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We study the transient dynamics of an A + B → 0 process on a pair of randomly coupled
networks, where reactants are initially separated. We find that, for sufficiently small fractions q of
cross-couplings, the concentration of A (or B) particles decays linearly in a first stage and crosses
over to a second linear decrease at a mixing time tx. By numerical and analytical arguments, we
show that for symmetric and homogeneous structures tx ∝ (〈k〉/q) log(〈k〉/q) where 〈k〉 is the mean
degree of both networks. Being this behavior in marked contrast with a purely diffusive process—
where the mixing time would go simply like 〈k〉/q—we identify the logarithmic slowing down in tx to
be the result of a novel spontaneous mechanism of repulsion between the reactants A and B due to
the interactions taking place at the networks’ interface. We show numerically how this spontaneous
repulsion effect depends on the topology of the underlying networks.

PACS numbers: 89.75.Hc, 05.40.-a, 82.20.-w

Nearly one hundred years ago, Marian von Smolu-
chowski introduced a mathematical model to describe
coagulation phenomena in terms of diffusion-controlled
reaction processes [1]. Despite its apparent simplicity,
the kinetics of this model was found to yield a wealth
of intriguing phenomena, whose analysis have widely en-
riched our understanding of pattern formation in chemi-
cal compounds, biological systems [2, 3] and elsewhere.

From the Statistical Mechanics perspective, reaction-
diffusion (RD) processes represent a fertile groundwork
where to analyze the emergence of spontaneous mecha-
nism by starting from microscopic rules [4]. Most studies
in this direction aimed to unveil the effect that dynamical
correlations and geometrical (or topological) constraints
of the underlying structures have on the spatiotemporal
evolution of the reactants’ concentrations [5].

The A + B → 0 process, in particular, is known to
exhibit anomalous kinetics on low dimensional and frac-
tal geometries, where density fluctuations yield the for-
mation of self-segregation domains composed of particles
of the same type [6–9]. These phenomena result in a
drastic slowing down in the rate of the reactions, forc-
ing the system in a long-lived non-equilibrium state with
a sub-linear decay in the density of the surviving parti-
cles. Since this type of process grasps the essential kinet-
ics featured by the spreading of pathogen-antipathogen
agents [10, 11], or underlying the pattern-formation of
diverse chemical reaction [12–14], the appearance of sub-
diffusive dynamics may become inefficient for practical
applications, which typically aim in fast mixing regimes.

∗ F. L. and B. G. contributed equally to this paper.
† Corresponding author: bnaya.gross@gmail.com
‡ Corresponding author: ivan.bms.2011@gmail.com

With this goal, it was later proved that the adoption of
Lévy processes indeed washes out segregation phenom-
ena, leading to super-diffusive dynamics [15].

After this “classical” period, the study of RD processes
has experienced a relevant boost with the inception of
network theory as a new field for characterizing the struc-
tures underlying real-world complex systems [16, 17]. In
fact, besides the focus on networks’ topological proper-
ties, a mainstream has been (and still is) to understand
the interplay between their structure and the dynamics
of processes taking place on them [18].

Consistently with the scenario observed in other mod-
els [20, 21], complex networks significantly influence
the collective properties of RD processes [22]. Numer-
ical [23, 24] and theoretical [25] results have showed
that the small-world property of these substrates miti-
gates the local fluctuations in the particles’ density, fa-
cilitating their reactions. Notably, on scale-free (SF) net-
works (i.e. random graphs with connectivity distribution
P (k) ∼ k−γ and 2 < γ ≤ 3) the kinetics of the A+B → 0
process exhibit jamming effects at early stages and then
super-diffusive behaviors [26], with the latter becoming
stronger as the network heterogeneity increases. Homo-
geneous structures—like random regular (RR), Erdős-
Rényi (ER) or scale-rich (SR, i.e. P (k) ∼ k−γ and γ > 3)
networks—result instead in a linear decay of the density,
in accordance with the mean-field predictions [27, 28].

Though the portrait of RD processes on isolated
structures is nowadays clear, not much is known re-
garding their dynamical behaviors on multilayer net-
works [29, 30]. The influence that their mesoscopic or-
ganization has on the collective behaviors of processes
acting on them is attracting significant interest [31–35],
and has already produced interesting results [36–38]. In-
creasing evidence, in fact, is showing that the existence



2

of multiple layers, joined with the possibility of model-
ing different types of cross-system interactions, results in
novel collective behaviors whose analysis is still in its in-
fancy [39–41]. Following this mainstream, we study here
the A + B → 0 dynamics on a pair of randomly cou-
pled networks with initially separated reactants, where
we find a novel spontaneous dynamical phenomenon.

Our results show that, for sufficiently small fractions q
of the cross-couplings between the layers, the concentra-
tion of both reactants decays as ρ(t) ∼ C1/t for a long
transient, and then crosses over to a second linear regime
where ρ(t) ∼ C2/t (with C2 � C1) at a mixing time tx.
We interpret the initial transient (t < tx) as the unmixed
regime, where the reactions between A and B particles
take place mainly at the boundaries between the net-
works (i.e. at the interconnected nodes). At larger times
(t ≈ tx), the reactants penetrate more and more the two
layers and start to react everywhere in the system. After
this fast mixing stage (t > tx), the remaining particles are
uniformly distributed in the system and their dynamics
is driven essentially by diffusion. We find that the mix-
ing time tx depends on the ratio q/〈k〉, where 〈k〉 is the
average degree of the networks, according to the formula

tx ∝
〈k〉
q

log

(
〈k〉
q

)
, (1)

that we derive analytically for RR graphs and verified
by extensive simulations on diverse synthetic networks.
Since Eq. (1) is in marked contrast with a purely diffusive
process, where tx would simply scale as 〈k〉/q, we inter-
pret the logarithmic factor as the reflection of a sponta-
neous repulsion mechanism between reactants due to the
reactions taking place at the boundary between the net-
works. We find that this mechanism becomes stronger
with increasing heterogeneity of the underlying struc-
tures, in which case Eq. (1) holds only approximately.

The paper is organized as follows. We derive analyt-
ically Eq. (1) for RR graphs, that we verify against ex-
tensive simulations on uncorrelated configuration model
(UCM) networks. After investigating the effects that
the underlying topology has on tx and on the dynami-
cal regimes observed, we give our conclusions.

I. Analytic approach. We consider two configura-
tion model networks [42], composed by the same number
of nodes and same structural properties, a condition that
we will refer hereafter as the “symmetry” of the intercon-
nected network. Let us further assume the two layers are
coupled by means of undirected interlinks, placed at ran-
dom between a fraction q ∈ [0, 1] of couples of nodes
belonging to different layers (Fig. 1). Two populations
of A and B reactants are then randomly distributed with
initially separated concentrations, so that all the parti-
cles of the same type are placed on the same layer. For
simplicity we assume that the initial concentrations of
reactants are equal. To track the evolution of each pop-
ulations, let us denote by ρ1 and ρ2 the concentration of
A particles in network 1 and 2, respectively; similarly, let

FIG. 1: (Color online) Illustration of the model. Particles
of type A (red) and B (blue) are let to diffuse and react
on the top of an interconnected network composed of
two layers, each having a given degree distribution and a
fraction q of interconnected nodes. Different nodes’ size
pictorially represent degrees’ heterogeneity.

µ1 and µ2 be the concentration of B particles in network
1 and 2, respectively. Having assumed equal initial condi-
tions, we have ρ1(0) = µ2(0) = ρ0 and ρ2(0) = µ1(0) = 0.
Moreover, by symmetry, ρ1(t) = µ2(t) and ρ2(t) = µ1(t)
for all t. It is worth to notice here that, whilst this sym-
metric condition certainly holds in the case of coupled
layers with the same or mildly different topological fea-
tures (say RR and ER layers, or two ER networks with
different average degrees), it will in general require some
adjustments for layers with different structures.

To further simplify the analysis, let us assume that
the networks underlying the RD process have homoge-
neous topologies, so that the average degree 〈k〉 of nodes
is the only characteristic parameter of the structure. In
this case, disregarding any dynamical effect due to the
topological fluctuations, we assume that the overall be-
havior is captured by the average densities ρ1 and ρ2. We
can then describe the rate of change of the concentrations
ρ1 and ρ2 which, by symmetry, is given by

ρ̇1 = −q̃ρ1 + q̃ρ2 − ρ1ρ2 , (2)

ρ̇2 = −q̃ρ2 + q̃ρ1 − ρ1ρ2 , (3)

where the first two terms in both lines are due to diffu-
sion, and the last term is due to reaction. The effective
diffusion rate q̃ = q/〈k〉 is the probability at each node
to move to the other network.

Subtracting Eq. (2) from Eq. (3), one obtains ρ̇1−ρ̇2 =
−2q̃(ρ1−ρ2) whose solution is ρ1−ρ2 = ρ0e

−2q̃t. Insert-
ing this expression into, say Eq. (2), leads to

ρ̇1 = ρ0
(
ρ1 − q̃

)
e−2q̃t − ρ21 . (4)

which is a Riccati differential equation. Being the den-
sities now decoupled, we can focus hereafter only on the
solutions of one of them, dropping dumb labels. Solving
numerically Eq. (4) will give us the theoretical predic-
tions for the evolution of the reactants’ concentrations.
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Let us now notice that Eq. (4) is characterized by
two distinct regimes: a reaction-dominated regime, where
ρ̇ = −ρ2 with solution 1/ρ − c = t which can be under-
stood as the asymptotic behavior of the system, and a
diffusion-limited regime where the exponentially decay-
ing terms are dominant over the reaction one. By com-
paring these two regimes, we obtain an equation for the
quasi-stationary behavior, namely

ρ2 ≈ ρ0 |ρ− q̃| e−2q̃t . (5)

Eq. (5) can be adopted in order to define the mixing time
tx, that is the characteristic time it takes for the A and
B reactants to mix and react like in a single network.
To this aim, we make the assumption that the second
summand on the right hand side of Eq. (5) is dominant,
i.e. q̃ � ρ |t=tx [44]. In this approximation, we get

log ρ ≈ −q̃tx log(q̃ρ0) , (6)

which, in combination with the solution of the reaction-
limited regime, gives to the leading order Eq. (1).

II. Simulations and results To simulate the A +
B → 0 process on two randomly coupled networks, we
have first generated two equal synthetic networks com-
posed of N = 106 nodes where the reactants will be ini-
tially distributed. Once the networks are prepared, we
randomly place the cross-couplings between them with
probability q ∈ [0, 1] by quenching the labels of inter-
connected nodes. To avoid any dynamical effect due to
degree-degree correlations, we have constructed two ran-
dom networks according to the UCM. Each network is
hence assigned with a specific degree sequence having the
desired connectivity distribution for the structure, with
lower and structural cut-off given by m ≤ ki ≤ N1/2,
where m ≥ 1 is the minimum degree of each node [43].

Two population of reacting (A and B) species are then
randomly distributed on the interconnected network with
initially separated concentrations, meaning that all A
particles are placed on nodes of one layer, and all B par-
ticles on nodes of the other. Following our symmetric
choice for the system, we fix the initial densities of reac-
tants to be the same, so that ρ1(0) = µ2(0) ≡ ρ0.

Particles diffuse in the system by performing inde-
pendent random walks, where hops are allowed only to
nearest neighbor nodes. Being interested in studying
an A + B → 0 process, we further assume that reac-
tants of the same species do not interact with each other
once they occupy the same site simultaneously, i.e. we
adopt a bosonic version of the dynamics [45, 46]. A reac-
tion occurs whenever an A and a B particle occupy the
same site, in which case both reactants generate an inert
species and are then removed from the system. We mon-
itor the time evolution of the concentrations of A and B
particles, where the total time advances at each step as
1/(nA+nB), being nA+nB the number of particles cur-
rently present in the system. Results are then averaged
over a set of realizations, whose nominal cardinality is

hereafter assumed to be 300, unless otherwise stated.
In Fig. 2 we present the inverse particle density as a

function of time for decreasing values of q in coupled RR
(Fig. 2a), ER (Fig. 2b) and SF networks (Fig. 2c). In all
the cases, we find that for small enough values of the frac-
tions q of interconnected nodes, three distinct dynamical
regimes exist. One for short times (t < tx), where the
particles diffuse inside their own layer and reactions oc-
cur mainly at the interface, one for intermediate times
(t ≈ tx), where particles start to cross and react in the
opposite layer, and a third one for long times (t > tx),
where eventually the survived reactants are well mixed
and the coupled systems behave like a single network.
As shown in the inset of Fig. 2b, this kinetic pattern
strongly depends on the choice of an initial separation of
the reactants, and eventually disappears when the parti-
cles concentrations are initially mixed. To demonstrate
these results, we have compared in Fig. 2b the numerical
solution obtained from the theory and given by Eq. (4)
with the data collected from the simulation, in which case
we observe an excellent agreement.

For homogeneous structures, we have also tested the
effects that the average degree has on the mixing of the
system. In Fig. 2d, it is depicted again the inverse par-
ticle density as a function of time for ER networks, only
this time with a fixed fraction q = 0.008 and increasing
values of the mean degree. For these substrates, we find
that the same repulsion mechanism is obtained by both
increasing 〈k〉 or decreasing q, as one might expect since
a particle hopping to a node which is cross-coupled to the
other layer will diffuse to it with probability q/〈k〉. Fi-
nally we tested the sensitivity of this dynamical scenario
with respect to different choices of the initial concentra-
tions ρ0. As shown in Fig. 2e,f, increasing values of ρ0
slightly affect the dynamical behavior of the system for
both ER and SF interconnected networks, mainly influ-
encing the transients in which the system indulges before
entering the first diffusive regime. In particular, higher
values of the densities make the particles in the two sys-
tems to experience earlier the repulsive effects.

At this point, it worth to notice that the phenomenol-
ogy described so far partially agrees with the results
presented earlier in Ref. [30] by A. Garas, where the
same system was investigated from the more general per-
spective of different strategies of cross-systems interac-
tions. However, by contrast with the conclusions drown
in Ref. [30], here we have shown that in the limit of low
enough fractions of interconnected nodes, an initial sepa-
ration of reactants generally leads to a novel spontaneous
mechanism of repulsion among the reactants which, at
the best of our knowledge, has been so far overlooked.

Next, we investigate the effects that different values
of the effective transmission probability q/〈k〉 has on the
mixing properties of the system, so to verify the accuracy
of the approximations adopted to derive the relation (1)
for tx. To evaluate this quantity, we have plot the log-
arithmic derivative of the y-axis in Fig. 2, and searched
for the maxima of the corresponding curves (see Fig. 3).
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FIG. 2: (Color online) Time evolution of the inverse density in log-log scale for the A + B → 0 process on a pair
of randomly coupled networks of equal number of nodes N = 106 and the initial concentrations ρ0 = 0.4. Different
markers in the figures above correspond to different choices of the varying parameters considered. (a) RR networks
with 〈k〉 = 4 and decreasing values of q. (b) ER networks with 〈k〉 = 40 and decreasing values of q. Simulation’s
data are represented by dots, whilst full lines are obtained by integrating numerically Eq. (4). The inset shows the
difference between mixed and unmixed initial conditions for 〈k〉 = 4 and q = 0.008. (c) SF networks with γ = 3.5 and
decreasing values of q. (d) ER networks with fixed fraction q = 0.008, and increasing values of 〈k〉. (e) ER networks
with q = 0.008, 〈k〉 = 4 and different initial concentrations. (f) SF networks with q = 0.008, m = 2 and γ = 2.5, with
different initial concentrations. Both plots in (e) and (f) have been averaged over 1000 realizations.

FIG. 3: (Color online) Time evolution for the rates of
particle’s annihilation. Results are obtained for ER net-
works with N = 106, ρ0 = 0.4, 〈k〉 = 4, and decreasing
values of q represented by different markers.

The time at which a maximum is reached defines the
mixing time tx, sharply marking the dynamical crossover
between the two regimes. As shown in Fig. 4a, we find
that the time tx for the A+ B → 0 process on ER (and
equivalently, though not shown, RR) networks depends
on q/〈k〉 as predicted by Eq. (1). To further support
this behavior, in the inset of Fig. 4a we have validated
the logarithmic dependency of q

〈k〉 tx due to the repulsion

mechanism by comparing the pattern observed with the
constant behavior that one would have found in the case
of a purely diffusive process. By performing the same
analysis on heterogeneous (SF and SR) networks, we find
that the mixing time tx surprisingly follows the behav-
ior predicted by the mean-field theory for homogeneous
structures (Fig. 4b), though with slightly less accuracy.
We trace the origin of this result to the fact that, in our
model, low-degree nodes are indeed the most important
ones for reactions to occur between the two populations,
as they most likely carry the cross-connections. In fact,
as percolation results would suggest [47], the probabil-
ity of picking at random a hub is very low in SF or SR
networks, making even harder the chance of having hub-
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FIG. 4: (Color online) Data collapse of the mixing time.
(a) Results for ER networks with N = 106 and different
values of 〈k〉. The inset demonstrates the logarithmic
dependency of tx on 〈k〉/q as observed in the same data
(circles) and predicted by the theory (full line). (b) Re-
sults for SF and SR networks with N = 106, m = 2, and
increasing values of the γ exponent.

FIG. 5: (Color online) Finite-size effects. (a) Inverse
density vs. time for ER networks with 〈k〉 = 4, ρ0 =
0.4, q = 0.008 and different sizes, as specified by the
markers. Besides an earlier extinction of reactants (flat
curves, order 1/N) for smaller networks, the mixing time
tx and the kinetic stages remain unaltered. (b) Plot of
1/tx vs. 1/N for SR networks with γ = 3.5, m = 1 and
initial concentration ρ0 = 0.4. Notice that tx converges
to a finite value for large enough networks.

to-hub interconnections. In this respect, we expect that
degree-based couplings among networks will likely tune
the effects of the repulsion mechanism, leading to a faster
mixing of the reactants for e.g. hub-to-hub couplings.

To complete the analysis of the model for this Rapid
Communication, we have tested the response to the sys-
tem to finite-size effects, by adopting networks with equal
topologies, but different number of nodes. In particular,
for ER networks the three dynamical regimes encoun-
tered in Fig.2b remain unaltered in their main stages
(Fig. 5a), and only exhibit an extinction point at earlier
times for networks of decreasing sizes. Finally in Fig. 5b
we have repeated the test for SR networks, where we
have found that the pattern observed in Fig. 2c is again
mainly unchanged, except that the convergence of the
mixing time tx to its thermodynamic value is monotonic
in N , enlightening the possible occurrence of finite-size
effects in the case of power-law networks of small-size
whose study will be performed elsewhere.

III. Summary and conclusions In this work we
have studied, both numerically and analytically, the dy-
namics of an A + B → 0 process on a pair of randomly
coupled networks, where reactants are initially separated.
For small enough values of the fraction q of intercon-
nected nodes between the layers, we have found that the
inverse particle density scales linearly at short times and
then crosses over to a second linear regime at time tx. As
the crossover determines the time at which the two pop-
ulation start to extensively mix, we have analyzed the
dependence of the mixing time tx on the effective dif-
fusion rate q̃ = q/〈k〉, unveiling a novel repulsive mech-
anism whose spontaneous emergence delays the mixing
of the reactants. We gave numerical evidence that, on
randomly coupled synthetic networks, this effect does
not show a sensitive dependence on the heterogeneity of
the underlying topology, but it is in fact dominated by
nodes with low connectivity. Whether or not the same
behavior will appear on networks with targeted (e.g. hub-
to-hub, or non-hub-to-hub) interconnections [48] or on
more realistic structure having e.g. a spatial embedding
or degree-degree correlations, remains an intriguing ques-
tion calling for further investigations. Moreover, since the
diffusion-controlled annihilation process adopted in this
work can be considered as an archetypal model for reac-
tion kinetics [49], we believe that these results will inspire
the investigation of the effects that the initial distribution
of reactants, together with the mesoscopic architecture of
the interconnected network, will have on the pattern for-
mation in more elaborated and realistic spreading mod-
els [10, 50], enlarging in this way our understanding of
the interplay between structure and dynamics.
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