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In its usual implementation, the Raman amplifier features only one pump carrier frequency.
However, pulses with well-separated frequencies can also be Raman amplified while compressed in
time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear,
pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell
(PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the
beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature
higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less
noise backscattering, because the total fluence is split between the different spectral components.

I. INTRODUCTION

Backward Raman amplifiers (BRA) provide a promis-
ing path to the next generation of short pulse high-
intensity lasers that may circumvent the damage limit
of conventional materials. The main idea is to cou-
ple a short seed and a long counter-propagating pump
through an electron plasma wave (EPW) in such a way
that the pump energy is transferred to the seed that
is amplified and compressed via Raman backscattering
[1]. This mechanism was extensively studied with respect
to various physical effects, including wave breaking [2–
4], longitudinal and transverse nonlinearities [5–7], pre-
cursors [8], group velocity dispersion (GVD) [9], inverse
bremsstrahlung [10], Landau damping [11, 12], and pre-
mature parametric backscattering of the pump [13]. The
mechanism has also enjoyed experimental implementa-
tion [14–16].
In particular, what emerged from these studies of phys-

ical effects were techniques, exploiting the laser band-
width, designed to improve the operation of Raman
plasma amplifiers in different regimes. The exploiting
of the bandwidth, and in particular chirping the fre-
quency, underlies a number of other studies as well [17–
23]. Chirping the pump laser, together with exploiting a
density gradient, can suppress noise and precursors [13].
It can also overcome relativistic saturation [6]. Chirping
the seed pulse, and exploiting GVD, can accommodate
a shorter plasma for the same amplification as for an
unchirped seed [9]. An alternative method to suppress
backscattering from noise envisions splitting the pump
energy over a few frequencies [24], where, in order to pre-
serve the amplification efficiency, the allowed frequency
spacing is limited by the spectral width of the single-
frequency amplified seed. Noise suppression by multifre-
quency pulses, has also been suggested for inertial con-
finement fusion systems, where the extent of penetration
without backscattering depends on the frequency spac-
ing [25, 26]. Incoherent pump lasers, with not too small
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a correlation time, can amplify coherent seeds similarly
to coherent pump lasers, but with the advantage of less
backscattering due to noise [27]. Experimental studies
demonstrated that, in fact, chirping the pump could com-
pensate detuning due to density gradients thereby facili-
tating the Raman amplification [28–30].
Here we show that a wave packet comprising two or

more well-separated carrier frequencies can be amplified
with a similar efficiency as a single-frequency pulse even
in the nonlinear regime. We call this regime multifre-
quency BRA (MFBRA) to distinguish it from the usual
single frequency BRA (SFBRA). Importantly, in addition
to mitigating the premature backscattering of the pump
that is common to other methods that require bandwidth
[13, 24, 27], MFBRA is advantageous because of its beat-
wave waveform. Here the width of each spike in the
beat-wave waveform is smaller than the envelope width,
a feature that can be used advantageously. By a proper
preparation of the initial phases that takes into account
GVD, the peak intensity of the beat-wave can be engi-
neered to be located at the center of the amplified pulse
envelope when leaving the plasma, thereby producing an
output pulse with the same total fluence, but with a peak
intensity higher than would be possible using SFBRA.
This paper is organized as follows. In Sec. II we employ

the fluid model to show that double frequency BRA (DF-
BRA) is possible and to analyze the conditions for such
amplifiers. In Sec. III, PIC simulations are presented,
confirming the effect. These simulations are used to op-
timize the amplification of seeds with two or more carrier
frequencies. We summarize our conclusions in Sec. IV.

II. DOUBLY THREE-WAVE INTERACTION

Consider the wave equations for the Raman-scattered
electromagnetic (EM) wave and the electron plasma wave
(EPW) within the linearized fluid model for unmagne-
tized homogeneous plasma [31],

D̂emb = −ω2
enea (1)

D̂epwne =
c2

2
∂2
x (a · b) (2)
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where,

D̂em = ∂2
t + ω2

e − c2∂2
x (3)

D̂epw = ∂2
t + ω2

e − 3v2e∂
2
x (4)

are differential operators for the EM wave and EPW re-
spectively. In Eqs. (1)-(2), the total EM vector potential
is decomposed into a large and stationary pump wave, a,
and a small counterpropagating amplified seed, b. The
electromagnetic vector potentials, a and b, are in the
units of mec

2/e and the electron density perturbation,
ne, is rescaled by the unperturbed density, n0. Also,
ω2
e = 4πe2n0/me is the plasma frequency squared; e and

me are the electron charge and mass respectively; c is the
speed of light; and ve =

√

Te/me is the electron thermal
velocity, with Te being the electron temperature. In addi-
tion, we neglect the ion motion and, as a result, neglect
stimulated Brillouin scattering (SBS), notwithstanding
that SBS can itself produce a laser compression effect
[32–36]. This assumption is justified because, for the pa-
rameters of interest, stimulated Raman scattering (SRS)
is dominant over SBS [36, 37].
For simplicity, we consider only two carrier frequencies,

but the generalization to more than two frequencies is
straightforward. We decompose both the pump and the
seed into two spectral components,

a = ℜ
[

a1e
i(ωa1 t+ka1x) + a2e

i(ωa2 t+ka2x)
]

ŷ (5)

b = ℜ
[

b1e
i(ωb1

t−kb1
x) + b2e

i(ωb2
t−kb2

x)
]

ŷ, (6)

where ŷ is a unit vector in the transverse direction and
ℜ denotes the real part. The pump carrier frequency
spacing is defined as

δ = ωa2 − ωa1 . (7)

The seed carrier frequencies, ωb1,b2 , are downshifted with
respect to the pump carrier frequencies, ωa1,a2 , according
to the Raman resonance conditions,

ωb1,b2 = ωa1,a2 − ωf1,f2 , (8)

where, ωf1,f2 are the EPW frequencies that are deter-
mined by the dispersion relation,

ω2
f1,f2

= ω2
e + 3v2ek

2
f1,f2

. (9)

Practically, for small Te, we can approximate ωf1,f2 ≈
ωe and choose the seed frequencies in Eq. (8) accordingly,
such that their frequency spacing is the same as the pump
frequency spacings, i.e., ωb2 − ωb1 = δ. The laser wave
numbers, ka1,a2 and kb1,b2 are determined by the EM
dispersion relations,

ka,b =
ωa,b

c

√

1− ω2
e

ω2
a,b

. (10)

The wave number of the EPW is then set by the reso-
nance condition,

kf1,f2 = ka1,a2 + kb1,b2 , (11)
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FIG. 1. (color online). Illustration of the doubly three-wave
interaction in (ω − k) space. The frequencies and wave num-
bers of the pumps (triangles), the seeds (squares), and the
EPW obey the resonance conditions of Eqs. (8) and (11) for
both indices, 1 (filled points) and 2 (empty points). The solid
and dashed lines are the dispersion curves of the EM wave
and the EPW, respectively.

where for our definitions, ka,b > 0 [see Eqs.(5)-(6)]. The
underlining assumption here is that the EPW contains
two, well separated, carrier frequencies. i.e., the EPW
can be decomposed similarly to the EM waves,

ne = ℜ
[

n1 e
i(ωf1

t+kf1
x) + n2 e

i(ωf2
t+kf2

x)
]

, (12)

where, n1,2 are slow complex envelopes. In Fig. 1, we il-
lustrate an example of two Raman resonance conditions
and the dispersion relations in (ω− k) space, where each
set of three waves fulfill both temporal and spatial reso-
nance conditions of Eq. (8) and Eq. (11), respectively.
We continue by substituting Eqs. (5-6) into the wave

equations (1-2) and use the envelope approximation, i.e.,
neglect the second order derivatives of the wave ampli-
tudes b1,2 and n1,2. In the RHS of Eqs. (1-2) we keep only
the resonant terms that obey both temporal [Eq. (8)] and
spatial [Eq. (11)] resonance conditions. Besides, we ne-
glect all amplitude derivatives in the RHS of (2) since
these nonlinear terms are considered small. After apply-
ing the dispersion relations (9) and (10) in the left-hand
sides (LHS) one gets

∂tb1,2 − cb1,2∂xb1,2 = − ω2
e

2iωb1,2
n∗

1,2 a1,2 (13)

∂tn1,2 + cn1,2∂xn1,2 = − c2(ka1,2+kb1,2 )
2

4iωe
a1,2 b

∗

1,2. (14)

Here, cb1,2 = c2kb1,2/ωb1,2 are the the group velocities

of the EM waves. Similarly, cn1,2 = v2ekn1,2/ωe are the
EPW group velocities, but they are usually negligible in
BRA since the EPW is effectively localized relative to
the amplified pulse that propagates at nearly the speed
of light. The nonresonant terms that were neglected in
the RHS of Eqs. (13-14) contain exponents of the form
exp[i(kaα

+ kbβ − knγ
)x], where the subindexes, {α, β, γ}

are not all the same. These terms contain fast phases
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and, therefore, do not contribute to the averaged Raman
resonant amplification dynamics. This assumption holds
as long the spacing between the wave numbers of the two
EPWs is larger than their width.
By analysis of the linearized three-wave system

[Eqs. (13)-(14)] one can show that the resonance width
of each spectral component is equal to 2γ, where, for lin-
ear polarization, γ = a0

√
ωaωe/2, is the linear Raman

growth rate for pump frequency ωa = ωa1 and initial
pump amplitude a0. Therefore, to avoid overlap between
neighboring resonances, the spectral separation condition
is

δ > 4γ. (15)

Note that this condition is analogous to the Chirikov cri-
terion for resonance overlap in nonlinear oscillators [38].
However, this is not the only condition on the spacing,

δ. Since we consider a short seed, we must guarantee that
the beat frequency is large enough such that the seed
envelope contains at least one oscillation. The period of
the beat oscillation is 2π/Ω, where Ω = δ/2 is the beat
frequency. Let us define τ to be the typical duration of
the seed, e.g., the full width at half maximum (FWHM).
The resulting condition is thus,

δ >
4π

τ
. (16)

In the next section, we confirm our analysis through
PIC simulations that capture the kinetic effects that were
neglected in the fluid model and that treat the laser pump
and seed more generally than the envelope approximation
utilized above.

III. PIC SIMULATIONS

We employ the PIC code EPOCH [39] to compare SF-
BRA (Fig. 2) to DFBRA (Fig. 3). We consider a uniform
unperturbed electron density of n0 = 2.5 × 1019cm−3,
electron temperature of Te = 30eV, and immobile ions.
In the simulations we use 32 cells per µm and 16 parti-
cles per cell. To reduce the simulation time, we employ
a window of 0.3mm in width, moving with the seed.
In the first example, the (single frequency) pump wave-

length is λ0 = 800nm, i.e., ω0 = 2π × 375 THz and
the plasma is underdense with n0/ncr = 0.0145, where
ncr = 1.1 × 1021/(λa[µm])2 is the critical density. The

pump intensity is I0 = 1014W/cm
2
so the pump dimen-

sionless amplitude, a0 = 8.5× 10−10λ0[µm]

√

I0[W/cm
2
]

(for linear polarization) was a0 = 0.068. In terms of
Eq. (5), we choose a1 = a0, a2 = 0, and ωa1 = ω0. Due
to the resonance condition (8), we downshift the seed fre-
quency by the plasma frequency, ωb = ωa−ωe = 2π×330
THz, where we neglected the thermal correction. The
seed has Gaussian profile with FWHM of 80fs. In terms
of Eq. (6), we initiate the seed envelopes by the time
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FIG. 2. (color online). PIC simulation of a SFBRA. The in-
tensity of the amplified pulse (a) is in the nonlinear regime.
The spectra (b) of the amplified seed (blue), pump (dashed
red) and EPW (dotted yellow) obey the Raman resonance
condition, kf = ka + kb, where ka = k0, kb = 0.89k0, and
kf = 1.89k0. A secondary Raman backscattering of the
seed is also observed as smaller spikes at k = 0.76k0 in the
pump spectrum and k = 1.65k0 in the EPW spectrum. Some
backscattering of the seed is not unexpected, since the seed
reaches an intensity far greater, in fact, than the pump inten-
sity.

dependent boundary conditions at x = 0 via

b1 = b̄1e
−

(t−t0)2

2σ2 (17)

b2 = 0 (18)

where, σ = 34fs, t0 = 100fs. The seed amplitude is the
same as the pump amplitude, b̄1 = a0 = 0.068. As shown
in Fig. 2, at time t = 20ps (i.e., when the seed front is
at about 5.8mm inside the plasma) the seed intensity is
amplified by a factor of 600. The efficiency, in this case,
is η = 0.75, i.e., the pump transferred 75% of its energy
to the amplified pulse.
To illustrate the multifrequency BRA, we introduce,

in Fig. 3, a pump that has two frequencies with spacing
δ. Explicitly, ωa1 = ω0 and ωa2 = ω0 + δ, such that the
beat frequency is Ω = δ/2 ≪ ω0. The total pump fluence
(energy per cross area) is kept the same as in the single
frequency example, but now, it is equally split over the
two frequencies, Ia1 = Ia2 = I0/2 = 5 × 1013 W/cm

2
so

the dimensionless amplitudes are a1 = a2 = a0/
√
2 =

0.0048. Then, Eq. (5) at the plasma boundary, x = 0,
becomes

a(x = 0, t) =
√
2 a0 cos (Ωt) cos (ω̃0t) ŷ, (19)

where, ω̃0 = ω0+Ω is the fast (ω̃0 ≫ Ω) carrier frequency.
Note that now, for the same pump fluence, the maximum
pump intensity is twice that of the the previous example.
The seed also comprises two carrier frequencies, ωb1,2 =
ωa1,2 − ωe, where, as before, we neglected the thermal
correction. Therefore, the seed spacing is the same as
the pump spacing, i.e., ωb2 = ωb1 + δ. For simplicity, we
choose both initial envelopes in a Gaussian form,

b1,2 = b̄1,2e
−

(t−t0)2

2σ2 eiφ1,2 , (20)
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FIG. 3. (color online). PIC simulation of a DFBRA. The
intensity of the amplified pulse (a) is in the nonlinear regime
with beat-wave structure. The spectra (b) of the amplified
seed (blue), pump (dashed red) and EPW (dotted yellow)
obey the doubly Raman resonance condition, kf1,2 = ka1,2 +
kb1,2 , where ka1 = k0, ka2 = k0 + δ/c = 1.08k0, kb1,2 =
ka1,2 −ωe/c = [0.88, 0.96]×k0, and kf1,2 = [1.89, 2.06]×k0. A
secondary Raman backscattering is also observed with smaller
spikes.

where, b̄1,2 are real amplitudes, and φ1,2 are the phases of
each spectral component. To keep the total seed fluence
as in the previous example, we choose b̄1,2 = a0/

√
2 =

0.0048 so the initial seed at the plasma boundary, x = 0,
reads

b =
√
2 a0e

−
(t−t0)2

2σ2 cos
(

ω̃bt+ φ̃
)

cos (Ωt+ ϕ) ,

where, ω̃b = (ωb1 + ωb2)/2 = ω̃0 − ωe, ϕ = (φ2 − φ1)/2,

φ̃ = (φ1 + φ2)/2, and, as before, the beat frequency is
Ω = (ωb2 − ωb1)/2 = δ/2. In the example shown in
Fig. 3, the spacing is δ = 2π × 30 THz, which is about
8% of the pump frequency, and no initial phase difference
is introduced, i.e., φ1 = φ2 = 0. All other parameters are
kept the same as in the SFBRA example [Fig. 2]. In this
example, the linear growth rate is γ = 2π × 3.1THz, so
the separation condition in Eq. (15) is met. Also, the
seed FWHS is τ = 80 fs, i.e., 4π/τ = 2π × 25THz < δ as
required in Eq. (16).
Fig. 3 shows that a seed comprising two carrier fre-

quencies can be Raman amplified if the pump also con-
sists of two frequencies that are upshifted by the plasma
frequency. This amplification that begins in the linear
regime continues in the pump depletion regime despite
the nonlinear interaction between the waves. By con-
necting the local maxima, we can define the beat-wave
envelope. It is notable that, for the same simulation time,
the beat-wave envelope is wider but with a higher peak
than that of the single frequency pulse in Fig. 2. Nev-
ertheless, the efficiency is η = 0.64, which is similar to
the efficiency of the SFBRA (η = 0.75). This difference
results from the slower linear stage because of the smaller
pump amplitude, a1,2 < a0. However, in the nonlinear
(pump depletion) stage, both examples have the same
growth rates (slopes). This means that the rates of the
energy transfer from the pump to the seed are equal, i.e.,
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FIG. 4. (color online). PIC simulation of a DFBRA as in
Fig. 3 but with an initial phase difference of π. The spectra
(b) of the amplified seed (solid blue), pump (dashed red) and
EPW (dotted yellow) is similar to that without initial phase
difference [Fig. 3] but the intensity of the amplified pulse (a)
has a maximum at the center of the beat-wave envelope.

the efficiency in the nonlinear stage is the same while
the linear stage last different times resulting in a delay
in entering the nonlinear stage for DFBRA compare to
SFBRA [see Fig. 5].

The spectra of the amplified seed, the pump, and
the EPW, are shown in Fig. 3b. All of them comprise
two dominant frequencies that each triplet fulfills the
three-wave interaction resonance condition. This exam-
ple demonstrates the mechanism of the two-frequency
BRA that was introduced in Sec. II and in Fig. 1. It
is clear that, in this example, both seed frequencies, ωb1,2

are independently amplified via a three-wave interaction
of Eq. (8). Importantly, we can conclude that these two
resonances remain well separated and the resonance over-
lap is insignificant also in the nonlinear regime when the
linear analysis of Eq. (15) is invalid.

To optimize the peak intensity of the amplified pulse,
one can manipulate the phases of the seed pulse such
that one of the local maxima of the beat-wave would co-
incide with the maximum of the beat-wave envelope just
when it exits the plasma. However, this is not the case
in the example shown in Fig. 2, where the two highest
local maxima are located at the shoulders of the beat-
wave envelope and are about 20 percent lower than the
envelope maximum. Fortunately, such manipulation can
be accomplished by taking advantage of GVD [9] that
differentiates between the seed spectral components, i.e.,
cb1 6= cb2 [see Eq. (13)]. As a result, the relative phase be-
tween the two frequencies changes during the passage of
the amplified pulse in the plasma leading to a migration
of the location of the highest local maximum inside the
beat-wave envelope. This relative phase can be neutral-
ized by an initial phase difference between the two seed
spectral components. In Fig. 4, we present an example of
such manipulation in which we consider an initial phase
difference of φ2 − φ1 = π between the seed frequencies.
Although it is not the most optimum phase difference,
the central peak, at t = 20ps, is located almost at the
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FIG. 5. (color online) A comparison between the dynamics
of SFBRA (solid blue) and of DFBRA with initial relative
phase differences of zero (dashed red) and π (dotted yellow).
Presented are the maximum intensities (a) and total fluences
(b) versus the propagation time of the amplified pulse in the
plasma.

maximum of the beat-wave envelope resulting in an in-
crease of about 20% in the maximum intensity. Notably,
both the spectrum and the efficiency are almost the same
as the previous example [Fig. 3] where the initial phase
difference was zero.

In Fig. 5, we study the dynamics of SFBRA and DF-
BRA by comparing the maximum intensities (Fig. 5a)
and the total fluences (Fig. 5b) of the amplified pulses
in both cases. The dynamics of the three examples of
Figs. 2–4 are presented versus the propagation time of
the amplified pulse. Notably, the linear growth rate of
the SFBRA (blue) is higher than the DFBRA (red and
yellow), but the efficiencies in the nonlinear (pump de-
pletion) regime are almost the same. This can be seen
in Fig. 5b where the total fluence of the SFBRA grows
faster than that of the DFBRA at t < 5ps, but, at later
times, both systems have similar slopes of fluence versus
time.

It is notable that although the maximum intensity of
the SFBRA is higher than that of the DFBRA at smaller
times, the beat-wave waveform of the DFBRA has a
higher peak intensity at later stages, t > 17ps. More-
over, as shown in Fig. 4, by optimization of the phase
between the two carrier frequencies, the peak intensity
can be even higher at the time when the amplified pulse
exits the plasma (e.g., t = 20ps). It is clear that the effi-
ciency does not depend on the phase difference between
the two seed frequencies but the locations of the local
maxima in the envelope change in time due to GVD.
GVD also causes the superimposed oscillations of the
monotonically increasing maximum intensity. Notably,
the difference between the two examples is a result of the
phase difference between the seed frequencies, which is
zero in the first case and π in the second one. Usefully,
one can design the initial seed phases according to the
plasma length and density, which determine the phase
accumulation of the spectral components. It particular,
it can be arranged that at the plasma edge a local max-
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FIG. 6. (color online) PIC simulation of a MFBRA compris-
ing three carrier frequencies. The intensity of the amplified
pulse (a) is in the nonlinear regime with beat-wave form of
three frequencies. The total fluences versus the propagation
time is plotted in the inset of panel (a). The spectra (b) of
the amplified seed (blue), pump (dashed red) and EPW (dot-
ted yellow) obey the Raman resonance condition, kf1,2,3 =
ka1,2,3 + kb1,2,3 , where, ka1,2,3 = [1, 1.08, 1.16] × k0, kb1,2,3 =
[0.88, 0.96, 1.04]×k0 , and kf1,2,3 = [1.88, 2.04, 2.2]×k0. A sec-
ondary Raman backscattering is also observed with smaller
spikes.

imum would coincide with the global maximum of the
beat-wave envelope.
Finally, we note that pulses with more than two fre-

quencies can also be Raman amplified in a similar way.
In this case, more care should be taken to avoid reso-
nance overlap when many frequencies are involved, and
we leave it to future work. Nevertheless, we present,
in Fig. 6, an example of seed and pump that com-
prises three, evenly spaced, carrier frequencies, ωa3 =
ωa2 + δ = ωa1 + 2δ. Similarly, for the seed frequencies,
ωb3 = ωb2 + δ = ωb1 + 2δ, where each pair fulfill the Ra-
man three-wave resonance, ωbi = ωai

− ωe for i = 1, 2, 3.
In this example we used the same laser and plasma pa-
rameters as in the previous examples, e.g., ωa1 = ω0,
δ = 2π × 30 THz. However, to maintain the same total
fluence, we used a smaller intensity per spectral com-
ponent, Ia1,2,3 = I0/3 = 3.33 × 1013 W/cm

2
. Addition-

ally, in analogy to Eq. (16), we choose a longer seed,
τFWHM = 120fs (instead of 80fs previously) that can con-
tain the triple-frequency beat-wave waveform of the seed.

IV. CONCLUSIONS

In summary, we show that a multifrequency seed can
be amplified and compressed by using a multifrequency
pump with the same frequency spacing. In the linear
regime, a simple fluid model suggests that multifrequency
BRA is possible, provided that sufficiently large spacing
is employed, i.e., δ > γ, where γ is the growth rate.
Moreover, PIC simulations show that the multifrequency
amplification continues in the nonlinear regime with sim-
ilar efficiencies as the SFBRA. We could not predict this
fact from the linearized fluid model.
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The advantages of amplifying multifrequency pulses
are as follows. First, similar to other spectral approaches,
such pulses experience a reduced premature reflectivity
of the pump due to a smaller linear growth rate of each
spectral component. However, uniquely to MFBRA, the
secondary backscattering of the amplified seed is also re-
duced since the seed also comprises multiple carrier fre-
quencies. Therefore, the total (unwanted) reflectivity is
reduced, and the amplification efficiency increases. Sec-
ond, the duration of each spike in the beat-wave envelope
is smaller than that of the envelope, and thus, one can
get a much shorter pulse without additional compres-
sion. Third, by engineering the initial phases of the seed
components, the maximum intensity can be optimized
for the same efficiency. Additionally, following the recent
study that found that the total critical intensity for self-
focusing might be higher for multicolor beams [40], we
expect to find a similar delay in the transverse filamen-
tation instability since the same nonlinear Kerr term is
responsible for both effects. Such a delay might enable
longer amplification before encountering this transverse
instability, making MFBRA even more favorable over SF-
BRA.
Although a relatively large bandwidth is required in

MFBRA due to the spacing conditions in Eq. (15) and

Eq. (16), there are considerable benefits in having a
shorter spike in the beat-wave form, a higher peak inten-
sity, noise suppression, and the possibly reduced trans-
verse instability. We also note that similar multifre-
quency amplification might also be realized for Brillouin
amplifiers, but further work is required to verify the sep-
aration conditions between possible resonances. Also,
although we consider here linear polarizations, similar
results are predicted for circularly polarized waves or lin-
early polarized waves, but with perpendicular polariza-
tion. These types of waves have the property of reduced
parasitic backscattering [25], but since they do not have
a beat-wave waveform, no improvement in the maximum
intensity is expected. These results should also carry
over to using a multifrequency plasma seed instead of a
seed laser [41] or to pulses with nonzero orbital angular
momentum [42].
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