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We study height fluctuations of interfaces in the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ)
class, growing at different speeds in the left half and the right half of space. Carrying out simulations
of the discrete polynuclear growth model with two different growth rates, combined with the standard
setting for the droplet, flat, and stationary geometries, we find that the fluctuation properties at
and near the boundary are described by the KPZ half-space problem developed in the theoretical
literature. In particular, in the droplet case, the distribution at the boundary is given by the largest-
eigenvalue distribution of random matrices in the Gaussian symplectic ensemble, often called the
GSE Tracy-Widom distribution. We also characterize crossover from the full-space statistics to the
half-space one, which arises when the difference between the two growth speeds is small.

I. INTRODUCTION

Interface growth and resulting scale-invariant fluctua-
tions have been an important target of non-equilibrium
physics for decades [1], but they began to take a unique
position when the paradigmatic universality class in this
context, namely the Kardar-Parisi-Zhang (KPZ) class,
turned out to be tractable by exact solutions in one di-
mension [2–5]. Suppose an interface grows upward on a
one-dimensional substrate, then the growth can be de-
scribed in terms of its height profile h(x, t) at spanwise
position x and time t. If this interface belongs to the
KPZ class, h(x, t) is known to grow as

h(x, t) ≃ v∞t+ (Γt)1/3χ(X, t) (1)

with a rescaled coordinate X := cx/t2/3, non-universal
coefficients v∞,Γ, c, and a rescaled random variable
χ(X, t) that represents the height fluctuations. The ex-
ponent values 1/3 and 2/3 in those equations character-
ize the (1+1)-dimensional KPZ class [6, 7]. The modern
developments triggered by exact studies are more con-
cerned with finer fluctuation properties of χ(X, t), such
as its distribution function and correlation properties [2–
5]. They are also universal and were indeed identified in
experiments of liquid-crystal turbulence [8].
Among important outcomes of the recent develop-

ments [2–5], particularly noteworthy are the facts that (i)
the universal fluctuation properties of χ(X, t) can be clas-
sified according to the interface geometry [9], or equiva-
lently the initial condition, and (ii) in prototypical cases,
a connection to random matrix theory [10] was found
[11]. Specifically, if an interface grows from a single nu-
cleus – hereafter referred to as the droplet geometry –,
the asymptotic distribution is given by that of the largest
eigenvalue of random matrices in the Gaussian unitary
ensemble (GUE), called the GUE Tracy-Widom (GUE-
TW) distribution [12]. For interfaces growing from a flat

∗ kat@kaztake.org

substrate, the TW distribution for the Gaussian orthog-
onal ensemble (GOE) arises. The asymptotic distribu-
tion was also obtained for the stationary case, i.e., with
the initial condition drawn from the stationary measure,
which is then given by the Baik-Rains (BR) distribution
[9, 13]. These three constitute the representative cases,
sometimes called universality subclasses of the (1 + 1)-
dimensional KPZ class. Two of them are related to
prominent ensembles of random matrix theory [10].
One may then wonder if the TW distribution of the

other, equally established ensemble of random matrices,
namely the Gaussian symplectic ensemble (GSE) [10],
can arise in the KPZ class. The answer is yes; it was
theoretically found for several semi-infinite systems with
the droplet geometry [9, 11, 14–19] (see also [20–22] for
related studies), where h(x, t) is defined with x ≥ 0 and
the boundary at x = 0 is either constrained by some con-
dition or driven with a different model parameter. To
give examples, it was shown [9, 14, 15] that, the polynu-
clear growth (PNG) model with a different nucleation
rate at the origin exhibits the GSE-TW and Gaussian dis-
tributions for small and large growth rates, respectively,
and the GOE-TW distribution at the critical point. The
GSE-TW distribution was also derived for the KPZ equa-
tion with an absorbing wall at the origin [16] or with
∂xh(0, t) = 0 [17] (now the condition for GSE-TW is
known to be ∂xh(0, t) > −1/2 in rescaled units [22]).
Such a half-space problem has also been studied for the
flat and stationary geometries [14, 23]. However, from
the experimental viewpoint, controlling the growth rate
or the interface slope at the boundary is unrealistic in
many cases. As a result, the GSE-TW distribution, as
well as other universal properties predicted for the half-
space problems, still remain experimentally elusive.
In this work, we propose a more realistic situation to

study the half-space problem, where an interface grows in
both x < 0 and x ≥ 0, but at different speeds in the two
regions. We implement this “biregional” setting numer-
ically, using the discrete PNG model with the droplet,
flat, and stationary geometries, and find the characteris-
tic properties of the corresponding half-space problems.
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FIG. 1. (Color online). Sketch of the time evolution rules
of the discrete PNG model. (a) An example of the interface
evolution from time t (dashed line) to t + 1 (solid line). The
vertical arrows indicate elevation by random nucleations and
the horizontal arrows show plateau expansion. The growth
parameter is q = qL for x < 0 and q = qR for x ≥ 0. (b)
When two plateaus encounter, the higher one overrides.

In particular, the GSE-TW distribution was found in the
droplet case, as well as the associated spatial correlation
near the boundary. If the difference between the two
growth speeds is small, a crossover from the usual full-
space statistics to the half-space one is found. We show
how this crossover is controlled by the growth speed dif-
ference.

II. MODEL

We use the discrete PNG model and adapt it for
our biregional setting. In the following, x ∈ Z, t ∈
N0, h(x, t) ∈ N0. The initial condition is h(x, 0) = 0.
Time evolution is illustrated in Fig. 1. Briefly, ran-
dom nucleation occurs locally, which increases h(x, t) at
the nucleation point by a random integer ω(x, t), and
the produced projection expands laterally at unit speed
[Fig. 1(a)]. When low and high plateaus encounter, the
higher one overrides [Fig. 1(b)]. Those evolution rules
are expressed by

h(x, t+1) = max{h(x−1, t), h(x, t), h(x+1, t)}+ω(x, t+1).
(2)

Here, following Ref. [15], we consider the case in which
nucleation can occur only at even (resp. odd) sites at
even (resp. odd) times. If nucleation is allowed, ω(x, t)
is drawn independently from the geometric distribution
with parameter 0 ≤ q < 1, set to be q = qL for x < 0 and
q = qR for x ≥ 0. More explicitly, with k ∈ N0,

Prob[ω(x, t) = k] =

{

(1− qL)q
k
L, (x < 0),

(1− qR)q
k
R, (x ≥ 0),

(3)

if x− t is odd. Otherwise ω(x, t) = 0.
The advantage of using such an alternating update is

that the scaling coefficients v∞,Γ, c in Eq. (1) are known
analytically as follows, in the case of the homogeneous
growth q = qL = qR [15]:

v∞ =

√
q

1−√
q
, Γ =

√
q(1 +

√
q)

2(1−√
q)3

, c =
q1/6

21/3(1 +
√
q)2/3

.

(4)

Using these coefficients, we can define the rescaled height
by

H(X, t) :=
h(x = Xt2/3/c, t)− v∞t

(Γt)1/3
≃ χ(X, t). (5)

As we explain below, even if qL 6= qR, the same expres-
sions remain valid in the region with the larger q. In the
following, we set qL ≤ qR (growth is faster in x ≥ 0)
without loss of generality.
Now we describe how we implement the droplet, flat,

and stationary geometries in this model.

A. Droplet

Following the standard method for the PNG model [9],
we realize the droplet geometry by restricting nucleations
to |x| ≤ t (in addition to the alternating rule). Thereby
the growth process starts at the origin, forming a circular
interface in the homogeneous case qL = qR. If qL < qR,
we obtain a deformed interface. This is what we call the
droplet case.

B. Flat

In the flat case, nucleations can occur at any sites
with x − t even. Therefore, for simulations, the system
boundary must be explicitly considered. Here we use
h(±(L + 1), t) = 0 in Eq. (2). Since we are interested
in statistical properties at x = 0 and nearby, the choice
of the boundary condition has little influence as long as
L is sufficiently large. Here we use L = tmax + 2, where
tmax = 104 is the final time of the simulations.

C. Stationary

Here the stationary geometry refers to the case where
the initial condition consists of a pair of stationary inter-
faces in the two regions, connected at the boundary. If
qL < qR, the mismatch of the growth speeds makes the
interface non-stationary. Nevertheless, we use the term
stationary, because the interface shows characteristics of
the stationary interfaces, e.g., the BR distribution, far
from the boundary.
While the initial condition described above might be

directly implemented, to avoid the boundary effect, here
we adopt the method used in Ref. [9]. Specifically, we
take the droplet geometry described in Sec. II A and add
an additional nucleation term ω±(x, t + 1) to Eq. (2) at
the droplet edges x = ±t. The edge nucleation also fol-
lows the geometric distribution (3) with parameter q±,

which is set to be q+ = q
1/2
R and q− = q

1/2
L . Those values

are chosen so that the generated interface is indeed in the
stationary state as defined above [5, 9].
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D. Limiting cases

Clearly, if qL = qR, our system becomes the standard
discrete PNG model. The asymptotic fluctuation prop-
erties are therefore exactly known [9]. For the one-point
distribution, it is

H(X, t)qL=qR
d→











χGUE −X2 (droplet),

2−2/3χGOE =: χ′
GOE (flat),

χBR (stationary),

(6)
where χGUE, χGOE, χBR are the standard random vari-
ables of the GUE-TW, GOE-TW, BR distributions

[12, 13], respectively, and “
d→” denotes convergence in

distribution.
In the other limiting case qL = 0, our system be-

comes equivalent to the half-space PNG model [15] with-
out boundary nucleation. With other theoretically solid
results for the half-space problem [14, 23], the one-point
distribution at the origin is

H(0, t)qL=0
d→











21/2χGSE =: χ′
GSE (droplet),

χGUE (flat),

χGOE (stationary),

(7)

with the random variable χGSE of the GSE-TW distri-
bution [12].
Between those limiting cases, 0 < qL < qR, we have the

situation where the interface grows at different speeds.
This is the primary target of the present paper.

III. RESULTS

In the following we fix qR = 0.25, and qL is varied in
the range 0 ≤ qL ≤ qR. We carried out simulations for
the three geometries described above. Statistical results
were obtained from 100,000 realizations for each case,
unless otherwise stipulated.

A. Height Profile

Typical height profiles for the flat and droplet cases are
shown in Fig. 2. In the flat case, the interface consists
of two flat regions growing at different speeds, connected
by a slope near the boundary [Fig. 2(a)]. Interestingly,
the slope is found to be kept constant in time, though
the difference between the heights far from the boundary
increases. This can be understood by considering the
noiseless version of the KPZ equation:

{

∂h
∂t = ν ∂2h

∂x2 + λ
2

(

∂h
∂x

)2
+ vL, (x < 0),

∂h
∂t = ν ∂2h

∂x2 + λ
2

(

∂h
∂x

)2
+ vR, (x ≥ 0),

(8)

where ν and λ are constant coefficients and vL < vR
denote the two growth speeds. The asymptotic solution

(a) (b)

FIG. 2. (Color online). An example of interfaces in the flat
(a) and circular (b) geometries, with qL = 0.2 and qR = 0.25.
The height profiles recorded every 20 time steps are shown.

hasymp(x, t) is

hasymp(x, t) =







vRt+
√

2∆v
λ x, (x < 0),

vRt+
2ν
λ log

(

1 + λ
2ν

√

2∆v
λ x

)

, (x ≥ 0),

(9)
with ∆v := vR − vL. This accounts for the numerically
observed appearance of the constant slope at and near
the boundary.
In the droplet case, the asymptotic mean profile in the

homogeneous growth condition qL = qR = q is known to
be [15, 24]

h(x, t) ≃ v∞t

√
q +

√

1− (x/t)2

1 +
√
q

, (10)

i.e., an expanding semicircle with a rising center. Then,
in our biregional setting qL < qR, if there were no interac-
tion between the two regions, two quadrants of different
radii would grow. However, the same sort of interaction
as for the flat case exists, producing a similar intermedi-
ate region of a constant slope [Fig. 2(b)].

B. Distribution at the Boundary

Now we study how the interface fluctuates around the
mean profile, at and near the boundary. The result of
the mean height profile, in particular Eq. (9), suggests
that this boundary region is essentially controlled by the
faster-growth region. Therefore, the height should be
rescaled by Eq. (5) with Eq. (4) and q = qR = 0.25;
specifically, v∞ = 1, Γ = 3, c = 3−2/3. In this section, we
study the rescaled height fluctuations at the boundary,
H(0, t).
First, the results for the droplet case are shown in

Fig. 3. Figures 3(a) and (b) show the mean 〈H(0, t)〉 and
the variance 〈H(0, t)2〉c, respectively, with varying qL.
For the two limiting cases discussed in Sec. II D, i.e., for
the homogeneous case qL = qR = 0.250 (blue circles) and
the half-space case qL = 0 (green stars), our numerical
data support the expected convergence to the GUE-TW
and GSE-TW distributions, respectively [Eqs. (6) and
(7)]. The data in between correspond to the results of our
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FIG. 3. (Color online). The mean and the variance of the
rescaled height H(0, t) at the boundary for the droplet case.
Different colors and symbols correspond to different values
of qL, as shown in the legend of panel (c). The horizontal
lines indicate the mean and the variance of χGUE (dashed)
and χ′

GSE (dash-dot). The raw data in (a)(b) are plotted

against (∆q)3/2t in (c)(d). The insets show approach to the
GSE-TW values. To improve statistical accuracy, the data
for qL = 0.240 were obtained from 500,000 realizations. In
view of the alternating character of the updating, only data
at even times are shown.

biregional setting, which seem to approach the GSE-TW
values asymptotically. Indeed, by plotting the difference
from the GSE-TW values against t [Fig. 3(c)(d) insets],
we find 〈H(0, t)〉 → 〈χ′

GSE〉 and 〈H(0, t)2〉c → 〈χ′2
GSE〉c

with finite-time corrections ∼ t−1/3 and t−2/3, respec-
tively.

Moreover, if qL is sufficiently close to qR [e.g., red
squares in Fig. 3(a)(b)], the data first stay near the curve
for qL = qR, during which the distribution is essentially
GUE-TW (plus finite-time corrections), then crossover
to the GSE-TW values. To characterize this crossover,
we tried to collapse the data in Fig. 3(a)(b) by rescal-
ing the abscissa in the form (∆q)µt, with ∆q := qR − qL
and some exponent µ. The best collapse was achieved
with µ = 1.4 ± 0.1. From the theoretical viewpoint, it
is reasonable to assume that this crossover occurs when
the height difference induced by the two different growth
speeds, ∆vt ∼ ∆qt, becomes comparable to the fluctua-
tion amplitude (Γt)1/3. This gives t ∼ (∆q)−3/2, hence
µ = 3/2. Our data are indeed consistent with this value
[Fig. 3(c)(d)].

We also studied the flat and stationary cases and
reached analogous conclusions: for the flat case (Fig. 4)
we find a crossover from the GOE-TW to GUE-TW
distributions, and for the stationary case (Fig. 5) from
BR to GOE-TW [recall the limiting cases, Eqs. (6) and
(7)]. The data are found to be consistent with the same
crossover exponent µ = 3/2.

FIG. 4. (Color online). The mean and the variance of the
rescaled height H(0, t) at the boundary for the flat case. The
horizontal lines indicate the mean and the variance of χ′

GOE

(dashed) and χGUE (dash-dot).

FIG. 5. (Color online). The mean and the variance of the
rescaled height H(0, t) at the boundary for the stationary
case. The horizontal lines indicate the mean and the variance
of χBR (dashed) and χGOE (dash-dot).

The one-point distribution near the boundary, X > 0,
is also of interest. In Supplemental Material [25], we show
results for the droplet case with qL = 0, and compare
with a theoretical formula by Sasamoto and Imamura
[15] for the half-space droplet PNG without boundary
nucleation (Fig. S1). The results nicely illustrate that
the one-point distribution in the droplet case crossovers
from GSE-TW at the origin to GUE-TW in the bulk (far
from the boundary). An analogous crossover, from GUE-
TW to GOE-TW for the flat case and from GOE-TW to
BR for the stationary case, is also expected.
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FIG. 6. (Color online). The rescaled spatial correlation function C′

s(X, t) for the droplet (a-c) and the flat (d-f) cases. In
(a,d), t is fixed (t = 10000) and qL is varied. In (b,e), qL is fixed (qL = 0.246) and t is varied. In (c,f), pairs of qL and t

that give the same value of (∆q)3/2t are used. The panel (g) shows the asymptotic forms of the correlation function for the
half-space problem, compared with the Airy1 and Airy2 correlation for the full-space problem. The curves for the Airy2 and
Airy1 processes were numerically evaluated by F. Bornemann [26].

C. Spatial Correlation

Finally we study the two-point spatial correlation func-
tion, defined by

Cs(x, t) := 〈h(x, t)h(0, t)〉 − 〈h(x, t)〉 〈h(0, t)〉 (11)

and rescaled as C′
s(X, t) := Cs(x = Xt2/3/c, t)/(Γt)2/3.

For the homogeneous growth qL = qR, it is known that
the asymptotic spatial profile is given by the stochastic
process called the Airy2 process for the droplet case [27]
and the Airy1 process for the flat case [28]. Therefore,
the spatial correlation function C′

s(X, t) is given directly
by their time correlation, for which analytical formulae
are known [27, 28]. For the half-space droplet case (qL =
0), Sasamoto and Imamura’s formula [15] describes this
correlation.
Figure 6 shows our numerical results. For the droplet

case, C′
s(X, t) is plotted in Fig. 6(a) with fixed t and vary-

ing qL. We can confirm that the data for qL = qR = 0.250
are in agreement with the Airy2 correlation (dashed line).
The corresponding formula by Sasamoto and Imamura is
yet to be evaluated, but since our model with qL = 0
is equivalent to the half-space PNG studied by them,
we expect that our data show the functional form of
their formula [top data set in Fig. 6(g)]. For the bire-
gional case 0 < qL < qR, we see the data crossover from
Airy2 to the half-space result, with increasing ∆q (de-
creasing qL) [Fig. 6(a)] or increasing t (with fixed ∆q)
[Fig. 6(b)]. This crossover is again controlled by the
rescaled time (∆q)3/2t, which is confirmed in Fig. 6(c)
by plotting C′

s(X, t) for several pairs of qL and t that

give the same value of (∆q)3/2t. We also tried data col-
lapse of C′

s(X, t) assuming the combination (∆q)µt with
parameter µ. It was a difficult task due to unavoid-
able influence from finite-time effect and statistical error,
but we obtained µ = 1.3 ± 0.2, in reasonable agreement
with µ = 3/2 expected from the theoretical argument
described in Sec. III B.

The same analysis is carried out in Fig. 6(d-f) for the
flat case. We observe an analogous crossover from the
Airy1 correlation (dash-dot lines) to the correlation ex-
pected to be that of the half-space flat KPZ problem [pur-
ple triangles in Fig. 6(d) or bottom data set in Fig. 6(g)].
To our knowledge, the latter correlation has not been
studied theoretically.

IV. CONCLUDING REMARKS

In this paper, we have proposed a new “biregional”
situation for studying the KPZ class, where the interface
grows at different speeds in the left and right halves of
space. We have implemented it using the discrete PNG
model for the three representative geometries, namely
the droplet, flat, and stationary cases, and numerically
studied the fluctuation properties at and near the bound-
ary. As a result, we have found that they are asymptoti-
cally well described by the half-space problem of the KPZ
class, which is characterized by the sets of the universal
statistical properties different from those for the homo-
geneous, full-space problem. In particular, the GSE-TW
distribution was found for the biregional droplet case. If
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the growth speed difference is small, we have found a
crossover from the full-space statistics to the half-space
one, which is controlled by the rescaled time (∆v)3/2t
with growth-speed difference ∆v.
Our result may also be interpreted in terms of the di-

rected polymer in random medium, which provides one
of the standard representations of the KPZ class [2–5].
In the translation from interface to directed polymer,
growth speed corresponds to the mean depth of the ran-
dom potential and the height to the free energy of the
polymer, which tends to find the optimal path under a
given random potential. Now, in our biregional setting,
the mean depth of the potential is different between the
two regions. If this gap is large enough, the optimal path
is expected to be found essentially inside the deeper half
space. The correspondence to the half-space problem is
reasonable from this viewpoint. It is also interesting to
recall our finding that the mean interface profile devel-
ops a constant slope near the boundary. In this sense,
a situation similar to imposing the Neumann boundary
condition is spontaneously realized in our setting, pro-
viding another explanation on the correspondence to the
half-space problem. In any case, carrying out direct the-
oretical analysis of the biregional KPZ problem is an in-
teresting open problem left for future studies. Statisti-
cal properties other than the one-point distribution are
also needed to be investigated, such as two-time quanti-
ties, which recently became tractable to some extent in
full-space problems [29–33]. It is also interesting to con-
sider relationship to systems with locally different growth
speeds, which have been studied in the literature [34–37].
Finally, we believe that our biregional setting has

strong experimental relevance, compared with the stan-
dard half-space problem for which the boundary condi-
tion needs to be controlled. A study using the liquid-
crystal turbulence [8] is ongoing. We also consider that
a similar situation can be realized in other experimental
systems showing KPZ, such as mutant bacteria colonies
[38] and paper combustion [36, 39]. We hope the bire-
gional setting will be a useful platform to investigate the
KPZ half-space problem, both theoretically and experi-
mentally.
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