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Fractures form the main pathways for flow in the subsurface within low-permeability rock. For9

this reason, accurately predicting flow and transport in fractured systems is vital for improving the10

performance of subsurface applications. Fracture sizes in these systems can range from millimeters11

to kilometers. Although, modeling flow and transport using the discrete fracture network (DFN)12

approach is known to be more accurate due to incorporation of the detailed fracture network struc-13

ture over continuum-based methods, capturing the flow and transport in such a wide range of scales14

is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of15

realizations of these DFN models have to be run. To reduce the computational burden, we solve flow16

and transport on a graph representation of a DFN. We study the accuracy of the graph approach by17

comparing breakthrough times and tracer particle statistical data between the graph-based and the18

high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of19

heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simula-20

tions on fracture networks with large number of fractures, we are in a unique position to perform21

such a comparison. We show that the graph approach shows a consistent bias with up to an order of22

magnitude slower breakthrough when compared to the DFN approach. We show that this is due to23

graph algorithm’s under-prediction of the pressure gradients across intersections on a given fracture,24

leading to slower tracer particle speeds between intersections and longer travel times. We present a25

bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN26

and graph predictions. We show that with this bias correction, the graph algorithm predictions sig-27

nificantly improve and the results are very accurate. The good accuracy and the low computational28

cost, with O(104) times lower times than the DFN, makes the graph algorithm, an ideal technique29

to incorporate in uncertainty quantification methods.30
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I. INTRODUCTION33

Fracture networks are the main pathways for fluid flow34

and transport in the subsurface within low-permeability35

rock [1–3]. Prediction of fluid migration in these fractures36

is critical for several energy and national security appli-37

cations such as hydrocarbon extraction from unconven-38

tional resources, geothermal energy extraction, nuclear39

waste disposal, and detection of underground nuclear40

explosions [4–7]. The pathways formed in the fracture41

networks and the fine-scale heterogeneity that they give42

rise to depend heavily on the connectivity and geomet-43

rical features such as size and aperture of the fractures.44

Higher fracture density leads to better connectivity which45

in turn increases the chances for more flow and transport.46

Furthermore, the larger the fracture size, the chances47

for connectivity with other fractures is higher, and the48

larger the aperture, the more fluid volume can move in49

that fracture. Modeling approaches have to ensure that50

these connectivity and geometrical features of fracture51
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networks are reasonably captured for accurate predic-52

tions. Discrete fracture network (DFN) modeling is one53

such approach. In this method, fractures are represented54

as two-dimensional planar objects in three-dimensional55

space (for example, see Fig. 1), and flow is solved us-56

ing a Darcy solver [8] while transport is solved using57

an advection-dispersion equation (ADE) solver [9, 10] or58

via particle tracking [11]. The DFN method allows for59

explicit incorporation of fracture characteristics such as60

fracture size, aperture, etc., from a geological site and61

one does not have to use upscaling techniques or aver-62

aged parameters needed in continuum methods [12]. In63

addition, upscaling in continuum methods leads to ten-64

sorial parameters in the governing equations, e.g., tensor65

permeability for flow and tensor diffusivity for ADE. One66

then has to seek higher order discretization techniques67

[13] to solve these governing equations, in addition to68

the special care needed to handle some of the resulting69

artifacts the solution such as oscillations [14, 15].70

In the last ten years there have been major advances in71

DFN simulation capabilities and high-fidelity simulations72

on large explicit three-dimensional fracture networks is73

now possible. One major challenge with the DFN ap-74

proach that needed attention is generating conforming75
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Figure 1. Discrete fracture network made up of 6330 circu-
lar fracture whose radii are sampled from three independent
truncated power-law distributions. Fractures are colored by
family. There are about 13 million grid cells in this model.

meshes that can resolve the small features resulting from76

the stochastic creation of the networks. Methods such77

as the feature rejection algorithm for meshing (FRAM)78

[16] have been proposed to overcome this issue effectively,79

which generates a mesh that is fine at an intersection80

and becomes increasingly coarse away from an intersec-81

tion. Other research teams have opted to use mortar82

methods [17] or extended finite elements [18] to alleviate83

the problem of having conforming meshes within fracture84

planes along intersections. The advantage of conforming85

meshes is that particle tracking methods [19] can be used86

to simulate transport in a more natural way, which skirts87

the undesirable, yet common issues associated with nu-88

merical dispersion when resolving transport on unstruc-89

tured meshes in an Eulerian framework.90

Even with these advances, the number of mesh cells91

grows with the number of fractures that are included in92

the network. Even for a modest sized DFN with about93

6300 fractures, as shown in Fig. 1, the number of un-94

knowns (degrees of freedom or dofs, hereafter) to solve95

flow are nearly 13 million. For target applications where96

the range of length scales can range up to four orders of97

magnitude [20], the number of dofs can be in the billions.98

A common workaround is to not include fractures below a99

given length scale. However, while ignoring these smaller-100

scale fractures gives reasonable first breakthrough pre-101

dictions, the tails tend to be inaccurate. For example,102

Karra et al. [4] have shown that for improving produc-103

tion curve tail estimates one needs to incorporate smaller-104

scale fractures, that are typically ignored. Such large dof105

domains may be solvable using high-performance com-106

puting (HPC) software, for instance, using dfnWorks [21]107

for DFN generation and PFLOTRAN [22] for solving108

flow and transport. Even then, the stochastic nature109

of the models dominate the flow and transport behav-110

ior that are only known in a statistical sense, and hence111

one has to account for uncertainty. However, incorporat-112

ing such large domains in an uncertainty quantification113

(UQ) framework, where hundreds (or more) of such re-114

alizations have to be run, is computationally intractable,115

not to mention, processing the copious amounts of data116

generated would be challenging.117

We present a model-reduction technique to reduce the118

computational complexity by solving flow and transport119

on a graph representation of a DFN. The topology of120

the nodes and edges of the graph is determined by the121

fracture network and weights on nodes and edges seek to122

capture geometric and hydraulic properties of the frac-123

ture planes. We adopt a mapping where each intersection124

in the DFN is represented by a node on the graph, which125

ensures that the connectivity of the DFN is maintained.126

The geometrical information of the fractures such as dis-127

tance between the intersections, fracture apertures, as128

well as flow and transport properties, such as permeabil-129

ity and porosity, are incorporated in weights assigned to130

the edges connecting the nodes. Additional nodes are131

placed in the graph to incorporate boundary conditions132

at the inflow and outflow boundaries. The idea behind133

solving on an equivalent graph is that: (i) the number of134

dofs to be solved depend on the number of nodes on the135

graph which in our case will depend on the number of136

fracture intersections, and (ii) we avoid meshing on each137

individual fracture which is a highly time-consuming step138

in a DFN model construction. Now that high-fidelity flow139

and transport simulations on explicit three-dimensional140

DFN can be performed at large scales, it provides us the141

opportunity to examine how the simplifying assumptions142

used in the low-order models influence the computational143

burden and quantities of interest. We use our in-house144

developed dfnWorks HPC suite for this purpose. In par-145

ticular, we aim to address the trade-off between compu-146

tational speed and accuracy relative to the fully resolved147

networks. Furthermore, by performing accuracy studies,148

we can infer how much correction one needs to make on149

the graph-based reduced model predictions.150

It is worth noting that recent applications of graph the-151

ory to fracture networks have helped gain insight into the152

structure and connectivity of these networks. Valentini153

et al. [23] were one of the first ones to use graph equiv-154

alent of natural fracture systems to study their features.155

Andresen et al. [24] have mapped two-dimensional frac-156

ture outcrops from south-east Sweden into graphs, and157

used various graph-based metrics such as clustering and158

efficiency to study their topology and connectivity. San-159

tiago et al. [25] have developed an algorithm to process160

images of two-dimensional outcrops into graphs and used161

graph theory centrality measures to identify key nodes for162

flow. Hyman et al. [26] used graph-based techniques to163

identify subnetworks that give similar first passage time164

as the full DFN. However, with their approach one needs165

to still solve flow and transport on the DFN-equivalent166
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Figure 2. The general workflow in our proposed method involves building an equivalent graph for a given DFN. The connectivity
of DFN is transformed into the graph connectivity. (Left) Eight fracture DFN with a mesh that is used for performing the high-
fidelity flow and transport calculations. (Right) Equivalent graph with nodes (red spheres) representing fracture intersections.
The geometric information of the fractures such as distance between intersections, apertures, etc., are stored in weights of the
edges between the graph nodes. Properties such as permeability, porosity and viscosity are also stored in these weights. The
mesh to resolve the full network has 79792 triangular elements with 88200 vertices, while the graph representation has 15 nodes.

of the subnetwork. Ghaffari et al. [27] have mapped two-167

dimensional fracture networks into graphs with fractures168

represented as nodes and their intersections being edges169

on the graphs, similar to Andersen et al. [24]. They170

then solved for steady flow on this graph by solving the171

graph Laplacian to calculate the velocity distribution in172

the network. However, their work was restricted to two-173

dimensional fracture networks while we focus on more174

realistic three-dimensional fracture networks. Further-175

more, we are the first to compare the graph-based re-176

duced model and the high-fidelity DFN model, in terms177

of accuracy as well as computational performance.178

We find that that solving flow and transport on the179

equivalent graph is O(104) times faster, thereby one can180

feasibly incorporate a DFN model with a wide range of181

fracture sizes from millimeters to kilometers, within a182

UQ framework. We show good accuracy for small net-183

works while for larger networks where small-scale het-184

erogeneity is more prominant, deviations from the high-185

fidelity DFN results are observed. For the larger net-186

works, we show that the graph-based approach generally187

over-predicts tracer breakthrough times, always within188

an order of magnitude of the DFN predictions. The sys-189

tematic bias in the graph method, makes it amenable to190

UQ correction techniques.191

In this paper, by flow we mean flow of a fluid (e.g.,192

water) in a fractured porous medium, and by transport,193

we mean transport of a conservative tracer in this flow194

field. The paper is organized as follows. A brief overview195

of the DFN approach, the governing equations, and solu-196

tion methodology used to solve these governing equations197

on a given DFN, are detailed in Sec. II A. Details of the198

DFN to graph mapping methodology along with the flow199

and transport solution algorithm on the equivalent graph200

are discussed in Sec. II B. Breakthrough curves obtained201

using the full DFN and the equivalent graphs are com-202

pared and analyzed in Sec. III. Finally, conclusions are203

drawn in Sec. IV.204

II. METHODOLOGY205

In this section, we give an overview of the methods206

used to generate DFNs, and to solve flow and transport207

on them. We also discuss the algorithm for solving flow208

and transport on a graph along with the method we de-209

veloped to convert a DFN to an equivalent graph.210

A. Discrete Fracture Network211

The computational suite dfnWorks [21] is used for DFN212

generation, meshing, and solving flow and transport on213

DFN. The approaches used to generate DFNs, and to214

solve flow and transport using dfnWorks are briefly de-215

scribed in this sub-section. For more details, we refer the216

interested reader to [21].217

1. Generation and Meshing218

Statistical distributions of fracture characteristics219

taken from field measurements are used to stochastically220

generate fractures. Characteristics include size, location,221

aperture and orientation. Individual fractures are then222

meshed using LaGriT toolkit [28]. Care is taken to ensure223
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that the meshes are conforming at the intersections us-224

ing the feature rejection algorithm (FRAM) [16]. FRAM225

uses a minimum length that is user defined for feature226

representation in the DFN. All the geometric features227

below the minimum length are not resolved. The algo-228

rithm also generates meshes that are fine at the fracture229

intersections to resolve the smaller features for accuracy230

and coarsens away from the intersections, thereby reduc-231

ing the overall number of grid cells and computational232

resources needed.233

2. Flow234

The generated and meshed DFN is then used to solve235

for steady state flow. The governing equation solved is236

a result of balance of mass and Darcy’s model, given by237

[8]:238

∇ · (k(x)∇p) = 0, (1)

where k is the spatially varying permeability and p is239

the liquid pressure. Equation (1) is numerically inte-240

grated using a two-point flux finite volume method, sub-241

ject to pressure boundary conditions at the inlet and out-242

let boundaries. We use the subsurface flow solver PFLO-243

TRAN [22] for this purpose. To get an accurate solution244

that maintains local mass balance, PFLOTRAN reads245

Voronoi control volumes for the DFN Delaunay triangu-246

lar mesh. Voronoi meshes, by construction, ensure that247

the line joining two cell-centers is perpendicular to the248

face between the the two control volumes, leading to ac-249

curate two-point flux calculations. LaGriT is used to250

perform the conversion from Delauney to Voronoi.251

3. Transport252

The particle tracking approach is used to calculate the253

breakthrough curves of a conservative tracer in the flow254

field governed by Eq. (1). Trajectory x(t) of a given par-255

ticle is evaluated by integrating the kinematic equation256

dx(t)

dt
= v (x(t)) , x(0) = xinit, (2)

where xinit is the initial position of the particle. The time257

taken for the particle to travel from the inlet to the do-258

main outlet, is then calculated. For solving Eq. (2), one259

needs a particle’s velocity vector at every location, which260

is related to Darcy velocity vector q at that location via261

v (x) =
q (x)

ϕ
, (3)

where ϕ is the porosity, that can be assumed to be fairly262

constant in rock. A uniform mass is assigned to each263

particle.264

i

j

fracture 
plane

lj

li

xi

xj

Figure 3. Illustration of a single fracture plane showing how
the geometrical information of fractures is used to map the
intersections i, j to nodes of an equivalent graph.

Since two-point flux finite volume formulation gives265

only the normal component of the Darcy velocity qn from266

the pressure solution at the Voronoi cell-centers via the267

Darcy model:268

qn := q · n = −k (x)∇p · n, (4)

where n is the unit normal, a velocity reconstruction269

method [29] is used to calculate velocity vectors at cen-270

ter of the Voronoi control volumes (which are vertices271

of the corresponding Delaunay mesh). Once the Darcy272

velocity vector q is known at the Delaunay vertices,273

Eqs. (2), (3) are used to integrate for the particle path-274

lines. A predictor-corrector method is used to perform275

this integration. Details of the particle tracking method276

used for DFN can be found in [19].277

B. Graph Flow and Transport Algorithm278

In this sub-section, we present the mapping between279

DFN and graph that we adopt. Then we derive general280

flow governing equations on a graph followed by a de-281

scription of the approach to solve these equations. The282

methodology used to calculate the conservative tracer283

transport breakthrough on a graph from the flow solu-284

tion on the said graph is finally described.285

1. Discrete Fracture Network to Graph Mapping286

Consider a fracture plane with two intersections i and287

j, such as those shown in Fig. (3). We build a graph288

G with nodes i, j corresponding to these intersections289

while the edge on the graph corresponds to the fracture290

plane. A node is added to the graph for each inflow or291

outflow plane. Edge weights wij on the graph are based292
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on geometric and hydrological properties of the fracture293

plane. Figure 2 illustrates the workflow of converting294

a DFN into an equivalent graph for an eight fracture295

network. Nodes are shown as red spheres and edges are296

black lines. The mesh to resolve the full network has297

179792 triangular elements with 88200 vertices, while the298

graph representation has only 15 nodes.299

2. Flow300

Let N be the number of nodes in G. Assuming steady301

flow, the balance of mass for the fluid at a node i in G,302

can be written as303

N∑
j=1

Qij = 0, (5)

where j is a node that is adjacent (or connected) to i, Qij304

is the mass flux that flows through the connection i to j.305

One can then relate Qij to pressures Pi, Pj at the nodes306

i, j, respectively, through an equivalent Darcy’s model307

qij =
κij
µLij

(Pi − Pj) , (6)

Qij = qijαij , (7)

where qij is the mass flux per unit area, κij is the perme-308

ability of the fracture plane with intersections i, j and µ309

is the viscosity. If li, lj be the lengths of the intersections,310

with xi, xj being the centroids of the intersections (see311

Fig. (3)), and if aij is the fracture aperture, then the area312

αij in Eq. (7) through which the fluid flows as it moves313

from i to j can be approximated to aij (li + lj) /2. Also,314

Lij in Eq. (6) is set to the Euclidean distance between315

xi and xj , ‖xi − xj‖, where ‖ · ‖ is the Euclidean norm.316

Equations (5), (6), (7) imply that317

N∑
j=1

wij (Pi − Pj) = 0, (8)

where wij :=
κijαij
µLij

.318

Now, if we assign wij as weights to edges of G, then one319

can define an adjacency matrix [30] A whose elements are320

wij . Note that when there is no connection between two321

nodes p and q, the entry Apq is zero. Defining the degree322

of vertex m as km :=
∑
nAmn, one can re-write Eq. (8)323

conveniently, in the following matrix form324

(D −A)P = 0, (9)

where D is a diagonal matrix with elements Dmm = km,325

P is a vector of pressure values Pm.326

The matrix L := D − A is the graph Laplacian. In327

order to solve Eq. (9), one needs to provide ‘boundary328

conditions’ in terms of the pressure values at the inlet329

and outlet nodes. For a boundary node b, this is done330

by setting Lbj = δbj , where δ is the Kronecker delta, and331

by replacing the b-th value in the 0 vector on the right332

hand side of Eq. (9) with the known value of the pressure333

at b. After solving for the pressure values at the nodes,334

Eqs. (6), (7) are used to evaluate the mass flux of water335

through the graph edges.336

3. Transport337

To calculate the breakthrough of a conservative tracer338

traveling from the inlet to outlet nodes on G, we propose339

a method that is along the lines of the particle tracking340

method. The steps for this method are:341

1. The mass flux per unit area (qij) of water on the342

graph edges is first calculated.343

2. For a particle traveling from node i to node j, the344

particle’s velocity is then calculated as vij =
qij
ϕij

,345

where ϕij is the porosity assigned to the edge con-346

necting nodes i, j.347

3. Once vij is known, the time taken for a particle to348

travel from node i to node j is calculated, via349

tij =
Lij
vij

=
Lijϕij
qij

. (10)

In Eq. (10), we assume that a particle takes a350

straight line path over the distance Lij .351

4. When a node i has multiple connected nodes, in352

order to decide which node the particle has to travel353

to, a probability proportional to qij is assigned to354

the particle.355

In our calculations, we set ϕij to a constant value of356

ϕ that is same as the value used in high-fidelity DFN357

simulations.358

4. Transport bias correction359

For large networks, the breakthrough times predicted360

by the graph transport algorithm for particles tend to361

be biased in comparison to the DFN breakthrough times362

so that the breakthrough occurs later for the graph al-363

gorithm. The bias will be discussed further in Sec. III364

– here we focus on how it can be corrected. Simulat-365

ing transport on these large networks is often computa-366

tionally demanding, so it is important to note that our367

bias correction approach requires the use of a single high-368

fidelity DFN realization. Other members of the ensemble369
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Figure 4. Comparison between DFN and graph approaches
for 8 fractures with homogeneous permeability (Case 1).
(Top) shows the breakthrough curve comparison. Time is
in seconds. (Bottom) shows the particle statistics between
fracture intersections. The four subplots on the left side of
(Bottom) are individual particle statistics with all the par-
ticles traveling through the same connection shown with the
same color. The four subplots on the right side of (Bottom)
are the average statistics of all the particles traveling through
the same connection.

from which the realization was drawn can then be accu-370

rately simulated using the graph model.371

The basic approach to the bias correction is to use372

a power-law to improve the graph algorithm’s prediction373

for the time to travel from one fracture intersection to an-374

other. This is based on the ansatz that both the DFN and375

graph travel times follow a power law distribution [31–376

33]. By examining a single high-fidelity DFN simulation377

in detail, we can obtain a wealth of information about378

the time to travel along a fracture from one intersec-379

tion to another. This is because particles typically travel380

through numerous fracture intersections and a DFN sim-381
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Figure 5. Comparison between DFN and graph approaches
for 8 fractures with heterogeneous permeability (Case 2).
(Top) shows the breakthrough curve comparison. Time is
in seconds. (Bottom) shows the particle statistics between
fracture intersections. The four subplots on the left side of
(Bottom) are individual particle statistics with all the par-
ticles traveling through the same connection shown with the
same color. The four subplots on the right side of (Bottom)
are the average statistics of all the particles traveling through
the same connection.

ulation tracks a large number of particles. The power-law382

that is used takes the form383

tcij = Ctαij (11)

where tcij is a corrected estimated of the time to travel384

from node i to node j in the graph and tij is from Eq. 10.385

The power, α is estimated by a linear regression relating386

log tij to the corresponding values from the high-fidelity387

DFN realization.388
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Figure 6. Comparison between DFN and graph approaches
for 150 fractures with homogeneous permeability (Case 3).
(Top) shows the breakthrough curve comparison. Time is
in seconds. (Bottom) shows the particle statistics between
fracture intersections. The four subplots on the left side of
(Bottom) are individual particle statistics with all the par-
ticles traveling through the same connection shown with the
same color. The four subplots on the right side of (Bottom)
are the average statistics of all the particles traveling through
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III. COMPARISON BETWEEN DFN AND389

GRAPH390

In this section, we compare breakthrough curves as391

well as CPU times between the high-fidelity DFN runs392

and the graph approach.393
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Figure 7. Comparison between DFN and graph approaches
for 500 fractures with heterogeneous permeability (Case 4).
(Top) shows the breakthrough curve comparison. Time is
in seconds. (Bottom) shows the particle statistics between
fracture intersections. The four subplots on the left side of
(Bottom) are individual particle statistics with all the par-
ticles traveling through the same connection shown with the
same color. The four subplots on the right side of (Bottom)
are the average statistics of all the particles traveling through
the same connection.

A. Breakthrough Comparison394

Breakthrough is a typical quantity of interest in sub-395

surface flow and transport problems, and hence we com-396

pare breakthrough curves and quantify the differences397

seen. For the purposes of this comparison, we con-398

struct four fracture networks with varying degrees of399

complexity. In all cases fracture centers are uniformly400

distributed throughout the domain and orientations are401

also uniformly random. The four cases with correspond-402

ing breakthrough comparison plots are:403
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Figure 8. Breakthrough curves for 10 realizations of 500 frac-
ture networks with heterogeneous permeability. Blue curves
are for graph and red is for DFN. The graph breakthrough is
consistently slower than DFN.

• Case 1: 8 uniformly sized square fractures (side404

length 3 meters) with permeability being the same405

on all the fractures (Fig. 4);406

• Case 2: The same network as in Case 1, but with407

permeability varying between fractures. Perme-408

abilities are sampled from a log normal distribu-409

tion with log variance of one, a moderate level of410

hydraulic heterogeneity. (Fig. 5);411

• Case 3: 150 uniformly sized square fractures (side412

length of 1.5 meters) with same permeability on all413

fractures. (Fig. 6);414

• Case 4: Moderate sized network composed of ap-415

proximately 500 circular fractures. Fracture radii416

are sampled from a truncated power-law distribu-417

tion with exponent α = 2.6 and upper and lower418

cutoffs of 1 meter and 5 meters. The average P32419

value, total surface area over domain volume, of420

the networks is 2.78, a moderate network density.421

The permeability of the fractures is positively cor-422

related to the fracture radius via a power-law rela-423

tionship [34]. (Fig. 7);424

Table I shows the parameters used in the flow simulations425

of the four cases. To analyze the reason for any differ-426

ences seen between the two approaches, we have also plot-427

ted the statistics of flow and transport quantities of in-428

dividual as well as average of particles traveling through429

each connection in Figs. 4–7. Each connection here is the430

connection between two intersections on a fracture, as de-431

scribed in Sec. II B 1. These quantities include distance432

traveled by a particle between any two intersections on433

fracture, the particle’s speed as well as the travel time434

over the distance, and the pressure gradient across the435

two intersections.436

The breakthrough curves match very well for both437

Case 1 (Fig. 4) and Case 2 (Fig. 5), along with excellent438

correlation between the average DFN and graph particle439

flow and transport quantities. For Case 3, the graph pre-440

dicts slower breakthrough than DFN for the most part.441

The reason being graph under-predicts the pressure gra-442

dients across intersections by several orders of magni-443

tudes (note the log scale in pressure gradient data), and444

thus the particles traveling on these connections have sev-445

eral orders of magnitude slower speeds and longer travel446

times. However, towards the end, DFN breakthrough is447

slower. This is because there are some connections in the448

DFN where the particles have to travel more distance, on449

an average, than the graph approach. One possible rea-450

son for this is that DFN captures the pathline distances451

of the particles while graph uses the straight line distance452

between two fracture intersection centers, and so in some453

cases the average of the DFN pathline distances between454

intersections is larger than the graph distance. In Case455

4, the graph consistently shows slower breakthrough due456

to several orders of slower particle speeds and their travel457

times, similar to Case 3, but at a larger number of con-458

nections than Case 3. To check for consistency in the459

breakthrough comparison, we ran 10 realizations of Case460

4. Fig. 8 shows the corresponding breakthroughs with461

the graph being consistently slower than DFN. It is also462

seen that as the number of fractures increase, the under-463

prediction of the pressure gradients across intersections464

increases with the graph based method and thus the par-465

ticles exhibit longer travel times.466

Using the bias correction procedure described previ-467

ously, the accuracy of the predictions for Case 4 can468

be substantially improved. Figure 9 shows the break-469

through curves for four realizations from the ensemble470

using the DFN, graph, and graph with bias correction471

(“Graph++”) models. From this figure, it can be visu-472

ally seen that the bias correction procedure significantly473

improves the accuracy of the graph model. To quantify474

the improvement, we utilized the Kolmogorov-Smirnov475

statistic which is equal to the supremum of the differ-476

ence between two cumulative distribution functions. The477

expected Kolmogorov-Smirnov statistic for the graph478

model with the bias correction in comparison to the DFN479

model was approximately 0.09. Without the bias correc-480

tion procedure, the expected Kolmogorov-Smirnov statis-481

tic was approximately 0.34. The bias correction proce-482

dure improves the Kolmogorov-Smirnov statistic and vi-483

sually improves the fit. From examining the trajectories,484

the largest errors tend to occur at later times (e.g., as485

can be seen in the upper left and lower right panels in486

Fig. 9), and is more accurate at earlier times.487
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Table I. Parameters used in both DFN and graph simulations.

Quantity Case 1 Case 2 Case 3 Case 4

Number of connections 15 15 216 575

Inlet pressure 2 MPa 2 MPa 2 MPa 2 MPa

Outlet pressure 1 MPa 1 MPa 1 MPa 1 MPa

Log10 Permeability -12 [ -12.40, -11.60] -12 [ -9.04, -9.68]

No. of particles (graph) 25,000 25,000 25,000 25,000

No. of particles (DFN) 25,000 25,000 25,000 25,000

0.0
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Figure 9. Breakthrough curves for four realizations of 500
fracture networks with heterogeneous permeability. Blue
curves are for the DFN, orange is for the graph, and green
is the graph utilizing the bias correction procedure (called
“Graph++” in the legend).

B. Computational Comparison488

For comparing the computational performance of the489

graph-based and DFN approaches, networks with frac-490

tures increases from 18 to 7147, were used. The CPU491

times for both the approaches with breakdown among492

the various steps – DFN meshing, flow and transport493

solve, graph flow and transport solve – are shown for494

these networks in Table II. Figure 10 shows these times495

as histograms for one-to-one comparison along with the496

ratio between total DFN time and total graph time shown497

as speedup. Networks for this comparison are composed498

of square fractures. The density of the networks is held499

constant and the size of the domain increased to increase500

the number of fractures. All CPU times reported here501

were run with 1 processor on a 32 core, 2 thread per502

core, AMD Opteron(TM) Processor 6272 with 528 GB503

RAM. Since the same DFN generation step is required504

for both approaches, the CPU time for this step is not505

used in the comparison. The overall CPU times for the506
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Figure 10. Plot comparing the CPU times for various steps
in the graph and DFN methods. Note that the y-axis is in
logarithmic scale. The star marker shows the ratio of graph
method to DFN times.

graph approach is up to O(104) times smaller than DFN.507

The significantly faster times with the graph approach is508

due to two factors: 1) meshing is the biggest bottleneck509

with the DFN approach and the graph approach avoids510

this step; 2) graph flow and transport solves are at least511

three orders of magnitude faster than DFN due to signif-512

icant (O(103)−O(104)) dof reduction.513

IV. CONCLUSIONS514

We successfully demonstrated that solving flow and515

transport on a graph equivalent to a given DFN is O(104)516

times faster for large networks. The graph approach517

takes advantage of the fact that: 1) each intersection of a518

DFN is represented by a node and so the dofs are signif-519

icantly smaller over DFN, and 2) meshing in fractures is520

a time-consuming step in DFN and no meshing is needed521

in the graph approach. Using breakthrough as the quan-522

tity of comparison, we compared the two approaches for523

various fracture networks with increasing number of frac-524

tures. We found that graph approach reasonably predicts525
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Table II. CPU times on a single core for various steps in the DFN and graph approaches (shown in seconds).

No. of fractures No. of cells No. of trajectories
DFN Graph

Generation Meshing Flow Transport Flow Transport

18 27415 498 0.03 92.52 1.01 5.02 0.002 0.002

104 193308 1795 0.09 899.40 9.34 66.21 0.008 0.012

408 780276 5891 0.43 4252.84 38.12 617.86 0.050 0.074

882 1745002 8697 1.00 8451.90 95.41 1699.99 0.080 0.151

1768 3581117 13724 1.57 22009.47 153.07 3210.52 0.142 0.439

3090 6387657 19598 3.00 29931.83 260.21 6813.58 0.260 0.606

4861 10232106 25988 5.85 55762.68 409.37 13269.95 0.410 1.080

7147 15178277 41975 8.83 81392.85 592.63 18614.50 0.580 2.075

the breakthrough curves compared to DFN for smaller526

networks (8 fractures) and gives slower breakthrough for527

larger and more realistic networks with 150 and 500 frac-528

tures, with the graph prediction being no more than an529

order of magnitude slower than DFN. We found that this530

discrepancy is generally due to graph under-predicting531

the pressure gradients across intersections on a fracture,532

which leads to slower particle speeds between the inter-533

sections and longer travel times. Furthermore, the sys-534

tematic bias in the graph method over DFN, allows for535

performing corrections to the graph predictions. We also536

developed a correction methodology to reduce the sys-537

tematic bias, and showed that this methodology signif-538

icantly improves the graph algorithm and gives results539

that are close to the high-fidelity DFN predictions. Over-540

all, the speed of the graph approach along with the good541

accuracy using the proposed bias correction methodol-542

ogy, makes the graph approach a promising model reduc-543

tion technique for flow and transport in fractured media.544
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