine individual traits. Rather, many
traits arise from the dynamics of interacting components.
With this in mind, we formulated and analyzed a min-
imal physically-based protein-protein interaction model
that allows us to map from sequence space to interac-
tions and, consequently, to network dynamics and fitness.
Surprisingly, the model reveals a long-term memory of
network origins hidden in the space of sequences.

Recently, bottom-up approaches to molecular evolu-
tion, typically in the context of the folding proper-
ties/thermodynamics of individual proteins or RNAs [4–
8] have led to new insights into evolutionary outcomes,
for example regarding a power-law distribution of protein
family sizes. Here we generalize such bottom-up studies
to functional networks. We focus on oscillatory networks
of interacting enzymes, both due to the relevance of bio-
logical oscillators (e.g. cell cycle, circadian rhythms) [9–
11] and due to the simplicity of defining function and
fitness. As such a network evolves, are the original nodes
still both necessary and sufficient or does the network
redistribute function over new nodes? If new nodes do
become essential, is there still memory of the original
network?

In order to address these questions, we develop a model
of protein-protein interaction networks consisting of two
classes of enzymes, activators (e.g. kinases) and deac-
tivators (e.g. phosphatases). Each of these can be in
either an active state or an inactive state and only func-
tion when in the active state. To model cooperativity,
we assume that activation or deactivation of a target (ei-
ther an activator or a deactivator) requires h independent
binding/modification events, with partially modified in-
termediates being short lived. The resulting chemical

kinetic processes are

hA∗i + Tl
kil−−→ hA∗i + T∗l , hD∗j + T∗l

k̃jl−−→ hD∗j + Tl, (1)

where A/A∗, D/D∗, and T/T∗ denote activator, deac-
tivator, and target in inactive/active states respectively.
We note here that, in our model, the same protein species
act both as enzymes (represented as A∗ or D∗ in the
equations) as well as targets (represented as T/T∗). The
corresponding chemical kinetic equation can be approxi-
mated as (see Supplementary Material (SM) [12], section
I for details)

d[T∗l ]

dt
=

m∑
i=1

kil[A
∗
i ]
h[Tl]−

n∑
j=1

k̃jl[D
∗
j ]
h[T∗l ]+α[Tl]−α

′
[T∗l ],

(2)
where m and n are the number of distinct types of activa-
tors and deactivators respectively. In Eq. 2, α and α

′
are

background activation and deactivation rates. We fur-
ther assume that the total concentration of each species
is constant, such that Tl = c0 − T∗l .

Protein-protein interaction strengths are generally de-
termined by amino-acid-residue interactions at specific
molecular interfaces. Moreover, it has been estimated
that > 90% of protein interaction interfaces are planar
with the dominant contribution coming from hydropho-
bic interactions [13, 14]. For simplicity, we therefore
assume each protein possesses a pair of interaction in-
terfaces, an in-face and an out-face, and we associate
a binary sequence, ~σin/out, of hydrophobic residues (1s)
and hydrophilic residues (0s) to each interface (our ap-
proach builds on previous studies [15, 16]). The inter-
action strength between an enzyme (denoted by index
i) and its target (denoted by index l) is determined by

the interaction energy Eil = ε~σ
(i)
out · ~σ

(l)
in between the out-

face of the enzyme and in-face of its target. (All energies
are expressed in units of the thermal energy kBT .) The
effective reaction rate is then given by

kil = k0(1 + exp[−(Eil − E0)])−h, (3)

where E0 plays the role of a threshold energy, e.g. ac-
counting for the loss of entropy due to binding. The back-
ground activation and deactivation rates are set equal
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and define the unit of time via α = α′ = 1. In our sim-
ulations we set k0 = 104, ε = 0.2, cooperativity h = 2,
E0 = 5, c0 = 1, and we take the length of each sequence
representing an interface to be N = 25. These inter-
action parameters were chosen to provide a large range
for the rate constants kil as a function of sequence and to
keep the background rates small compared to the highest
enzymatic rates; cooperativity was introduced to allow
oscillations in relatively simple biomolecular networks.

For our evolutionary scheme, we assume a population
sufficiently small that each new mutation is either fixed or
entirely lost [17, 18]. We consider only point mutations –
namely replacing a randomly chosen hydrophobic residue
(1) in the in- or out-face of one enzyme by a hydrophilic
residue (0), or vice versa. In this study, mutations are
accepted if and only if they satisfy the selection criterion
that the network remains oscillatory and moreover that
the network exhibits oscillatory dynamics independent of
the choice of initial concentrations of the active fractions
(global oscillators). For this purpose we identified the
fixed points of the chemical dynamics and carried out
linear stability analysis (SM [12], section II).

In order to address the question of network drift – how
function could redistribute over new nodes in an evolving
network – we construct a 3-component oscillator (see Fig.
1A for a schematic) by starting with a 2-component oscil-
lator, with one activator and one deactivator, and adding
a second activator with all 0s for the sequences repre-
senting in- and out-interfaces (so that initially Activa-
tor 2, representing a new node, has minimal interactions
with the other two components). We then let the system
evolve, accepting only mutations corresponding to global
oscillators. To characterize network drift, we studied the
time evolution of the essentiality of each activator for a
random sample of starting sequences that corresponded
to oscillators, as depicted in Fig. 2A, where we character-
ize a component as being “essential” if the system stops
oscillating when the component is removed, or equiva-
lently, in our model, if we set the total concentration c0
of that component to zero [19]. Initially Activator 2 is
inessential (since Deactivator and Activator 1 generate
oscillations), and in Fig. 2B we exhibit the distribution
of the number of accepted mutational steps before it be-
come essential for two distinct starting sequences. While
the two distributions peak at very different values for the
number of mutational steps, the interaction strengths for
the two initial states do not differ appreciably (Fig. 2B,
inset), highlighting the importance of the underlying se-
quence in governing evolutionary dynamics. Returning
to Fig. 2A, we find relatively rapid flips between states
where both activators are essential to states where only
one of the activators is essential.

Surprisingly, we also note the prevalence of much
longer time periods where Activator 1 is always essen-
tial or where Activator 2 is always essential. This is true
independent of initial conditions. These long evolution-
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FIG. 1: Oscillatory protein-protein interaction network. (A)
Schematic of a 3-component network with two activators
(A1,A2) and one deactivator (D). The symbols,→ and a, in-
dicate the chemical process of activation and deactivation,
respectively. (B) Steady-state oscillations of the active frac-
tions of the components of the network in (A). The dashed
vertical lines indicate peaks of the activator oscillations, and
the horizontal arrow indicates the time shift between these
peaks.
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FIG. 2: Temporal evolution of essentiality of activators in 3-
component systems. (A) Temporal evolution for two different
initial sequences (the two sequences are specified in Supple-
mentary Material (SM) [12]). On the y-axis, +1 indicates
only Activator 1 is essential, -1 indicates only Activator 2 is
essential, and 0 indicates both activators are essential [19].
(B) Histograms of the number of accepted mutational steps
before Activator 2 first becomes essential, for the two dis-
tinct initial sequences. Inset: interaction strengths of the two
initial states.

ary periods presumably reflect the division of sequence
space into two regions or “phases”: Phase 1 where Acti-
vator 1 is always essential and Phase 2 where Activator 2
is always essential. The system starts in Phase 1 (Activa-
tor 2 is inessential), then when Activator 1 first become
inessential we infer that the system has entered Phase 2,
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and so on. These results imply that while, naively, one
might have expected that the starting state of the net-
work (e.g., the identity of the solely essential activator)
would be effectively forgotten as soon as both activators
became essential, the system retains a hidden memory
of the starting conditions in terms of persistence in the
starting phase (Phase 1, in this case). Thus the long du-
ration in each phase (in comparison to the duration be-
tween successive flips in essentiality) constitutes a long-
term memory in our evolving network.

Can these two phases be distinguished in terms of mea-
surable dynamical quantities or rate constants? Since
the two phases presumably relate to an asymmetry in
the roles of the two activators, we quantify this asym-
metry via the relative peak-to-valley ratio (PVR) of the
oscillations of their active fractions, where relative PVR
is ((PVR A1 - PVR A2)/(PVR A1 + PVR A2)). The
peak-to-valley ratio (PVR) of a component is obtained by
determining the peak value and the valley (minimum) of
the active concentration for steady-state oscillations (see
Fig. 1B) and taking the ratio of the two. From Fig. 3A
(top panel) and Fig. 3B, we see that relative PVR cor-
relates with the phase, and we display the distribution
quantifying this correlation. A corollary is that the prob-
ability that an activator is essential also correlates with
the relative PVR (Fig. 3C), so that if an activator has
a relatively larger PVR it is also more likely to be es-
sential. Moreover, we find that the phase-shift between
peaks in the active fractions of the two activators also
correlates with the phase (Fig. 3D), so that Activator 1
typically leads in Phase 1 and Activator 2 in Phase 2.
Finally in order to determine how these observations re-
late to the underlying rate constants, we constructed the
covariance matrix for the covariation of the nine rate con-
stants kij and carried out a principal component analysis
(SM [12], section IV). We find that the projected com-
ponent of the rates onto the eigenvector with the largest
eigenvalue (PC1 = 94.93%) strongly correlates with the
phase (Fig. 3A, lowest panel, and Fig. 3E); we find no
such correlation for projections onto any of the remain-
ing eigenvectors. On examining the top eigenvector, we
find that it primarily consists of a linear superposition of
the difference in auto-activation rates of the two activa-
tors and the difference in their deactivation rates. This
suggests that strong auto-activation coupled with strong
deactivation produces an activator that peaks first dur-
ing each oscillation cycle and also has a large PVR (see
SM [12], section VIII, for a physical explanation of the
correlation). However, the co-occurrence of these fea-
tures does not by itself explain the observed long intervals
of the two distinct phases.

The question remains: what is the origin of the ob-
served long-term memory? We first quantify the du-
ration of long-term network memory by constructing a
histogram of the number of mutational steps that the
system spends in each phase before flipping. As shown
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FIG. 3: Temporal evolution of phases in 3-component sys-
tem. (A) Depiction of the temporal evolution where a value
of +1 indicates Phase 1 and -1 indicates Phase 2. Along
with the phase, the three panels show (i) normalized relative
PVR of the two activators (red, top panel), (ii) phase-shift
between their oscillatory peaks (green, middle panel), and
(iii) projected component of the chemical rates on the princi-
pal eigenvector from PCA analysis (magenta, bottom panel).
(B) Distributions of relative PVR of the two activators in
Phase 1 and in Phase 2. (C) Probability that each activator
is essential as a function of its relative PVR. (D) Distribu-
tion of phase-shifts between active fraction peaks of the two
activators in Phase 1 and Phase 2. (E) Distribution of pro-
jected rate constants on the principal eigenvector, obtained
from PCA analysis, in Phase 1 and Phase 2.

in Fig. 4A, we find an approximately exponential dis-
tribution, P (τ) ∝ e−τ/τ0 , where τ0 ' 3200 ± 48 mu-
tational steps. An exponential distribution implies a
fixed, history-independent rate of flipping between the
two phases, which in turn suggests that flipping corre-
sponds to barrier crossing. Since our model treats all
oscillatory states as equally fit, the only barriers are en-
tropic, i.e., there must be relatively speaking very few
boundary points connecting phases (SM [12], section V).
To check this hypothesis, we studied the neighborhood of
states in Phase 1 and Phase 2. In Phase 1, for example,
we distinguished between states where only Activator 1 is
essential and states where both are essential. For states
where only Activator 1 is essential we found no examples
of sequences that were one Hamming distance away (that
is, separated by a single point mutation) for which Ac-
tivator 1 stops being essential. Of the states in Phase 1
where both activators are essential, for only 3% of states
the Hamming distance 1 neighborhood contained one or
more states where Activator 1 was inessential. The rel-
ative rarity of such states (which can be considered as
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FIG. 4: Distribution of accepted mutational steps between
flips. (A) Distribution of the number of accepted mutational
steps between flips from one phase to the other, on a semi-
log scale to highlight the exponential distribution (data is
binned with bin size 600). Inset: same data on log-log scale.
(B) Distribution of the number of accepted mutational steps
where an activator is essential for the whole duration, on a
log-log scale showing a power-law fit f(x) ∼ x−2.3±0.05 for
short times (bin size 50). Inset: same distribution over longer
times on semi-log scale (bin size of 600).

boundary states) is consistent with our hypothesis that
in sequence space the two phases touch at a relatively
small number of boundary points.

Interestingly, in contrast to flipping between phases,
the distribution of the number of mutational steps that
an activator remains essential exhibits a power-law dis-
tribution for short times, as depicted in Fig. 4B. For Ac-
tivator 1, for example, this power-law part of the dis-
tribution is dominated by cases where the system is in
Phase 2, with Activator 1 switching between being essen-
tial and inessential. Thus the power-law distribution is
related to the presence of domains within Phase 2 where
Activator 1 is also essential (and likewise for Activator
2 in Phase 1). For longer times, the periods of essen-
tiality correspond to the duration of phases, and thus
the distribution decays exponentially (Fig. 4B, inset). In
contrast to exponential decay, a power-law distribution
implies a history-dependent switching rate, with the es-
cape rate from a domain proportional (on average) to the
inverse of the time elapsed since the system entered the
domain (SM [12], section IX; see also section VI for a
toy model exhibiting mixed power-law and exponential
distributions).

It is not a priori obvious how the above observa-
tions of two phases generalize to more complex networks.
We therefore extended our study by starting with a 3-
component oscillator and adding a fourth component
(Activator 3) with all its sequences initially set to 0s.
Once again we find that Activator 3 becomes essential
relatively rapidly (typically in ∼100 mutational steps).
If we continue to follow the evolution of essentiality for
the activators, we find for each activator long periods
(∼1000+ mutational steps) where that activator remains
essential, separated by similarly long periods where that

activator is intermittently essential/inessential (Fig. 5A).
This suggests that for each activator, the sequence space
of oscillators divides into two regions: one region where
that activator is essential at every point and a second
region consisting of smaller domains where the activator
is essential interspersed with domains where it is inessen-
tial. Note that time periods where one activator remains
essential sometimes overlap with periods where one of
the other activators remains essential, implying that the
region where one activator is essential at every point has
some overlap with the regions where other activators are
essential at every point. This contrasts somewhat with
the 3-component system where Phase 1, the region in
which Activator 1 is essential at every point, is comple-
mentary to Phase 2. By contrast, as shown in Fig. 5B, the
distribution of mutational steps over which any one of the
activators is essential for the 4-component system is quite
similar to that of the 3-component system, being power-
law at short times with a similar exponent, and expo-
nential for longer times, albeit with a shorter decay time
τ0 ' 1750 ± 54 mutational steps. As for 3-component
systems, we also find strong correlation between normal-
ized/relative PVR of oscillation, phase-shift, and essen-
tiality for pairs of activators. We find that when the
normalized PVR of an activator is higher, the probabil-
ity that it is essential is also higher (Figs. 5C and 5D);
these results generalize to much larger systems of activa-
tors and deactivators (SM [12], section X).

In this paper, we focused on oscillatory networks and
introduced a sequence-based evolutionary scheme, in con-
trast to schemes where mutations are directly imple-
mented by changes in rate constants (see, for example,
[20]). We studied how function can become distributed
over new nodes due to random network drift. For a 3-
node network, the typical timescale for the new node to
become essential for oscillation is ∼100 point accepted
mutations, which, given the total of 150 sites, corre-
sponds to around 66% accepted mutations [21]. Sur-
prisingly, our model also revealed a much longer term
memory (around 2000 point accepted mutations per 150
amino acids for a 3-node system) with exponential de-
cay, indicative of a barrier crossing process in the space
of sequences.

We expect our model to be broadly useful for exploring
principles of protein network evolution. While simple and
easy to implement, the model is biologically grounded in
sequence-based evolution, and also physically grounded
insofar as all proteins interact via binding with other
proteins. In this approach, any component is allowed
to interact with all other components and no special-
ized topology is introduced by hand. Moreover, there
is no fine tuning and the degree of cooperativity uti-
lized for the studies in this paper is modest and eas-
ily achievable in practice by biochemical networks [22].
The model provides a natural framework to study the
interplay between selection pressure and sequence-based
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FIG. 5: Temporal evolution of essentiality of each activator
in 4-component systems. (A) Depiction of temporal evolution
where, on the y-axis, +1 indicates that the activator is essen-
tial and 0 indicates that it is not essential. (B) Distribution of
the number of accepted mutational steps where the activator
is essential for the whole period, on a log-log scale showing
the power-law distribution f(x) ∼ x−2.15±0.02 for short times
(bin size 20). Inset: same distribution on a semi-log scale.
(C) Probability of Activator i being essential as a function
of its normalized PVR defined as PVR Ai/(PVR A1 + PVR
A2 + PVR A3). (D) For any pair of activators, the proba-
bility that Activator i leads Activator j as a function of their
relative PVR.

designability/accessibility. It can moreover be readily ex-
tended to larger networks, networks with other functions,
and also to other mutation-selection regimes (for exam-
ple, the concurrent mutations regime expected for larger
populations [23]).

We also believe our results for network drift will ap-
ply beyond the context of oscillators studied here. It
has been suggested that protein networks evolve primar-
ily by two biological mechanisms: (i) gene duplication,
and (ii) random mutations in proteins leading to neo-
functionalization, that is, the de novo creation of new
relationships with other proteins [24]. Our studies illus-
trate the significance of neo-functionalization in the con-
text of functional networks where protein-protein inter-
actions are physically grounded, i.e., described via quan-
titative interaction strengths rather than Boolean vari-
ables. Our discovery of hidden order in sequence space
leading to evolutionary long-term memory could also be
quite general, highlighting the strong constraints to net-
work evolution that emerge from the topology of acces-
sible sequence space. It will be interesting to see if the
presence of “phases” generalizes to other network types.

Future studies may profitably include the evolutionary
dynamics of nodes, address other network functions (e.g.
signal integration), and explore the role of graded selec-
tion in the de novo evolution of new functions.
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