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We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid
interface using two models; an equilibrium Gibbs model for homogenous nucleation, and a non-
equilibrium dynamic van der Waals/diffuse interface model for phase change in an initially cool
liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is
suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-
vapor interfacial energy–hence Laplace pressure–has limited influence over bubble formation. The
dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-
liquid interface, as demonstrated via both equilibrium and non-equilibrium arguments.

PACS numbers: 05.70.Np, 05.70.Ln, 47.55.db, 65.20.-w, 68.03.Fg, 68.03.Cd

I. INTRODUCTION

A number of potentially transformative technologies
rely on energy and momentum transfer between a hot,
nanostructured solid and a surrounding fluid [1, 2]. These
span applications as diverse as plasmonic photothermal
cancer therapy [3–6], photocatalysis [7, 8], solar-powered
water desalination [9–12], and physico-chemical sepa-
rations [13]. Metallic [14, 15], metal-dielectric struc-
tured [16], and/or molecularly functionalized nanopar-
ticles (NPs) [17, 18] have been studied as candidates
for many of these applications. Nanoscale cavitation-
oscillation [19–23] and phase-change phenomena [24]
have been reported, but a simple thermodynamic crite-
rion for vapor bubble formation, analogous to nanocrys-
tal nucleation in a melt [25] (or cavitation from a bulk

fluid), is conspicuously lacking. While it is known that
interfacial forces and molecular structure affects heat
transport [26, 27], the roles of interfacial energies, vis-
cous dissipation, and phase change near nanoscale inter-
faces [24, 28–30] remain somewhat unclear.
Nanoscale-confined phase stabilization due to surface-

fluid interaction has been predicted under a variety of
circumstances (see [28, 29] for example). However, the
phase stability of a liquid layer surrounding small gold
nanoparticles observed in molecular dynamics simula-
tions [24, 30] is quite curious; it is not a priori clear how
the curvature of a convex solid-fluid interface would sta-
bilize the heated fluid against vaporization. One hypoth-
esis is that the Laplace pressure required to sustain a sta-
ble bubble of small radius is too high and this suppresses
vapor formation at the interface [24]. Here we examine
the issue by considering both equilibrium vapor forma-
tion criteria and non-equilibrium hydrodynamic calcu-
lations. However, we frame the discussion in terms of
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FIG. 1: Schematic of coordinates for system showing inner
surface at r, vapor bubble between r and R, and the bulk-like
liquid. Note d is chosen to be large enough that any pressure
waves reflected from the outer boundary, where the pressure
is held constant, do not have sufficient time to return to the
bubble region during the course of simulation.

interfacial energies, rather than Laplace pressure [25].

II. EQUILIBRIUM THERMODYNAMICS

To gain some intuition into the roles of geometry via
surface forces, we first consider the equilibrium nucle-
ation of a vapor layer of thickness δ̃r[50] from a liquid

at uniform temperature T̃ surrounding a particle of ra-
dius r̃ (see Fig. 1). We follow a similar line of thinking
employed to understand the thermodynamics of nanopar-
ticle nucleation in a melt [25]. The change in Gibbs free
energy is the (reversible) free energy change associated

with an input heat of T̃∆S̃LV turning liquid near an
existing solid-liquid interface into a vapor layer with a
solid-vapor and a liquid-vapor interface. By considering
the difference in Gibbs energy per mole between the final
state of thin vapor layer + bulk liquid + solid-vapor +
liquid-vapor interfaces and the initial state of bulk liquid
+ solid-liquid interface, then multiplying by the number
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FIG. 2: The Gibbs free energy change, Eqn. 1, at T = 0.85Tc

for Argon on a gold-like nanosphere for δ̃r = 1 nm, for hy-
drophilic (θ = 1.26 rad) and hydrophobic (θ = 1.57 rad)
surfaces with different strengths of solid-fluid interaction, as
determined by γSL/γLV . (Inset) The critical radius estimates
for the same angles as a function of γSL/γLV .

of moles of vapor contained in a thin spherical shell of
thickness δ̃r, one obtains.

∆G̃total =
4π
3

(∆H̃LV −T̃∆S̃LV )(R̃3−r̃3)

ṼV

+4π
[

γSV (R̃3−r̃3)
r̃ + γLV (R̃3−r̃3)

R̃
ṼL

ṼV

− γSL(R̃3−r̃3)
r̃

ṼL

ṼV

]

(1)

Here, R̃ = r̃ + δ̃r, and the phase (solid, liquid, vapor)

for the molar volumes, Ṽ , changes in enthalpy H̃ and
entropy S̃, as well as interfacial tensions γ, are denoted
by respective subscripts S, L, and V . Minimizing Eqn. 1
with respect to radius, r̃, keeping terms leading order in
δ̃r, and using Young’s equation, γSV = γLV cos θ + γSL,
yields a critical particle radius for formation of a thin
vapor layer (δ̃r << r̃),

r̃cr =
γLV

(

5ṼV cos θ + 3ṼL

)

+ 5γSL∆ṼLV

−2(T̃∆S̃LV −∆H̃LV )
(2)

Consider Eqn. 1 with γLV = 3.4 mN/m (Argon) for a
range of contact angles (with respect to the flat, equi-
librium interface) and ratios of γSL/γLV (see Fig. 2).
Increasing the solid-fluid surface energy corresponds
to a higher barrier to vapor formation for radii below
∆G̃total = 0 and greater release of energy above. Simi-
larly, hydrophilic surfaces, θ < π/2, have a higher barrier
to vapor-layer formation than hydrophobic surfaces,
θ > π/2, and result in a smaller release of energy for
spontaneous transition.

Comparing the mercury-liquid interfaces for several
liquids with various liquid-vapor interfaces [31], the
solid-vapor and solid-liquid interfacial energies for fluid-
metal interfaces can be estimated to be about an order
of magnitude larger than typical liquid-vapor interfacial
energies. Below the critical temperature, Tc, the ratio
of molar volumes will be < 1; for example, Argon has
ratios ranging from 10−3 − 10−1 up to about T = 0.85Tc

(128 K) [32]. So the solid-liquid and liquid-vapor
contributions to Eqn. 1 are generally smaller than the
solid-vapor contribution. The critical radius (inset,
Fig. 2) increases with increasing solid-vapor interfacial
energy. Even in the limit of vanishing liquid-vapor inter-
facial tension, a non-zero solid-vapor interfacial energy
can inhibit vapor formation. Thus the dominant factor
in vapor formation is not the liquid-vapor interfacial
energy, in agreement with [33], but rather energetic cost
of creating the solid-vapor interface.
The energetic criterion for reversible formation of a

vapor layer in a uniformly heated liquid is given by
Eqn. 1. However, an initially cold liquid in contact
with a hot particle will undergo heating, expansion,
and phase change. Viscous dissipation has been shown
to play an important role in non-equilibrium bubble
dynamics [34]. So the Gibbs approach can provide
a lower bounds for the energy required to nucleate a
bubble. But a non-equilibrium theory is required to
shed light on the dynamics of vaporization in an initially
cool liquid placed in contact with a hot solid.

III. NON-EQUILIBRIUM THERMODYNAMICS

Because the diffuse interface/dynamic van der Waals
theory [35–42] has been used previously to study bubble
dynamics [23, 34], in good agreement with the classical
Rayleigh-Plesset equation, MD simulations [21], and ex-
periments [19] of bubble growth and collapse, we adopt
a variation on this model. We wish to isolate the roles of
viscous dissipation, capillary forces, and interfacial curva-
ture on the phase change and heat transfer properties of
the fluid from considerations of energy transport and ca-
pacity of the solid. Therefore we consider the evolution of
an initially uniform fluid held between rigid, impenetra-
ble surfaces of infinite interfacial conductance (see Fig. 1)
in thermal equilibrium with infinite capacity baths at
fixed temperatures T (r) = 0.85Tc and T (r+d) = 0.56Tc.
The model is formulated using hydrodynamic conser-

vation equations for mass, momentum, and energy [39–
41] supplemented by appropriate boundary conditions.
The (dimensional) governing equations are as follows,
with the ‘ ˜ ’ denoting dimensional variables: Continu-
ity,

∂tñ+∇ · (ñṽ) = 0 (3)

where ñ is the number density. The fluid velocity, ṽ is
given by,

Mñ (∂tṽ+ ṽ · ∇ṽ) = −∇ ·
(

P̃− D̃

)

(4)

with molecular mass, M , pressure, and viscous dissipa-
tion tensors, P̃ and D̃ respectively. The temperature is
governed by,

c̃v

(

∂tT̃ + ṽ · ∇T̃
)

= −ℓ̃∇ · ṽ+∇
(

λ∇T̃
)

+ D̃ : ∇ṽ (5)
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with thermal conductivity, λ, and the Clayperon coef-

ficient defined ℓ̃ = T̃
(

∂P̃bulk/∂T̃
)

n
. Element-wise, the

dissipation tensor is

D̃i,j = η

(

∂iṽj + ∂j ṽi −
2

3
∇ · ṽ ˆδi,j

)

+ µ∇ · ṽ ˆδi,j , (6)

where η and µ are the shear and bulk viscosities, and
ˆδi,j is the Kronnecker delta.
The one-density van der Waals theory includes

a density gradient contribution to the free energy
density [37, 41, 42]. Thus pressure tensor elements

are defined with a gradient contribution as, P̃i,j =
[

ñkBT̃ /(1− Ωoñ)− εΩoñ
2 − CT̃ ñ∇2ñ+ CT̃ (∇ñ)

2
]

δ̂i,j+

CT̃∂iñ∂j ñ where Ωo and ε are respectively the Lennard-
Jones volume and well-depth, kB is the Boltzmann
constant, and C is the density gradient coupling param-
eter, which we discuss subsequently.
Rather than using the full three-dimensional formu-

lation, we neglect angular non-uniformity in surface
temperature and restrict ourselves to cases with radial
symmetry. The divergence operator is then written
Dm [ϕ(x)] = x−m∂x [x

mϕ(x)] with m = 0 representing
planar, and m = 2 spherical, symmetry. The specific
heat is written c̃V = 3kBñ/2, and the Clayperon
coefficient is obtained from the bulk (dimensionless)
pressure P = nT/(1− αn) − 27

8 αn2. We further assume
η ≈ µ = νMñ with a constant kinematic viscosity, ν, for
simplicity. This also permits control of viscous dissipa-
tion in a convenient way. The thermal conductivity is
taken to be λ = kBνñ, following [42].
This permits the reduction of the full model, Eqs. 3–

5, to a set of dimensionless, 1D governing equations:

∂tn+Dm [nv] = 0 (7)

and

n∂tv + nv∂xv = Dm [Dxx − Pxx] (8)

where

Dxx − Pxx =
9

8
αn2

−
1

3

nT

1− αn
+ δnT

(

m∂xn

x
+ ∂2

xxn

)

(9)

−
3

2
δT (∂xn)

2 +
7

3
βn∂xv +

1

3

mβnv

x

and the temperature profile is given by

3

2
n∂tT = Dm [βn∂xT ]−

nT

1− αn
Dm [v]−

3

2
nv∂xT

+
7

9
βn (∂xv)

2
+

1

9

mβnv∂xv

x
(10)

The Lennard-Jones parameters for Argon

ε = 7.033 × 10−21 J and Ω
1/3
o = 0.345 nm set the

energy and length scales. The number density is scaled
by the liquid bulk number density, nLB at pressure,
100 kPa, and temperature T = 0.56Tc, where Tc

normalizes the temperature. Velocity and time scales
may then be defined, vo =

√

3kBTc/M = 97 m/s and

τo = Ω
1/3
o /vo = 3.5 ps. Assuming a constant kinematic

viscosity, ν, three dimensionless parameters describe the
dynamics: the excluded volume fraction α = ΩonLB,

an inverse Reynold’s number β = ν/Ω
1/3
o vo controlling

viscous dissipation and thermal conductivity, and a

capillarity parameter δ = CnLB/3kBΩ
2/3
o .

The gradient coupling parameter, C, is related to the
equilibrium liquid-vapor surface tension through the
action integral over the density [37, 43], assuming C is
a constant [23, 34, 42]. Note, however, for typical sub-
stances [32], the values of C thus obtained vary by over
an order of magnitude with temperature. While n, P ,
and T are held constant at the exterior (cold) boundary,
the interior boundary condition, ∂xn|x=r = −χ/T (r)
accounts for adsorption at the solid surface where

χ = φoΩ
1/3
o /CTcnLB with wetting potential φo [34, 42].

φo can be related to the contact angle for the appropriate
liquid-vapor-solid equilibrium for a flat interface [34],
again assuming independence of state. For simplicity,
we treat β, δ, and χ as free parameters with a range
informed by data for Argon [32]. A more physically
realistic model would include a state-dependent viscosity
(see for instance [23]). But for a constant capillary
coupling, across the range of physically reasonable
values for viscosity [32], bulk-like energy and momentum
transport will dominate the leading-order dynamics over
capillary forces.
To simulate evolution of an initially uniform fluid of

temperature T = 0.56 and density n = 1.005 in contact
with a nanocurved surface of infinite heat capacity and
infinite interfacial conductance (see Fig. 1 main text),
the governing equations are solved numerically on a
1D grid for several values of boundary radius r with
m = 0, 2. The boundary conditions are T (r, t) = 0.85
and T (d + r, t) = 0.56, P (x, 0) = P (d + r, t) = 0.0059
(about 0.7 MPa), n(d + r, t) = 1.005, v = 0 at both
interfaces.
For preliminary runs, we choose parameters from the

lower end of the range, δ = 10−9 and δ = 10−3, and
χ = −10−3 (weakly hydrophilic surface with low capil-
lary contribution). The input heat flux, −βn∂xT (x = r)
is evaluated as an average over the first few grid points,
and plotted in Fig. 3. However, numerical solutions
were obtained for a range of parameters, δ ∼ 10−9 to
10−1, ‖χ‖ ∼ −10−3 to 10, and β ∼ 10 to 102. We
present results illustrating the general conclusions, as
well as a few interesting cases. Overall, the heat flux
into interfaces with smaller radii is higher, as might be
expected from purely geometric effects, and the heat
flux response with increasing radius is seen to approach
the planar m = 0 case in the limit r → ∞.
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FIG. 3: Heat flux into hot boundary for varying inner radius
rnp. The calculation uses a fixed kinematic viscosity 1.67 ×

10−6 m2/s, with α = 0.208, β = 47.192, δ = 10−3, and
χ = −10−3.
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FIG. 4: Density profile at t = 3500 vs. x, the radial distance
from the particle surface (see also 1) for several different inner
radii r showing liquid phase stabilization at small radius and
bubble formation and expansion at large radius, converging
to the planar case as r → ∞. The viscosity is ν = 1.67×10−6

m2/s and α = 0.208, β = 47.192, δ = 10−3, and χ = −10−3,
a weakly hydrophilic surface.

Here we summarize and discuss the main results and
compare them to the Gibbs model. Density profiles
n(x, t) are shown in Fig. 4 for several different inner radii
r at t = 3500 for δ = 10−3 and weakly hydrophilic sur-
face, χ = 10−3. The density for r = 50 (about r̃ = 18
nm) does not exhibit vapor formation. Instead, a layer of
high-density liquid forms adjacent to the heated surface.
For larger radii (between 150 ≤ r ≤ 200), a liquid-vapor
interface begins to develop. As r increases, the spher-
ical m = 2 model approaches planar m = 0 behavior.
The model predictions are within a reasonable range of
Gibbs radius for Argon with weak surface-liquid forces
(see Fig. 2 inset.)

Since δ ∼ O(γ2
LV ), the range δ = 10−9 - 10−1 cor-

responds to a range of 4 orders of magnitude in equilib-
rium liquid-vapor energy. Physically reasonable values
for Argon are at the upper end of this range. Changing δ
alone has no appreciable effect on vapor layer formation.
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FIG. 5: Several snapshots of the temperature profiles for
βo = 47.192 and 0.25βo, and χ = −10−3. Inset shows a com-
parison of the density profiles near the interface for t = 1000.
Calculations for a range of δ = 10−9

− 10−1 show essentially
the same behavior.

However, modest change in β has a pronounced effect
(Fig. 5). This is unsurprising. The capillary terms in
Eqn. 9 give higher-order contributions to the dynamics.
In the present model, non-equilibrium phase stabilization
originates in the x−1 radial contribution to the viscous
dissipation and thermal conductivity, represented by the
last terms in each of Eqns. 9 and 10 respectively. In the
limit r → ∞, the radial component of the dissipation
vanishes and a vapor layer forms regardless of β.

IV. DISCUSSION AND CONCLUSIONS

Though we cannot directly compare the equilibrium
Gibbs formulation and the non-equilibrium formulation,
we may use the former to gain some deeper insight into
the latter. For larger β/smaller r, heat conduction near
the interface is rapid, resulting in a broader temperature
distribution and dissipative losses are high (Fig. 5).
According to the Gibbs formulation in Eqn. 1, the
magnitude of the free energy change required for layer
formation at a sub-equilibrium radius increases with
increasing thickness, δ̃r, of the hot layer. This suggests,
despite the local temperature, the fluid close to the
interface cannot accumulate enough internal energy
to undergo phase change. The liquid-vapor interfacial
tension, via realistic values of the capillary parameter,
however, appears to have little effect on the dynamics of
the model; whereas the viscosity and thermal conduc-
tivity, which give rise to dissipative dynamics, obviously
do not appear in the Gibbs formulation. Nonetheless,
the picture which emerges from the non-equilibrium
calculations is consistent with the equilibrium criterion
in as much as the dissipative terms compete with the
creation of the solid-vapor interface.
Following Lombard et. al. [34], the solid-fluid forces

are parameterized by the contact angle, yielding a
wetting potential φo [42]. The model does not predict
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parison of the density profiles near the interface for t = 1000.
Calculations are shown for δ = 10−2. The surface interaction
enters in the capillary terms and is much weaker for small δ.

a phase stabilization effect based on the variation of χ
alone, and vapor-layer formation was affected primarily
by β and r. The wettability, parameterized by χ,
influences interfacial heat transfer via the establishment
of short-range density gradients (see Fig. 6), increasing
or decreasing local conductivity. Hydrophilic surface
interactions show enhancement over neutral interfaces,
while hydrophobic interfaces result in reduced heat
transport, in qualitative agreement with analytic [44]
and molecular-dynamics [27, 45] results. There is some
question regarding the ability of a continuum model to
capture the physics of a fully-developed liquid-vapor
interface of thickness approaching molecular dimen-
sions [46]. But this is not critical for initial vapor
formation and early dynamics. The gradients ∂xn are
initially small and the dissipation terms are dominant
over capillary forces, since physically realistic δ < β
by roughly 2 orders of magnitude across the temper-
ature range [32]. Regarding surface forces, despite
qualitative agreement with other results, the present
treatment seems inadequate. Estimating the range of
surface forces by the extent of hydrophobic and -philic
boundary layers, there is no influence beyond about

the L-J minimum, 21/6Ω
1/3
o . This is consistent with

the repulsive component of a typical surface force, but
the range of attractive forces is larger. Moreover, a

continuous gradient cannot exist on a molecular length
scale, except as an average over fluctuations. Lastly,
the relationship between θ and φo [34] is based on the
3-phase equilibrium [37, 43] but includes only 2 of the 4
equilibrium parameters appearing in Young’s equation.
The liquid density near the interface in the r = 50

case (see Fig. 4) is high compared to atomistic sim-
ulations [24, 30] and the apparent minimum radius
about an order of magnitude larger than determined
by MD [30]. But the two pictures agree qualitatively;
there is a particle radius below which a superheated
liquid layer remains at the interface and the liquid-vapor
interface doesn’t form. The discrepancies are attributed
to surface-fluid interactions, as well as variation in
viscosity with temperature. Interestingly, a number of
experimental [47] and first-principles simulations [48, 49]
show modulation of the effective solvent viscosity and
mass transport near nanoscale solid-fluid interfaces.
While the correspondence between the solid-fluid and
the liquid-vapor interfacial contribution to the Gibbs
energy is clear, the non-equilibrium model makes no
distinction, except through viscosity, thermal conductiv-
ity, and density. Two important aims of ongoing work
motivated by these results are to clarify the relationship
between viscosity and thermal conductivity and to better
understand the the influence of surface-fluid forces via
the inclusion of a body-force term in comparison to
molecular simulations.
In conclusion, both equilibrium and non-equilibrium

arguments demonstrate the critical factor in bubble
formation is the cost of creating the solid-vapor interface,
rather than the energetic cost of liquid-vapor interfacial
formation. Furthermore, it was demonstrated that rapid
heat conduction and viscous dissipation near the curved
interface can prevent bubble formation. The relation-
ship between viscous dissipation and interfacial forces
is of fundamental and practical interest for nanoscale
systems, where fluctuations and molecular structure
play important roles near interfaces, yet a continuum
theory still captures the essential dynamics of the overall
system.
The results suggest that one can optimize nanoscale

solid-fluid heat transfer and control nanoscale boiling by
tailoring both geometry and surface properties, which
affect the structure, hence viscosity, of adjacent fluid
layers [27]. The Gibbs criterion predictions regard-
ing heat and momentum transfer at hydrophobic vs.
hydrophilic nano-curved surfaces can be tested. This
would not only be of fundamental interest, but regarding
applications such as cancer PPT, solar desalination, or
separations, controlling particle interfacial thermal and
momentum transport through a combination of par-
ticle size and surface properties is of great practical value.
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