
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Tensor network method for reversible classical computation
Zhi-Cheng Yang, Stefanos Kourtis, Claudio Chamon, Eduardo R. Mucciolo, and Andrei E.

Ruckenstein
Phys. Rev. E 97, 033303 — Published 8 March 2018

DOI: 10.1103/PhysRevE.97.033303

http://dx.doi.org/10.1103/PhysRevE.97.033303

Tensor network method for reversible classical computation

Zhi-Cheng Yang,1 Stefanos Kourtis,1 Claudio Chamon,1 Eduardo R. Mucciolo,2 and Andrei E. Ruckenstein1

1Physics Department, Boston University, Boston, Massachusetts 02215, USA
2Department of Physics, University of Central Florida, Orlando, Florida 32816, USA

(Dated: February 5, 2018)

We develop a tensor network technique that can solve universal reversible classical computational
problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017)]. By
encoding the truth table of each vertex constraint in a tensor, the total number of solutions com-
patible with partial inputs/outputs at the boundary can be represented as the full contraction of a
tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this
contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via
repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a
given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated
iterations of these two steps gradually collapse the tensor network and ultimately yield the exact
tensor trace for large systems, without the need for manual control of tensor dimensions. Our pro-
tocol allows us to obtain the exact number of solutions for computations where a naive enumeration
would take astronomically long times.

I. INTRODUCTION

Physics-inspired approaches have led to efficient algo-
rithms for tackling typical instances of hard computa-
tional problems, shedding new light on our understand-
ing of the complexity of such problems [1, 2]. The con-
ceptual framework of these approaches is based on the
realization that the solutions of certain computational
problems are encoded in ground states of appropriate
statistical mechanics models. However, the existence of
either a thermodynamic phase transition into a glassy
phase or a first-order quantum phase transition represent
obstructions to reaching the ground state, often even for
easy problems [3–7]. Recently, Ref. [8] introduced a new
class of problems by mapping a generic reversible clas-
sical computation onto a two-dimensional vertex model
with appropriate boundary conditions. The statistical
mechanics model resulting from this mapping displays no
bulk thermodynamic phase transitions and the bulk ther-
modynamics is independent of the classical computation
represented by the model. Taken together, these features
remove an obvious obstacle to reaching the ground state
of a large class of computational problems and imply that
the time-to-solution and the complexity of the problem
are determined by the dynamics of the relaxation of the
corresponding system to its ground state. However, when
thermal annealing is employed, the resulting dynamics is
found to be extremely slow, and even easy computational
problems cannot be efficiently solved. Since any classical
computation implemented as a reversible circuit can be
formulated in this fashion, finding an algorithm that can
solve the resulting vertex models efficiently would have
far-reaching repercussions.

In this paper, we introduce a tensor network approach
that can treat vertex models encoding computational
problems. Tensor networks are a powerful tool in the
study of classical and quantum many-body systems in
two and higher spatial dimensions, and are also used as
compressed representations of large-scale structured data

in “big-data” analytics [9–11]. Here we are interested in
taking the trace of tensor networks [12–14], to count the
number of solutions of a computational problem. As op-
posed to thermal annealing, which serially visits individ-
ual configurations, tensor network schemes sum over all
configurations simultaneously. As a result, tensor-based
approaches lead to a form of virtual parallelization [15],
which, under certain circumstances, speeds up the com-
putation of the trace. Most of the physics-driven appli-
cations have focused on tensor network renormalization
group (TNRG) algorithms that coarse grain the network
while optimally removing short-range entanglement [16–
29]. There are, however, two aspects of our physics-
motivated work that are qualitatively different from that
of TNRG approaches. First, vertex models of computa-
tional gates are intrinsically not translationally invariant.
Second, the trace over the tensor network, which counts
the number of solutions of the computational circuit (the
analogue of the zero temperature partition function of
statistical mechanics models) must be computed exactly,
within machine precision. (Approximations of the ten-
sors lead to approximate counting, which in certain prob-
lems is no easier than exact counting [30].) Both features
are naturally treated by the methods proposed in this pa-
per.

In our tensor network approach, the truth table of each
vertex constraint corresponding to a computational gate
is encoded in a tensor, such that the local compatibil-
ity between neighboring bits (or spins) is automatically
guaranteed upon contracting the shared bond between
two tensors. Summing over all possible unfixed bound-
ary vertex states and contracting the entire tensor net-
work give the partition function, which counts the total
number of solutions compatible with the boundary con-
ditions, a problem belonging to the class #P. Finding a
solution can then be accomplished by fixing one bound-
ary vertex at a time, with the total number of trials linear
in the number of input bits [15].

Our tensor network method, which we refer to as the

2

iterative compression-decimation (ICD) algorithm, can
be regarded as a set of local moves defining a novel dy-
namical path to the ground state of generalized vertex
models on a square lattice. These moves can be shown
to decrease or leave unchanged the bond dimensions of
the tensors involved, thus achieving optimal compression
(i.e., minimal bond dimension) of the tensor network on
a lattice of fixed size. The algorithm’s first step is to
propagate local vertex constraints across the system via
repeated contraction-decomposition sweeps over all lat-
tice bonds. These back and forth sweeps are the higher
dimensional tensor-network analog of those employed in
the one-dimensional finite-system density matrix renor-
malization group (DMRG) method [31]. For problems
with non-trivial boundary conditions, such as those en-
countered in computation, these sweeps also propagate
the boundary constraints into the bulk, thus progres-
sively building the connection between opposite (i.e., in-
put/output) boundaries. In the next step, the algorithm
decreases the size of the lattice by coarse-graining the
tensor network via suitable contractions. Repeated it-
erations of these two steps allow us to reach larger and
larger system sizes while keeping the tensor dimensions
under control, such that ultimately the full tensor trace
can be taken.

The computational cost of ICD hinges upon the max-
imum bond dimension of the tensors during the coarse-
graining procedure. We identify the hardness of a given
counting problem by studying the scaling of the maxi-
mum bond dimension as a function of the system size,
the concentration of nontrivial constraints imposed by
TOFFOLI gates, and the ratio of unfixed boundary ver-
tices. We further present both the average and typical
maximum bond dimension distributions over random in-
stances of computations. While we cannot distinguish
between polynomial and exponential scaling for the hard-
est regime of high TOFFOLI concentration, there exist
certain regimes of the problem where the bond dimen-
sion grows relatively slowly with system size. Therefore,
within this regime, we are able to count the exact number
of solutions within a large search space that is intractable
via direct enumerations.

The rest of the paper is organized as follows. We first
briefly introduce the tensor network representation of
generic vertex models on a square lattice in Sec. II. Sec-
tion III describes the ICD algorithm for coarse-graining
and efficiently contracting the tensor network. In Sec-
tion IV we apply the ICD method to reversible classical
computational problems as encoded in the vertex model
of computation introduced in Ref. [8], and discuss a re-
lation between the number of solutions of the computa-
tional problem and the maximum bond dimension of the
tensor network from an entanglement perspective. Sec-
tion V presents the implementation of the ICD and the
accompanying numerical scaling results for random com-
putational networks defined by the concentration of Tof-
foli gates placed randomly at vertices of a tilted planar
square lattice. Finally, we close with Sec. VI, where we

outline future applications of our ICD algorithm to both
computational and physics problems.

II. TENSOR NETWORK FOR VERTEX
MODELS

We start by introducing the tensor network represen-
tation for a generic vertex model. In our formulation,
discrete degrees of freedom reside on the edges of a reg-
ular lattice and they are coupled locally to their neigh-
boring degrees of freedom. Couplings between degrees of
freedom are denoted by vertices. The couplings at each
vertex n = 1, . . . , Nsites, where Nsites denotes the total
number of vertices, are encoded into a tensor T [n] whose
rank will depend on the connectivity of the lattice. Fix-
ing the state at all edges incident to a vertex collapses
the corresponding tensor to a scalar. For concreteness, let
us consider the square lattice as an example, as shown
in Fig. 1; generalizations to other types of lattices are
straightforward. Each tensor T [n] is therefore a rank-4
tensor T [n]ijkl, where i, j, k, l denote bond indices.

T [n] i

j

k

l

T [n]ijkl

Figure 1. (Color online) Vertex model on a square lattice. A
local tensor T [n]ijkl is defined on each lattice site.

The tensor representation is quite general. If, for ex-
ample, one associates a Boltzmann weight with each com-
bination of bond index values, one can encode statistical
mechanics problems into the tensor network [17, 18, 22–
25]. Alternatively, by assigning boolean 1s to “compat-
ible” combinations of bond index values and boolean 0s
to “incompatible” ones, such that the tensor represent a
vertex constraint or a truth table, one can either study
statistical mechanical vertex models at zero temperature,
or implement computational circuits with the tensor net-
work (Sec. IV). Finally, one could even embed the weights
of a discretized path integral for a 1+1D quantum prob-
lem in a two-dimensional network. For finite systems
with boundaries, the boundary tensors will have a differ-
ent rank from the bulk tensors.

We define the tensor trace of the network as

Z = tTr
∏

n

T [n]ijkl, (1)

where n runs over all lattice sites and tTr denotes full con-
tractions of all bond indices. This trace may correspond

3

to the partition function for the 2D classical system, or
the number of possible solutions of a computation, or the
imaginary-time path integral for a 1D quantum system,
etc. In general, a brute-force evaluation of the full tensor
trace multiplies the dimensions of the tensors, thereby
requiring a number of operations exponential in system
sizes. It is therefore expedient for any strategy of evalu-
ating the trace to keep the dimensions of tensors under
control at intermediate steps, so that the tensor trace
can be ultimately taken. Ideally, one would like a proto-
col that uses all available information — such as bound-
ary conditions, compatibility constraints, energy costs or
Boltzmann weights, depending on the particular prob-
lem at hand — to compress the tensor network as much
as possible, while maintaining all the essential informa-
tion therein. In Sec. III, we propose an efficient iterative
scheme that achieves this goal. In particular, as we detail
in Sec. IV, our algorithm provides a simple way to deal
with finite systems without translational invariance, and
subject to various types of boundary conditions.

III. COMPRESSION-DECIMATION
ALGORITHM

In this section, we describe the compression-
decimation algorithm that facilitates the exact contrac-
tion of tensor networks. The algorithm consists of two
steps. First, we perform sweeps on the lattice via a sin-
gular value decomposition (SVD) of pairs of tensors in
order to eliminate short-range entanglement and propa-
gate information from the boundary to the bulk, hence
removing the redundancies in the bond dimensions. Due
to its nature, we call this step compression. Next, we
contract pairs of rows and columns of the lattice such
that the system size is reduced. This step is referred to
as decimation. The two steps are then repeated until the
size and bond dimensions of the tensor network become
small enough to allow an exact full contraction of the
network.

Locally, the sweeps remove redundancies due to either
short-range entanglement or incompatibility in the local
tensors, and compress the information into tensors with
smaller bond dimensions. Globally, the sweeps propa-
gate information about the boundary conditions to the
bulk, thus imposing global constraints on the local bulk
tensors. Moreover, since the sweeping is performed back
and forth across the entire lattice, it does not differen-
tiate between whether or not translational invariance is
present. Therefore, our scheme may be thought of as
a higher dimensional analog of the finite-system DMRG
algorithm that applies to generic vertex models on finite
lattices.

A. Compression

In this step, we visit sequentially each bond in the lat-
tice and contract the corresponding indices of the two
tensors sharing this bond. We then perform an SVD on
the contracted bond and truncate the singular value spec-
trum keeping only those greater than a certain thresh-
old δ. After that, the tensors are reconstructed with a
smaller bond dimension. We define each forward plus
backward traversal of all the bonds in the network as
one sweep. The specific choice of the threshold δ de-
pends on the desired precision, as well as the problem
we are dealing with. For example, in formulating TNRG
algorithms, δ can be chosen to be some small but finite
number. On the other hand, for computational problems
such as counting, δ is chosen to be zero within machine
precision.

Let us take two tensors with the shared bond labeled by
i, T [1]a1a2a3i and T [2]b1ib2b3 , as shown in Fig. 2a, where
we denote the dimension of bond i as di. We would like to
reduce di via a SVD. In principle, this can be achieved by
directly contracting T [1] and T [2] along dimension i into
a matrix MA,B = T [1]A,iT [2]i,B , where we have grouped
the other three indices of each tensor into superindices
A ≡ (a1a2a3) and B ≡ (b1b2b3), and then performing an
SVD. However, to avoid decomposing the matrix MA,B

with potentially large bond dimensions, we first do an
SVD on each individual tensor (Fig. 2b):

T [1]A,i = U [1]A,r Λ[1]r V [1]ᵀr,i , (2a)

T [2]i,B = U [2]i,r′ Λ[2]r′ V [2]ᵀr′,B . (2b)

Notice that the contraction of T [1] and T [2] can then be
written as

T [1]T [2] = U [1]A,r

[
Λ[1]rV [1]ᵀr,iU [2]i,r′Λ[2]r′

]
V [2]ᵀr′,B .

(2c)
This implies that we can instead perform an SVD on

the part shown within brackets in Eq. (2c): M̃r,r′ =
Λ[1]rV [1]ᵀr,iU [2]i,r′Λ[2]r′ , which has much smaller dimen-

sions since dr ≤ min(dA, di), dr′ ≤ min(dB , di). Now we

perform an SVD on the matrix M̃r,r′ to obtain (Fig. 2c)

M̃r,r′ = Ur,sΛsV
ᵀ
s,r′ . (2d)

(At each SVD step described above, we discard singu-
lar values that are smaller than δ.) Therefore, after the
above steps, the bond dimension ds ≤ min(dr, dr′) ≤
min(di, dA, dB). Finally, we construct new tensors as

T̃ [1]a1a2a3s ≡ Ũ(a1a2a3),s (Λs)
1/2 , (2e)

T̃ [2]sb1b2b3 ≡ (Λs)
1/2 Ṽ ᵀ

s,(b1b2b3)
, (2f)

where the dimension of the shared bond is reduced
(Fig. 2d,e). Starting from one boundary, we visit se-
quentially each bond i ∈ 1, . . . , Nbonds, where Nbonds is
the total number of bonds in the lattice, and perform the

4

steps outlined above, until we reach the opposite bound-
ary. Then we repeat the procedure in the opposite direc-
tion, until we reach the original boundary. The sweeping
can be repeated Nsweeps times, or until convergence of all
bond dimensions.

a1

a2

a3

i

b1

b2

b3

T [1] T [2]

U [1] ⇤[1] V |[1] U [2] ⇤[2] V |[2]

U [1] V |[2]V |⇤U

U [1] V |[2]V |U ⇤1/2 ⇤1/2

a1

a2

a3

b1

b2

b3

s
eT [1] eT [2]

(a)

(b)

(c)

(d)

(e)

Figure 2. (Color online) The contraction-decomposition step
in the sweeping. (a) Two tensors T [1] and T [2] sharing a bond
i. (b) Perform SVDs on individual tensors respectively. (c)
Perform an SVD on the shaded part. (d) Split the resultant

matrices into two pieces. (e) Construct new tensors T̃ [1] and

T̃ [2].

B. Decimation

The second step of the algorithm is to contract pairs
of rows and columns of the tensor network, so as to yield
a lattice with a smaller number of sites [22, 24]. As we
show in Fig. 3, this step consists of a column contraction
(Fig. 3a), followed by a row contraction (Fig. 3b). In the

(a) (b)

Figure 3. (Color online) (a) A column contraction involving
pairs of tensors along the x direction. (b) A row contraction
involving pairs of tensors along the y direction. The new
tensors resulting from the contractions are denoted by pink
dots, and the new bonds are denoted by orange lines.

column contraction, we contract pairs of tensors along
the x direction, and obtain a new tensor (see also Fig. 2a):

T(a1b1)a2(a3b2)b3 =
∑

i

T [1]a1a2a3i T [2]b1ib2b3 . (3)

We then perform a row contraction similarly, during
which pairs of tensors are contracted along the y direc-
tion.

During this step, the dimensions of the bonds perpen-
dicular to the current direction of contractions are multi-
plied and hence will inevitably grow. Therefore, after all
columns/rows are contracted, we sweep back and forth
again to reduce the bond dimensions. A simplified ver-
sion of the compression-decimation scheme is presented
as pseudocode in Algorithm 1.

5

Algorithm 1 Iterative Compression-Decimation

Input: tensor network on a square lattice {T [n] |n ∈
1, . . . , Nsites}; Nsweeps ≥ 1; δ ≥ 0 (SVD truncation param-
eter).
Output: Z, as defined in Eq. (1)

1: repeat
2: for i = 1, . . . , Nsweeps do (compression)
3: for b = 1, . . . , Nbonds do (forward sweep)
4: Contract, SVD, and update tensors as in Eq. 2
5: end for
6: for b = Nbonds, . . . , 1 do (backward sweep)
7: Carry out backward sweep similarly
8: end for
9: end for

10: Perform column contractions by Eq.(3) (decimation)
11: Perform row contractions similarly (decimation)
12: until network is decimated to single site
13: Carry out tensor trace Eq. (1)

A few remarks are in order. First, the lattice structure
lends us more flexibility with the coarse-graining step
since one does not have to contract every pair of rows
and columns. For example, in cases of systems without
translational invariance, representing either disordered
statistical mechanics models or models encoding com-
putational circuits, the bond dimensions are in general
not distributed uniformly across the entire lattice. One
could then perform the contractions selectively on rows
and columns containing mostly tensors with small bond
dimensions while leaving the rest for the next coarse-
graining step. In practice, one could set an appropri-
ate threshold in the algorithm depending on the specific
problems. Second, the procedure described here is closely
related to the TNRG algorithms where the key is to opti-
mally remove short-range entanglement at each RG step.
For example, Ref. [25] proposes a loop optimization ap-
proach for TNRG. An important step in that method is to
filter out short-range entanglement within a plaquette via
a QR decomposition, which we believe should be equiv-
alent to our SVD-based sweeping. Moreover, as shall
be shown in Sec. V C, the sweeps take into account the
local environment around each tensor. The loop struc-
ture of short-range entanglement is eliminated (at least
partially) when we visit each bond around the loop and
sweep across the whole system. Whether or not more
elaborate schemes [20–29, 32] for taking into account the
tensor environment can improve the performance of the
sweeps in the ICD scheme will not concern us in this
work: we will see that even the simple sweep protocol
described above is sufficient for the solution of complex
generic computational problems. Third, our procedure
is more apt for systems without translational invariance,
e.g., spin glasses. Finally, the computational cost scales
as O(χ5) for the SVD steps, and O(χ7) for the tensor
contraction steps, where χ is the maximum bond dimen-
sion of the tensors. Hence the computational cost of our
compression-decimation algorithm scales as O(χ7).

IV. THE GENERAL TOFFOLI-BASED VERTEX
MODEL

In this section, we provide an example of a hard com-
putational problem where our scheme can be applied to
find solutions in cases that are otherwise intractable. The
models we study here follow from the vertex model repre-
sentation of reversible classical computations introduced
in Ref. [8]. We remark that this general vertex model
can address generic satisfiability problems, a statement
that follows from a series of results already documented
in the literature:

1. The circuit satisfiability (CSAT) problem is NP-
complete [33, 34];

2. The CSAT problem can be formulated in terms of
reversible circuits [35];

3. Any reversible circuit can be constructed using only
TOFFOLI gates [35];

4. Any reversible circuit constructed out of TOFFOLI
gates can be mapped onto our vertex model repre-
sentation, with the addition of an appropriate num-
ber of identity and swap gates [8].

Hence, our vertex model can encode other satisfiabil-
ity problems such as 3-SAT, which can be mapped into
CSAT. (Indeed, it is possible to program 3-SAT with n
variables and m clauses into a vertex model using a lat-
tice of size n× 2m [36].)

The vertex model is defined on a square lattice of finite
size with periodic boundary conditions in the transverse
direction, thus placing the model on a cylinder. Depend-
ing on the specific computation, different types of bound-
ary conditions are imposed in the longitudinal direction.
In addition, this model does not display translational in-
variance since different gates of the computational circuit
are implemented by different vertices. This model can en-
code general computational problems, including any of
the hard instances, and serves as an excellent candidate
to benchmark the performance of our scheme.

We start by giving a self-contained review of the gen-
eral vertex model encoding reversible classical computa-
tions introduced in Ref. [8] and construct its tensor net-
work representation. This is based on the fact that any
Boolean function can be implemented using a reversible
circuit constructed out of TOFFOLI gates, which are re-
versible three-bit logic gates taking the inputs (a, b, c)
to (a, b, ab ⊕ c). To facilitate the coupling of far-away
bits while maintaining the locality of TOFFOLI gates,
we use two-bit SWAP gates to swap neighboring bits,
(a, b) → (b, a), until pairs of distant bits are adjacent to
one another. Bits that do not need to be moved are sim-
ply copied forward using two-bit Identity (ID) gates. To
obtain a plane-covering tiling and thus a square-lattice
representation of the circuit, we combine the SWAP
and ID gates into the three-bit gates: ID-ID, ID-SWAP,
SWAP-ID, SWAP-SWAP, and represent each of them as

6

well as the TOFFOLI gate as a vertex with three inputs
and three outputs. The five types of vertices are shown
in Fig. 4, with the input and output bits explicitly drawn
on the links.

a a

b

b
c

c � ab

a

b

b

c

c

a

a

b

b

cc

a

a

b

b

c

c

a a

b

b

cc

a

SWAP-SWAP ID-IDTOFFOLI

ID-SWAP SWAP-ID

Figure 4. (Color online) Five types of vertices used for the
vertex model representation of reversible classical computa-
tions. The input and output bits are denoted by blue squares
on the links associated with a given vertex.

Alternatively, one can think of bits as spin 1/2 particles
located on the bonds between vertices, whereas each ver-
tex imposes local constraints between “input” and “out-
put” spins, such that only 23 = 8 out of the 26 = 64
total configurations are allowed. For all five types of ver-
tices, one can write local one- and two-spin interaction
terms, such that the allowed configurations are given by
the ground-state manifold of the Hamiltonian comprised
of all these terms [8]. The allowed configurations are then
separated from the excited states by a gap set by the en-
ergy scale of the couplings. In the large-couplings limit,
interactions can be equivalently thought of as constraints
and one therefore needs only to consider the subspace
where local vertex constraints are always satisfied.

Using the five types of vertices introduced above, one
can map an arbitrary classical computational circuit onto
a vertex model on a tilted square lattice, as shown in
Fig. 5.

Bits at the left and right boundaries store the input
and output respectively, and the horizontal direction cor-
responds to the computational “time” direction. The
boundary condition along the transverse direction is cho-
sen to be periodic. Spin degrees of freedom representing
input and output bits associated with each vertex are
placed on the links. This model can be shown to display
no thermodynamic phase transition irrespective of the
circuit realizations via a straightforward transfer matrix
calculation [8].

When either only the input or only the output bound-
ary bits are fully determined a priori, the physical system
functions as a regular circuit: the solution can be ob-

Figure 5. (Color online) Vertex model on a tilted square lat-
tice encoding a generic classical computation. The left and
right boundaries stores the input and output states, and pe-
riodic boundary condition is taken along the transverse direc-
tion.

tained by passing the boundary state through the next
column of gates, obtaining the output, then passing this
output on to the next column of gates, repeating the pro-
cedure until the other boundary is reached. This mode of
solution, which we shall call direct computation, is trivial
and its computational cost scales linearly with the area
of the system.

On the other hand, by fixing only a subset of the left
and right boundaries, a class of nontrivial problems can
be encoded in the vertex model. For example, one can
cast the integer factorization problem on a reversible mul-
tiplication circuit precisely in this way [8, 37]. In these
cases, the boundary state cannot be straightforwardly
propagated from the boundaries throughout the entire
bulk, as the input or output of one or more gates is at
most only partly fixed, and therefore direct computation
unavoidably halts. Without any protocol of communi-
cation between the two partially fixed boundaries, one is
left with trial-and-error enumeration of all boundary con-
figurations, whose number grows exponentially with the
number of unfixed bits at the boundaries. Even though
it is sometimes possible to exploit special (nonuniversal)
features of specific subsets of problems in order to de-
vise efficient strategies of solution (e.g., factorization with
sieve algorithms), general schemes that perform favor-
ably in solving the typical instances in the encompassing
class are important, both for highlighting the underlying
universal patterns and as launchpads towards customized
solvers for particular subsets of problems. The algorithm
introduced in this work is of the latter general kind.

A. Tensor network representation

We shall now construct a tensor network representa-
tion of the vertex model, such that the full contraction
of the tensors yields the total number of solutions satisfy-
ing the boundary conditions. In the statistical mechan-
ics language, this is the partition function of the vertex
model at zero temperature, which essentially counts the
ground state degeneracy.

7

Bulk tensors. We define a rank-4 tensor associated
with each vertex in the bulk, Tijkl, as shown in Fig. 6a.
The tensor components are initialized to satisfy the truth
table of the vertex constraint, meaning that Tijkl = 1 if
(ij) → (kl) satisfies the vertex constraint, and Tijkl = 0
otherwise. Here the indices should be understood as in-
tegers labeling the spin (bit) states on each bond. Notice
that the indices i, l correspond to double bonds on the
lattice while j, k correspond to single bonds. Therefore,
the original bond dimensions of the indices (i, j, k, l) are
(4, 2, 2, 4).

For concreteness, let us give an example of encoding
the truth table of the TOFFOLI gate into the tensor
Tijkl. First, recall that the gate function of TOFFOLI
is (a, b, c) → (a, b, d = c ⊕ ab). Comparing Fig. 6a with
Fig. 4, we identify on the input side, i ≡ (ab) = 21b +
20a, j = c; on the output side, k = a, l ≡ (bd) = 21d+20b.
In Table I, we explicitly list the truth table of the TOF-
FOLI gate and its corresponding non-zero tensor com-
ponents. All unspecified tensor components are set to
zero. Tensors encoding the other four types of vertex
constraints can be obtained in a similar fashion.

input output tensor component

a b c a b d Tijkl ≡ T(ab)ca(bd)

0 0 0 0 0 0 T0000 = 1

0 0 1 0 0 1 T0102 = 1

0 1 0 0 1 0 T2001 = 1

0 1 1 0 1 1 T2103 = 1

1 0 0 1 0 0 T1010 = 1

1 0 1 1 0 1 T1112 = 1

1 1 0 1 1 1 T3013 = 1

1 1 1 1 1 0 T3111 = 1

Table I. Truth table and the corresponding tensor components
for the TOFFOLI gate. On the input side, i ≡ (ab) = 21b +
20a, j = c; on the output side, k = a, l ≡ (bd) = 21d + 20b.
All unspecified components are zero.

Boundary tensors. The vertices at the boundary have
only two bonds. Hence we define a rank-2 tensor Tij
at the boundary, where the indices i, j have the same

meaning as the bulk tensors (Fig. 6b). Here we draw a
distinction between boundary tensors whose vertex states
are fixed and those that are not. For fixed boundary
vertices, Tij = 1 only for one component corresponding
to the fixed state, whereas for unfixed ones, Tij = 1∀ i, j.

Under the above definitions of local tensors, local com-
patibility between spins shared by two vertices is auto-
matically guaranteed when contracting the correspond-
ing two tensors. Moreover, the unfixed boundary ten-
sors already encode the information of all possible vertex
states in a compact way, fulfilling a form of classical vir-
tual parallelization [15]. Therefore, the full contraction
of the tensor network — if it can be performed — will
give the total number of solutions subject to a certain
boundary condition.

i

j

k

l

i

j

i

j

Tijkl Tij

(a) (b)

Figure 6. (Color online) Definition of (a) bulk and (b) bound-
ary tensors.

B. Entanglement and number of solutions

Before moving on to the concrete application of the
algorithm, let us try to gain some insights into the bond
dimensions of local tensors needed to encode the infor-
mation of the total number of solutions from an entangle-
ment point of view [38]. Let us denote the collection of
free vertex states at the input and output boundaries by
{qin} and {qout}. We construct a weight W ({qin, qout})
which equals 1 if the state {qin, qout} is a solution, and 0
otherwise. The partition function is then given by

Z =
∑

{qin,qout}

W ({qin, qout}), (4)

which equals the total number of solutions. Now we con-
struct a quantum state as follows:

|ψ〉 =
∑

{qin,qout}

W ({qin, qout}) |{qin, qout}〉

=
∑

{qin,qout}

tTr (T [1]qin1T [2]qin2 · · ·T [i]T [i+ 1] · · ·T [N]qoutL∂) |{qin}, {qout}〉, (5)

where N is the total number of vertices, L∂ is the num-
ber of unfixed vertices on each boundary, and tTr de-
notes tracing over all internal indices of the tensors.
Let us imagine taking a cut perpendicular to the peri-

odic direction and divide the system into two subsys-
tems. The entanglement between subsystem left and
right is determined by the singular value spectrum of
the matrix W({qin}, {qout}) reshaped from the weight

8

W ({qin, qout}). W is a matrix whose entries are either
1 or 0, and there can be at most one entry in each row
and column that equals 1 due to the reversible nature of
the circuit. Thus the rank of the matrix W is Z, and
the zeroth-order Rényi entropy S(0) = lnZ. The entan-
glement entropy of the quantum state (5) is hence upper
bounded by S(1) ≤ S(0) = lnZ. Therefore, at least when
there is only a small (nonextensive) number of solutions,
the amount of entanglement is low and the information
can be encoded in tensors with small bond dimensions.

It may seem from the above argument that in the oppo-
site limit of a large (extensive) number of solutions, the
bond dimensions would necessarily be large. However,
this is not true in general. Consider the open boundary
condition under which every locally compatible configu-
ration is a solution. In this extreme limit, the quantum
state (5) is an equal amplitude superposition of all con-
figurations, i.e., a product state. Such a state can be
represented with tensors of bond dimension one in the
‘x-basis’. One thus expects that in cases of many solu-
tions, the state should also be close to a product state
with low entanglement, and hence can be represented
with tensors of small bond dimensions. The above argu-
ments indicate that, if there is a highly entangled regime
where the bond dimensions required to represent the so-
lution are large, then it must necessarily be for systems
with an intermediate number of solutions. In Sec. V C, we
show numerically that, even in the intermediate regime
where the solutions of an arbitrary vertex model are more
than just a few, it is possible to obtain an efficient and
compressed tensor network representation of the allowed-
configuration manifold.

Having argued that, for the case of problems with a
small number of solutions, solutions of vertex models
with partially fixed boundaries can be encoded into ten-
sor networks with small bond dimensions, we set out to
find this tensor-network representation. The pertinent
motivating question is: given that there is a representa-
tion that can compress the full information of all solu-
tions with relatively small bond dimensions, how can we
find it efficiently?

V. APPLICATION OF THE ICD TO THE
RANDOM VERTEX MODEL

In this section we apply ICD to N random instances of
vertex lattices of fixed concentration of TOFFOLI gates,
and fixed and equal concentrations of all four other types
of gates shown in Fig. 4, with random input states for
each instance. By evaluating the full tensor trace for
each of these N instances and for various lattice sizes,
we obtain information about the average scaling of per-
forming the underlying classical computations by means
of the ICD method. Moreover, we study the full distri-
bution of the maximum bond dimension χ over random
realizations and find that the typical behavior is gener-
ally different than the average, due to the presence of

heavy tails in the bond-dimension distribution. Finally,
we establish numerically that the scaling of the actual
running time τ with the maximum bond dimension is
always better than the worst-case estimate τ ∼ O(χ7).

A. Local moves

Since the vertex model is defined on a tilted square
lattice, we first need to turn it into a lattice as shown in
Fig. 1 in order to apply our algorithm in Sec. III. This can
be done by performing local moves on the tilted lattice,
which we explain below.

(a) (b)

(c)

Figure 7. (Color online) Illustration of the local moves which
turn the original lattice into a square lattice rotated by 45◦.
In (a), sites belonging to sublattice A and B are shown in
blue and green dots, respectively. From (b) to (c), four sites
belonging to a diamond are contracted into one.

The tilted square lattice Fig. 7a is bipartite, with two
sublattices A and B. Local tensor decompositions and
contractions for tensors on each sublattice can rearrange
the lattice into an “untilted” one, rotated by 45◦ with
respect to the original lattice. We start by splitting each
tensor on the original vertex lattice into two along either
horizontal or vertical direction, depending on which sub-
lattice the corresponding site belongs to. Let us take a
bulk tensor Tijkl on the original lattice. If the site belongs
to sublattice A, we decompose the tensor horizontally
into two rank-3 tensors, Tijkl =

∑
q Aijq Bklq; if the site

belongs to sublattice B, we instead decompose the ten-

sor vertically, Tijkl =
∑
q Ãikq B̃jlq, as shown in Fig. 8.

Such a decomposition can be achieved via an SVD on
the original tensors, T(ij),(kl) = U(ij),q Λq V

ᵀ
q,(kl) to yield

Aijq = U(ij),q (Λq)
1/2 and Bklq = (Λq)

1/2 V ᵀ
q,(kl). We visit

each site and split the tensors in this way. This turns the

9

tensor network into the structure shown in Fig. 7b. We
then further contract four tensors in a diamond into one
and finally arrive at a new square lattice rotated by 45◦

with respect to the original one (Fig. 7c). With these
local moves, which have to be carried out only once, we
cast the problem into the form discussed in Sec. II.

i

j

k

l

q

i

i
i

j

j
j

k

k
k

l

l
l

q

(a)

(b)

Figure 8. (Color online) Local moves that decompose each
tensor on the original lattice into two along either horizontal
or vertical direction, depending on whether the site belongs
to sublattice A (a) or B (b).

However, instead of doing an SVD on the original ten-
sor, here we can use the fact that the tensors encode the
truth tables of reversible gates and use an alternative
method. Define a new set of tensors with an auxiliary in-

dex q = 0, 1, . . . , 7 labeling the vertex state, T̃ qijkl. Now

the component of this rank-(4,1) tensor is one if and only
if q is the same as the input state labeled by (i, j). Then,
the desired decomposition can be achieved as follows:

Aijq =
∑

kl

T̃ qijkl, Bklq =
∑

ij

T̃ qijkl,

Ãikq =
∑

jl

T̃ qijkl, B̃jlq =
∑

ik

T̃ qijkl. (6)

One can easily check that the contraction of the A and B
tensors gives back the original tensor T , and hence this
achieves the splitting shown in Fig. 8. The remaining
steps of the algorithm are carried out exactly in the same
way as before. By construction, the bonds between the
resulting bulk tensors all have dimension 8.

B. Control of bond dimensions

We can now apply the compression-decimation algo-
rithm to count the number of solutions for a given bound-
ary condition. As we discuss in Sec. III A, a truncation
threshold δ needs to be specified in the sweeping step of
the algorithm. Since we are performing an exact count-
ing, no approximation in the truncation of the bond di-
mensions is made during the coarse-graining procedure,
i.e., we choose δ = 0 within machine precision. This is a

key methodological difference of the ICD to TNRG meth-
ods, which approximate physical observables to within a
certain accuracy by enforcing a finite δ.

As mentioned above, from a statistical mechanics
point-of-view, what we are computing is the zero-
temperature partition function of the vertex model,
which yields the ground state degeneracy. In the bulk,
all locally compatible configurations are equally possible
until they receive information from the boundary con-
ditions. Therefore, the coarse-graining step effectively
brings the boundaries close to one another, and the
sweeping step propagates information from the bound-
ary to the bulk and knocks out states encoded in local
tensors that are incompatible with the global boundary
conditions.

The reason why the growth of bond dimensions re-
mains controlled is that longer-range compatibility con-
straints over increasingly larger areas are enforced upon
the coarse-grained tensors. These constraints are propa-
gated to neighboring coarse-grained tensors upon sweep-
ing, thus further reducing bond dimensions and com-
pressing the tensor-network representation. For the triv-
ial cases of either fixing all gates on one boundary or
leaving them all free (open boundary condition), we
have checked that the tensors converge to bond dimen-
sion one (scalars) after one sweep, without the need of
coarse-graining. The tensor contraction is then simply re-
duced to multiplications of scalars, which can be trivially
computed and indeed gives the correct counting. This
demonstrates that the sweeping is responsible for propa-
gating information from the boundary, and that the case
of fully fixing one boundary is thus equivalent to direct
computation, as described in Sec. IV.

In cases of mixed boundary conditions, the sweeping
on the original lattice scale will generally not be sufficient
to propagate information across the whole system or es-
tablish full communications between the two boundaries.
Thus one would expect that while the bond dimensions
close to the boundary may be small, those deep in the
bulk may be large. We therefore perform the contrac-
tions selectively on rows and columns containing mostly
tensors with small bond dimensions while leaving the rest
for the next coarse-graining step, as described in Sec. III.

C. Numerical results

The computational cost of the ICD algorithm is de-
termined by the maximum bond dimension encountered
during the coarse-graining and sweeping procedures. In
this section, we study the scaling of the maximum bond
dimension as function of the set of parameters defining an
instance of the problem: the number of vertices in each
column L, the total number of columns (circuit depth)
W , the concentration of TOFFOLI gates c, and the num-
ber of unfixed boundary vertices L∂ . For a given set of
parameters, we consider random tensor networks corre-
sponding to typical instances of computational problems.

10

0 50 100 150 200
sweeps

1

2

3

4

50 100 150 200

1

1.05

1.1

1.15

1.2

1.25

Figure 9. (Color online) The average bond dimension of the
entire lattice as a function of the number of sweeps in the
compression-decimation steps. The bumps where the average
bond dimension increases slightly correspond to the points
where we coarse-grain the lattice via column and row con-
tractions. Inset: zoom-in plot from the 20th sweeping step.

By looking at the scaling of the bond dimensions, we gain
some understanding of how the hardness of the problems
depends on various parameters, which may serve as a
guidance for designing and analyzing computational cir-
cuits for practical problems.

Before looking into the scaling of the maximum bond
dimensions, we first show the average bond dimension
for the entire lattice as a function of the number of
sweeps in the compression-decimation steps. As seen
from Fig. 9, the average bond dimension indeed decreases
as the sweeping is performed. The bumps in the plot
correspond to the points where we coarse-grain the lat-
tice via column and row contractions. At a given length
scale, the average bond dimension converges after a few
sweeps. As we increase the length scales, the average
bond dimension may first increase, but will eventually
drop again as we perform sweeps at the new length scale.
This demonstrates that the sweeping is able to impose
global constraints at the boundary into the bulk, hence
keeping the bond dimensions of bulk tensors under con-
trol.

We expect the maximum bond dimension to follow
the scaling function χ = G(L∂/L, c, L,W/L). Below we
study the growth of maximum bond dimensions as a func-
tion of each system parameter numerically. First, we
consider the scaling of χ as the ratio of unfixed bound-
ary vertices L∂/L is varied, with the other parameters
fixed. As shown in Fig. 10a, the bond dimensions are
small for both small and large L∂/L. This is in agree-
ment with our discussions in Sec. IV B, where we argued
that in both regimes the states are close to product states
and there should exist a representation in which the bond
dimensions are small (the ‘z-basis’ and ‘x-basis’). For in-
termediate values of L∂/L, the bond dimensions grow,
indicating the existence of a hard regime where either
there is no such a representation of small bond dimen-
sions to fully encode the solutions, or it is very hard to

0.2 0.25 0.3 0.35 0.4 0.45 0.5

8

10

12

14

16

18

8

10

12

14

16

18
(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

10

15

20

25

30

35

40

10

15

20

25

30

35

40
(b)

Figure 10. (Color online) Scaling of the average maximum
bond dimension χ with (a) the ratio of unfixed boundary ver-
tices L∂/L, and (b) TOFFOLI concentration c, versus the

scaling of the typical maximum bond dimension e〈lnχ〉. The
remaining parameters are fixed in each plot. The data are ob-
tained by averaging over 2000 realizations of random tensor
networks.

find such a representation via tensor optimization algo-
rithms.

Fixing L∂/L = 0.36, which corresponds to the hard
regime in Fig. 10a, we plot the scaling of χ as a func-
tion of the TOFFOLI concentration c. The TOFFOLI
gates impose nontrivial vertex constraints, which involve
a nonlinear relationship between the input and output
bits. In fact, in the absence of TOFFOLI gates, the ver-
tex model can be expressed as 3L decoupled Ising chains
whose dynamics are simple [8]. In the ICD algorithm, the
maximum bond dimension indeed grows with increasing
TOFFOLI concentrations, as depicted in Fig. 10b.

Now let us look at the scaling of χ as a function of the
input size L. Again, we fix L∂/L = 0.36 to stay in the
hard regime. Figure 11a shows that the maximum bond
dimension increases with increasing input size, even when
the aspect ratio W/L of the circuit is fixed. Because of
the limited range of L we were able to analyze, we can-
not draw any conclusion regarding the functional form
of this scaling, which would determine the complexity of
our algorithm. However, we can demonstrate that our
algorithm is able to solve the problem in regimes that
are still intractable using a naive enumeration of solu-
tions. For this purpose, we move away from the hard-
est regime and choose L∂/L = 0.5. As can be seen in

11

25 30 35 40 45 50

20

40

60

80

100

20

40

60

80

100(a)

49 51 53 55 57 59 61 63 65

50

55

60

65

50

55

60

65(b)

3 3.1 3.2 3.3 3.4

8

10

12

14

16

8

10

12

14

16
(c)

4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1

10

15

20

25

30

35

10

15

20

25

30

35
(d)

Figure 11. (Color online) Scaling of the average maximum bond dimension 〈χ〉 with L (a,b) and W/L (c,d), versus the scaling

of the typical maximum bond dimension e〈lnχ〉. The data are obtained by averaging over 500 to 2000 realizations of random
tensor networks. In (a), the last point is averaged over 7 realizations and the error bar is not shown. The blue dotted line is a
guide to the eye, and corresponds to a quadratic fitting. In all cases, the typical values stay below the average values, due to
the presence of heavy tails in the distribution of χ.

Fig. 11b, we are able to reach much larger values of L
in this regime, and the bond dimensions, although still
growing, increase at a much slower pace. In fact, we were
able to reach L = 96 with an average maximum bond di-
mension 〈χ〉 = 78.25 (data not shown). Since half of
the input vertices are unknown, a direct trial-and-error
enumeration would take 848 ≈ 1043 iterations to perform
an exact counting, which is prohibitive even with paral-
lelization. We have thus shown that there is a subset of
nontrivial problems that can easily be solved by the ICD
method, for which (a) direct enumeration is impossible
to scale up and (b) efficient custom algorithms are not
known.

Finally, we show the scaling with the aspect ratio
W/L. As we previously discussed, the key to the re-
duction of the bond dimensions of bulk tensors is the
global constraint imposed at the boundary. The coarse-
graining step brings the boundaries close together while
the sweeping step helps propagate information. There-
fore, one should expect the problem to become harder
as the circuit depth W increases for a fixed L, since it
takes more iterations of coarse-graining for the connec-
tion between the boundaries to be built, all the while
the bond dimensions of the bulk tensors barely decrease.
In Fig. 11c we show the scaling of χ as a function of
W/L in the hard regime; χ indeed grows upon increas-
ing W/L, as expected. For computational problems of
practical interests, the vertex model representation often

has the feature of low TOFFOLI concentration but large
aspect ratio, e.g., the multiplication circuit [8, 37]. In
Fig. 11d we show data for cases with this feature by low-
ering the TOFFOLI concentration to c = 5% and keeping
L∂/L = 0.5. We find that the bond dimensions grow in
a similar fashion as in Fig. 11c, although a larger range
of values of W/L now becomes amenable.

The above results demonstrate the average scaling
behavior of the ICD algorithm over random instances
of computations. It is informative to compare this to
the typical behavior, revealed by analyzing the full dis-
tribution of the maximum bond dimensions; see, e.g.,
Fig. 11(a). In Fig. 12, we present the probability distribu-
tion of the maximum bond dimension. A vertical cut at
each L corresponds to the probability distribution over all
instances for that L. For larger L we observe secondary
peaks at larger χ, which gradually take up more weight,
thus shifting both average and typical maximum bond
dimension to higher values. Moreover, despite the fact
that the highest weight is always encountered at small
bond dimensions, a finite subset of hard instances gener-
ate much larger bond dimensions, leading to heavy tails
in the distributions. Average values are sensitive to such
tails, and hence do not faithfully represent the typical
instances. In Fig. 10 and 11, we also plot the values of
e〈lnχ〉 as an estimate of the typical behavior, in contrast
to 〈χ〉. Indeed, the typical values stay below the average
values in all cases studied. We point out that the pres-

12

(a)

(b)

Figure 12. (Color online) The full distribution of the maxi-
mum bond dimension over random instances. In (a), the color
plot along the vertical direction shows the probability distri-
bution at each L. The orange (diamond) points show the

values of e〈lnχ〉, giving an estimate of the typical instances in
contrast to the average instances depicted in purple (triangle)
points. In (b), we take the slice of L = 39 in (a) and plot the
histogram of the distribution.

ence of heavy tails in the distribution is ubiquitous in
random satisfiability problems, and such instances could
in principle be tackled with different strategies [39–42].

The efficiency of the ICD algorithm is controlled by the
maximum bond dimension encountered in each instance,
and in particular, the complexity of the algorithm is up-
per bounded by O(χ7) as discussed in Sec. III. Never-
theless, it is still useful to see whether the actual run-
ning time saturates this bound. In Fig. 13 we show the
scatter plot for the actual running time τ versus χ for
4600 random instances. We see a clear clustering of the
data points and a positive correlation between these two
quantities. The fact that there is a spreading of τ for
each χ can be understood by taking into account the
nonuniform spatial distributions of the bond dimensions
across the system. Unlike the TNRG algorithms, where
the bond dimensions of all tensors and all tensor legs are
frequently chosen to be uniform, bond dimensions of dif-
ferent tensors and of different legs of the same tensor are
typically highly nonuniform in the ICD method. There-
fore, running times for instances with the same maximum
χ also depend on the number of bonds with dimension
χ. The distribution of χ throughout the system is thus
an important factor. Moreover, we find that the scaling
of the running time with the maximum bond dimension
τ ∼ χα has a power α < 7, which shows that the actual

2 3 4 5 6

5

6

7

8

9

10

Figure 13. (Color online) Scatter plot of the (logarithm of)
actual running time τ in units of seconds versus the (log-
arithm of) maximum bond dimension χ for 4600 instances.
The calculations were performed using a Python implemen-
tation of the ICD algorithm, using NumPy / LAPACK for all
linear algebra operations, on 2.0 GHz Intel Xeon Processors
E7-4809 v3.

performance of the algorithm is generally better than the
worst-case scenario estimate.

VI. SUMMARY AND OUTLOOK

We presented a method for contracting tensor net-
works that is well suited for the solution of statistical
physics vertex models of universal classical computation.
In these models, the tensor trace represents the num-
ber of solutions. Individual solutions can be efficiently
extracted from the tensor network when the number of
solutions is small. More generally, the method applies
to any system, classical or quantum, whose quantity of
interest is a tensor trace in an arbitrary lattice.

Our scheme consists of iteratively compressing tensors
through a contraction-decomposition operation that re-
duces their bond dimensions, followed by decimation,
which increases bond dimensions but reduces the network
size. By repeated applications of this two step process –
compression followed decimation – one can gradually col-
lapse rather large tensor networks.

In the context of computation, the method allowed us
to study relatively large classical reversible circuits rep-
resented by two dimensional vertex models. By contrast
with thermal annealing, direct computation from a fully
specified input boundary through the use of tensor net-
works occurs in a time linear in the depth of the circuit.
For complex problems with partially fixed input/output
boundaries tensor networks enable us to count solutions
in problems where enumeration would otherwise take of
order 850 operations.

We close with an outlook of future directions motivated
by this work.

First, focusing on the method per se, the performance
of our ICD algorithm could still be further improved.

13

There are enhancements that are simply operational in
nature, such as parallelization of the sweeping step of
the algorithm, which can be accomplished by dividing
the tensors into separate non-overlapping sets.

Second, at a more fundamental level, as we point out at
the end of Sec. V C, a better understanding of the mech-
anism by which short-range entanglement is removed
within the ICD method would require a systematic study
of the evolution of the spatial distribution of bond di-
mensions. The goal would be to design more controlled
bond dimension truncation schemes that involve the ef-
fect of the environment of local tensors, as proposed in
Refs. [20, 22, 24, 25, 32]. More generally, we expect that
our method can be applied to both classical and quantum
many-body systems in two and higher dimensions.

Third, in our study of computation-motivated prob-
lems, we focused on random tensor networks correspond-
ing to random computational circuits. However, the ICD
methodology should be used to address problems of prac-
tical interest, a research direction that is being currently
explored. The results on the scaling of the bond di-
mensions presented above should inform the design and
analysis of tractable computational circuits, such as cir-
cuits with W ∼ L and a moderate number of TOFFOLI
gates. Multiplication circuits based on partial sums, for
instance, are very dense in TOFFOLI gates, and hence

are not good a priori candidates for tensor network for-
mulations of related problems, such as factoring. How-
ever, different multiplication algorithms whose associated
vertex models are less dense in TOFFOLI gates, and
other computational problems could be amenable by our
approach. Identifying classes of computational problems
of practical interest that can be tackled with tensor net-
work methods remains an open problem at the interface
between physics and computer science.

Finally, from a statistical mechanics point-of-view, one
may speculate that the ICD algorithm could allow us to
study the glass phase of disordered spin systems for which
classical Monte Carlo dynamics breaks down due to loss
of ergodicity.

ACKNOWLEDGMENTS

We thank Justin Reyes, Oskar Pfeffer, and Lei Zhang
for many useful discussions. The computations were car-
ried out at Boston University’s Shared Computing Clus-
ter. We acknowledge the Condensed Matter Theory Vis-
itors Program at Boston University for support. Z.-C. Y.
and C. C. are supported by DOE Grant No. DE-FG02-
06ER46316. E. R. M. is supported by NSF Grant No.
CCF-1525943.

[1] M. Mézard, G. Parisi, and R. Zecchina, “Analytic and
algorithmic solution of random satisfiability problems,”
Science 297, 812–815 (2002).

[2] M. Mezard and A. Montanari, Information, physics, and
computation (Oxford University Press, 2009).

[3] F. Ricci-Tersenghi, “Being glassy without being hard to
solve,” Science 330, 1639–1640 (2010).

[4] T. Jörg, F. Krzakala, G. Semerjian, and F. Zamponi,
“First-order transitions and the performance of quan-
tum algorithms in random optimization problems,” Phys.
Rev. Lett. 104, 207206 (2010).

[5] A. P. Young, S. Knysh, and V. N. Smelyanskiy, “First-
order phase transition in the quantum adiabatic algo-
rithm,” Phys. Rev. Lett. 104, 020502 (2010).

[6] I. Hen and A.P. Young, “Exponential complexity of the
quantum adiabatic algorithm for certain satisfiability
problems,” Phys. Rev. E 84, 061152 (2011).

[7] E. Farhi, D. Gosset, I. Hen, A. W. Sandvik, P. Shor, A. P.
Young, and F. Zamponi, “Performance of the quantum
adiabatic algorithm on random instances of two optimiza-
tion problems on regular hypergraphs,” Phys. Rev. A 86,
052334 (2012).

[8] C. Chamon, E. R. Mucciolo, A. E. Ruckenstein, and Z.-
C. Yang, “Quantum vertex model for reversible classical
computing,” Nat. Commun. 8 (2017).

[9] A. Cichocki, “Era of big data processing: A new approach
via tensor networks and tensor decompositions,” arXiv
preprint arXiv:1403.2048 (2014).

[10] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer,
“Breaking the curse of dimensionality using decomposi-
tions of incomplete tensors: Tensor-based scientific com-

puting in big data analysis,” IEEE Signal Processing
Magazine 31, 71–79 (2014).

[11] A. Cichocki, “Tensor networks for big data analytics
and large-scale optimization problems,” arXiv preprint
arXiv:1407.3124 (2014).

[12] J. Biamonte, B. Ville, and Marco L., “Tensor network
methods for invariant theory,” Journal of Physics A:
Mathematical and Theoretical 46, 475301 (2013).

[13] J. D. Biamonte, J. Morton, and J. Turner, “Tensor
network contractions for #sat,” Journal of Statistical
Physics 160, 1389–1404 (2015).

[14] J. Biamonte and V. Bergholm, “Tensor networks in a
nutshell,” arXiv preprint arXiv:1708.00006 (2017).

[15] C. Chamon and E. R. Mucciolo, “Virtual parallel com-
puting and a search algorithm using matrix product
states,” Phys. Rev. Lett. 109, 030503 (2012).

[16] F. Verstraete and J. Ignacio Cirac, “Renormalization al-
gorithms for quantum-many body systems in two and
higher dimensions,” arXiv preprint cond-mat/0407066
(2004).

[17] M. Levin and Cody P. Nave, “Tensor renormalization
group approach to two-dimensional classical lattice mod-
els,” Phys. Rev. Lett. 99, 120601 (2007).

[18] Z.-C. Gu, M. Levin, and X.-G. Wen, “Tensor-
entanglement renormalization group approach as a uni-
fied method for symmetry breaking and topological phase
transitions,” Phys. Rev. B 78, 205116 (2008).

[19] H. C. Jiang, Z. Y. Weng, and T. Xiang, “Accurate De-
termination of Tensor Network State of Quantum Lat-
tice Models in Two Dimensions,” Phys. Rev. Lett. 101,
090603 (2008).

http://dx.doi.org/10.1103/PhysRevLett.104.207206
http://dx.doi.org/10.1103/PhysRevLett.104.207206
http://dx.doi.org/ 10.1103/PhysRevLett.104.020502
http://dx.doi.org/ 10.1103/PhysRevA.86.052334
http://dx.doi.org/ 10.1103/PhysRevA.86.052334
http://stacks.iop.org/1751-8121/46/i=47/a=475301
http://stacks.iop.org/1751-8121/46/i=47/a=475301
http://dx.doi.org/10.1103/PhysRevLett.109.030503
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://dx.doi.org/10.1103/PhysRevLett.101.090603
http://dx.doi.org/10.1103/PhysRevLett.101.090603

14

[20] Z.-C. Gu and X.-G. Wen, “Tensor-entanglement-filtering
renormalization approach and symmetry-protected topo-
logical order,” Phys. Rev. B 80, 155131 (2009).

[21] G. Evenbly and G. Vidal, “Algorithms for entanglement
renormalization,” Phys. Rev. B 79, 144108 (2009).

[22] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and
T. Xiang, “Coarse-graining renormalization by higher-
order singular value decomposition,” Phys. Rev. B 86,
045139 (2012).

[23] G. Evenbly and G. Vidal, “Tensor network renormaliza-
tion,” Phys. Rev. Lett. 115, 180405 (2015).

[24] H.-H. Zhao, Z.-Y. Xie, T. Xiang, and M. Imada, “Tensor
network algorithm by coarse-graining tensor renormaliza-
tion on finite periodic lattices,” Phys. Rev. B 93, 125115
(2016).

[25] S. Yang, Z.-C. Gu, and X.-G. Wen, “Loop optimization
for tensor network renormalization,” Phys. Rev. Lett.
118, 110504 (2017).

[26] M. Bal, M. Mariën, J. Haegeman, and F. Verstraete,
“Renormalization group flows of hamiltonians using ten-
sor networks,” Phys. Rev. Lett. 118, 250602 (2017).

[27] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z.
Huang, B. Normand, and T. Xiang, “Gapless spin-liquid
ground state in the s = 1/2 kagome antiferromagnet,”
Phys. Rev. Lett. 118, 137202 (2017).

[28] G. Evenbly, “Algorithms for tensor network renormaliza-
tion,” Phys. Rev. B 95, 045117 (2017).

[29] A. M. Goldsborough and G. Evenbly, “Entanglement
renormalization for disordered systems,” arXiv preprint
arXiv:1708.07652 (2017).

[30] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and
M. Szegedy, “Approximating clique is almost np-
complete,” in Proceedings 32nd Annual Symposium of
Foundations of Computer Science (1991) pp. 2–12.

[31] U. Schollwöck, “The density-matrix renormalization
group,” Rev. Mod. Phys. 77, 259–315 (2005).

[32] G. Evenbly, “Algorithms for tensor network renormaliza-
tion,” Phys. Rev. B 95, 045117 (2017).

[33] S. A. Cook, “The complexity of theorem-proving proce-
dures,” in Proceedings of the third annual ACM sympo-
sium on Theory of computing (ACM, 1971) pp. 151–158.

[34] L. A. Levin, “Universal sequential search problems,”
Problemy Peredachi Informatsii 9, 115–116 (1973).

[35] M. A. Nielsen and I. L. Chuang, “Quantum computation
and quantum information,” (2004).

[36] In preparation.
[37] V. Vedral, A. Barenco, and A. Ekert, “Quantum net-

works for elementary arithmetic operations,” Phys. Rev.
A 54, 147–153 (1996).

[38] C. Chamon and E. R. Mucciolo, “Rényi entropies as a
measure of the complexity of counting problems,” Jour-
nal of Statistical Mechanics: Theory and Experiment
2013, P04008 (2013).

[39] Elizabeth Crosson, Edward Farhi, Cedric Yen-Yu Lin,
Han-Hsuan Lin, and Peter Shor, “Different strategies
for optimization using the quantum adiabatic algorithm,”
arXiv preprint arXiv:1401.7320 (2014).

[40] Damian S. Steiger, Troels F. Rønnow, and Matthias
Troyer, “Heavy tails in the distribution of time to so-
lution for classical and quantum annealing,” Phys. Rev.
Lett. 115, 230501 (2015).

[41] Dave Wecker, Matthew B. Hastings, and Matthias
Troyer, “Training a quantum optimizer,” Phys. Rev. A
94, 022309 (2016).

[42] Zhi-Cheng Yang, Armin Rahmani, Alireza Shabani,
Hartmut Neven, and Claudio Chamon, “Optimizing
variational quantum algorithms using pontryagin’s min-
imum principle,” Phys. Rev. X 7, 021027 (2017).

http://dx.doi.org/ 10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevB.79.144108
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1103/PhysRevLett.115.180405
http://dx.doi.org/ 10.1103/PhysRevB.93.125115
http://dx.doi.org/ 10.1103/PhysRevB.93.125115
http://dx.doi.org/10.1103/PhysRevLett.118.110504
http://dx.doi.org/10.1103/PhysRevLett.118.110504
http://dx.doi.org/ 10.1103/PhysRevLett.118.250602
http://dx.doi.org/10.1103/PhysRevLett.118.137202
http://dx.doi.org/ 10.1103/PhysRevB.95.045117
http://dx.doi.org/10.1109/SFCS.1991.185341
http://dx.doi.org/10.1109/SFCS.1991.185341
http://dx.doi.org/ 10.1103/RevModPhys.77.259
http://dx.doi.org/ 10.1103/PhysRevB.95.045117
http://dx.doi.org/10.1103/PhysRevA.54.147
http://dx.doi.org/10.1103/PhysRevA.54.147
http://stacks.iop.org/1742-5468/2013/i=04/a=P04008
http://stacks.iop.org/1742-5468/2013/i=04/a=P04008
http://stacks.iop.org/1742-5468/2013/i=04/a=P04008
http://dx.doi.org/10.1103/PhysRevLett.115.230501
http://dx.doi.org/10.1103/PhysRevLett.115.230501
http://dx.doi.org/10.1103/PhysRevA.94.022309
http://dx.doi.org/10.1103/PhysRevA.94.022309
http://dx.doi.org/10.1103/PhysRevX.7.021027

	Tensor network method for reversible classical computation
	Abstract
	Introduction
	Tensor network for vertex models
	compression-decimation algorithm
	Compression
	Decimation

	The general TOFFOLI-based vertex model
	Tensor network representation
	Entanglement and number of solutions

	Application of the ICD to the Random Vertex Model
	Local moves
	Control of bond dimensions
	Numerical results

	Summary and outlook
	Acknowledgments
	References

