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The interaction between nematic liquid crystals and polymer-coated substrates may lead to slow
reorientation of the easy axis (so called “director gliding”) when a prolonged external field is applied.
We consider the experimental evidence of zenithal gliding observed by Joly et al. in Phys. Rev. E
70, (2004) and Buluy et al. in J. Soc. Inf. Disp. 14, (2006) as well as azimuthal gliding observed
by S. Faetti and P. Marianelli in Liq. Cryst. 33, (2006) and present a simple, physically-motivated
model that captures the slow dynamics of gliding both in the presence of an electric field and after
the electric field is turned off. We make a quantitative comparison of our model results and the
experimental data and conclude that our model explains the gliding evolution very well.

I. INTRODUCTION

Liquid crystal display (LCD) devices make up a large
portion of the electronic devices in today’s market due to
their high optical resolution screens. A typical LCD con-
sists of many pixels, each consisting of a layer of nematic
liquid crystal (NLC) sandwiched between two bounding
plates and crossed polarizers. These devices exploit the
NLC’s ability to rotate the plane and shift the phase of
polarized light, to generate two distinct optical config-
urations. The “bright” and “dark” pixels of the display
are a result of the different orientation of LC molecules
within the layer. The molecular orientation depends on
the boundary conditions at the plates as well as the ex-
ternal forces (usually an applied electric field). To give
a simplified explanation (for brevity): when an electric
field is applied across the layer, the LC molecules align
with the field and cannot rotate the polarized light beam,
so that it cannot pass the second (crossed) polarizer and
the pixel remains “dark”. On the contrary, if no electric
field is applied, the LC molecules have a preferred orien-
tation dictated by the boundary conditions that allows
the polarized light beam to be rotated so that it passes
the second crossed polarizer, forming a “bright” pixel in
the display.

In an effort to improve LCD design and function, much
research has been focused on understanding and control-
ling the interaction between the bounding surfaces and
the liquid crystal molecules, known as anchoring. As
noted above, the molecules have a preferred orientation
at the boundary plates, often dictated by the substrate
coating material and different mechanical and/or chem-
ical treatments. Anchoring may be weak or strong. In
both cases, the substrate is characterized by an “easy
axis”, the axis along which the interaction energy between
the substrate and liquid crystal molecules is minimized.
If anchoring is strong, the NLC molecules align nearly
parallel to the easy axis at the boundary. If anchoring
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is weak, the NLC molecules may deviate from the easy
axis, generating a surface and elastic torque, which bal-
ance. Experiments have shown that if a strong applied
torque exists for extended periods of time, the easy axis
can slowly rotate, leading to a phenomenon known as
easy axis gliding or director gliding [1] (the director is a
unit vector characterizing the average molecular orienta-
tion of the long axis of the molecules). Director gliding
has been observed in lyotropic, thermotropic and nematic
LCs with multiple experiments reporting both zenithal
and azimuthal gliding [1–8].

Understanding the mechanism behind director gliding
is important since it is believed to lead to “image stick-
ing” in LCD technology. Image sticking is a phenomenon
where an outline (ghost image) of a previously displayed
image remains visible on an LCD screen after the image
has been removed [9]. Director gliding may also pose a
challenge in the development of flexible LCDs since ex-
periments have shown that director gliding is more preva-
lent at LC-polymer interfaces, often present in flexible
LCDs.

Two mechanisms have been proposed to describe the
gliding phenomenon observed in experiments. The first,
introduced by Vetter et al. [5], describes gliding in terms
of adsorption/desorption of the LC molecules on the solid
substrate as follows: initially the LC molecules are ad-
sorbed along the direction of the director in the cell. As
an electric field is applied across the layer, the director
reorients according to the electric field, leading to the
adsorption of LC molecules along this new direction. As
a consequence, the symmetry axis of the angular distri-
bution function of the adsorbed molecules reorients, to-
gether with the associated easy axis [10].

The second mechanism, proposed by Kurioz et al. [11],
describes gliding as follows: due to weak anchoring im-
posed on the boundary, applying an electric field reori-
ents the director on the surface, which drags the flex-
ible fragments of the molecules in the polymer surface.
This results in the reorientation of both the liquid crystal
molecules and the flexible fragments with the rate deter-
mined by the anchoring strength and the liquid crystal-
flexible fragment interaction. Both mechanisms present



2

the gliding phenomenon in a general way, but to our
knowledge, have not been described by mechanistic pre-
dictive models.

In this paper, we discuss experiments that present both
azimuthal and zenithal gliding. In the case of zenithal
gliding we consider two sets of experiments, carried out
by Joly et al. [6] and Buluy et al. [10], that focus on
zenithal gliding in the presence of an electric field and
after the electric field is turned off. In the case of az-
imuthal gliding, we consider the experiment carried out
by Faetti & Marianelli [12], which provides evidence for
azimuthal director gliding of a strongly anchored system
as an electric field is applied across the layer. Zenithal
director gliding is observed as an electric field is applied
perpendicular to the bounding plates [6] and after the
applied electric field is removed [6, 10]. By contrast, az-
imuthal gliding is observed as an electric field is applied
parallel to the plates [12].

All investigations present simple models used to ob-
tain the best fit to each experiment. In Ref. [6], the
authors argue that the director angle at the gliding sub-
strate can be fitted by a sum of no fewer than three expo-
nential terms, with the three exponents determined inde-
pendently for field on and off cases (six exponents total).
Buluy et al. [10] present a similar model but consist-
ing of two exponential terms, chosen specifically to best
fit the experimental data; while Faetti & Marianelli [12]
compare the experimental results with a stretched expo-
nential function and two fitting parameters.

In this paper, we develop mechanistic models that aim
to capture the physics of the interaction between NLC
molecules and the adjacent polymer coated boundary,
and that explain the gliding data observed in all three
sets of experiments. The paper is laid out as follows: in
Sec. II A, we present the mathematical model that gov-
erns the evolution of the director field, coupled to two
gliding models that capture the slow zenithal reorienta-
tion of the easy axis. Similarly, in Sec. II B, we present
a mathematical model that captures the slow azimuthal
reorientation of the easy axis as an electric field is ap-
plied across the layer, parallel to the bounding plates.
Sections IIIA, III C and III E summarize the experimen-
tal data observed in [6, 10, 12] respectively, while Sec-
tions III B, IIID and III F present the numerical results
of our models and compare them to the experimental
data. Section IV presents the conclusions.

II. MATHEMATICAL MODEL

In the following we develop mathematical models for
director gliding for two simple cases in which the direc-
tor field is confined to a plane (zenithal gliding, and az-
imuthal gliding). In both cases the slow timescale on
which gliding operates (relative to the elastic response
time of NLC molecules) will be exploited to derive a sim-
plified quasistatic model. We address the case of zenithal
gliding first.

A. Zenithal Molecular Orientation
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Figure 1: (Color online) Sketch showing the setup of the
zenithal model.

The basic setup consists of a NLC layer bounded be-
tween two parallel plates shown in Fig. 1. The local av-
erage molecular orientation can be described by a unit
vector director field n . Since the experimental data con-
sidered in [6, 10] describe zenithal gliding, we assume
that the director field lies in the (x∗, z∗) plane, with its
properties varying in the z∗ direction only (the direction
perpendicular to the bounding plates). Here ∗ is used to
denote dimensional quantities; unstarred quantities in-
troduced later will be dimensionless. Hence, the director
n = (cos θ, 0, sin θ) can be written in terms of a single
angle θ(z∗). An electric field E∗ is applied perpendicu-
lar to the bounding plates and is assumed to be uniform
throughout the layer: E∗ = E∗(0, 0, 1). In reality, the
NLC molecules interact with the field, leading to gradi-
ents in the field, but in many practical situations such
gradients may be shown to be small [13] and we assume
this is the case here.

Our mathematical model is based on the Ericksen-
Leslie continuum theory of nematics [14–16] where the
total free energy density of the liquid crystal layer con-
sists of the bulk and surface energy densities, both func-
tions of the director orientation, n . With the above as-
sumptions, the total free energy per unit area is given
by:

J∗ =

∫ h∗

0

W ∗dz∗ + g∗0 |z∗=0 + g∗h∗ |z∗=h∗ , (1)

where W ∗ is the bulk energy density and g∗{0,h∗} are
the Rapini-Papoular surface energies at boundaries z∗ =
0, h∗ given by:

W ∗ =
K∗

2
θ2z∗ −

E∗2ε∗0(ε‖ − ε⊥)

2
sin2 θ (2)

− E∗(e∗1 + e∗3)

2
θz∗ sin 2θ,

g∗{0,h∗} =
A∗{0,h∗}

2
sin2(θ − α{0,h∗}). (3)
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Here, K∗ represents the single elastic constant of the
NLC, under the frequent assumption that the bend
and splay elastic constants are equal in magnitude (i.e.
K∗ = K∗1 = K∗3 ). The parameter ε∗0 = 8.854 ×
10−12 C2N−1m−2 represents the permittivity of free
space, while ε‖ and ε⊥ are the relative dielectric per-
mittivities parallel and perpendicular to the long axis
of the nematic molecules, and e∗1 and e∗3 are the flexo-
electric coefficients, different for each liquid crystal type.
In the following, however, we will omit this flexoelec-
tric contribution from the model, noting that in the one
dataset we compare to with an applied field [6], the ex-
periments use a high-frequency AC power supply, so that
over the relevant experimental timescales the flexoelec-
tric terms in the model will average to zero. For the
dielectric contribution, we consider the common case in
which the LC molecules align parallel with the electric
field (rather than perpendicular to it) since the LC ma-
terial 5CB used in Refs. [6, 10] has a positive dielectric co-
efficient, ε‖ − ε⊥ > 0. The parameters A∗{0,h∗} represent
the anchoring strengths associated with each boundary,
while α{0,h∗} are the preferred zenithal anchoring angles
at z∗ = 0, h∗ boundary (see Figure 1). Following the ap-
proach adopted in [13, 17–19], we assume that the system
evolves as a gradient flow to its total free energy mini-
mum, leading to the following time dependent problem:

µ∗θt∗ = K∗θz∗z∗ +
ε∗0(ε‖ − ε⊥)E∗2

2
sin 2θ, (4)

ν̃∗θt∗ = K∗θz∗ − A
∗
0

2
sin 2(θ − α0)

∣∣∣∣
z∗=0

, (5)

−ν̃∗θt∗ = K∗θz∗ +
A∗h∗

2
sin 2(θ − αh∗)

∣∣∣∣
z∗=h∗

, (6)

where µ∗ and ν̃∗ represent the bulk and surface rota-
tional viscosities, respectively. In the following section,
we briefly discuss the model for azimuthal molecular ori-
entation.

B. Azimuthal Molecular Orientation
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Figure 2: (Color online) Sketch showing the setup of the
azimuthal model.

The basic setup for an azimuthal model, shown in
Fig. 2, consists of a NLC layer bounded between two
parallel plates where the local average molecular orien-
tation can be described by a unit vector n , and anchor-
ing is planar. Faetti & Marianelli [12] consider a NLC
layer bounded by two nearly parallel plates creating a
wedge cell of shallow angle. In our model, we assume
that the two bounding plates are exactly parallel, one
plate occupying the (x∗, y∗)-plane, and that the direc-
tor field lies in a plane parallel to this plane, its proper-
ties varying in the z∗ direction only. Hence, the director
n = (cosφ, sinφ, 0) can be written in terms of a single
angle, φ(z∗). A uniform electric field is applied parallel
to the bounding plates and nearly perpendicular to the
x∗-axis: E∗ = E∗(cos 85◦, sin 85◦, 0).

As with the zenithal model, we base the azimuthal
model on the free energy density given in Eq. (1). Here,
however, W ∗ and g{0,h∗} take the following form:

W ∗ =
K∗

2
φ2z∗ −

E∗2ε∗0(ε‖ − ε⊥)

2
cos2(φ− 85◦),

g∗{0,h∗} =
B∗{0,h∗}

2
sin2(φ− β{0,h∗}),

where B∗{0,h∗} represent the anchoring strengths associ-
ated with each boundary while β{0,h∗} are the preferred
azimuthal anchoring angles at z∗ = 0, h∗, and all other
parameters are as defined previously. Again, assuming
evolution via a gradient flow to the total free energy min-
imum, we obtain the following time dependent problem,
analogous to Eqs. (4)–(6):

µ∗φt∗ = K∗φz∗z∗ +
ε∗0(ε‖ − ε⊥)E∗2

2
sin 2(φ− 85◦), (7)

ν̃∗φt∗ = K∗φz∗ − B
∗
0

2
sin 2(φ− β0)

∣∣∣∣
z∗=0

, (8)

−ν̃∗φt∗ = K∗φz∗ +
B∗h∗

2
sin 2(φ− βh∗)

∣∣∣∣
z∗=h∗

, (9)

where µ∗ and ν̃∗ represent the bulk and surface rota-
tional viscosities, respectively. In the following section,
we supplement Eqs. (4)–(6) and Eqs. (7)–(9) with ad-
ditional models designed to capture the slow molecular
reorientation at the boundary under the gliding process
for both zenithal and azimuthal models. We then pro-
ceed by introducing the scales used to nondimensionalize
the models.

C. Gliding

The orientation that NLC molecules adopt at a
polymer-coated boundary depends on several factors,
including: the preferred molecular orientation at the
boundary (the easy axis, also known as the anchoring di-
rection); the anchoring strength at the boundary; anchor-
ing conditions at other nearby boundaries, which can in-
duce bulk elastic distortions leading to molecular torques
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at interfaces; and any other external forces (such as an
applied electric field). At a nongliding surface, the pre-
ferred orientation (easy axis) is a fixed property of the
NLC-surface pair, while at a gliding surface, the easy axis
can slowly reorient in time. The slow reorientation occurs
due to a sustained torque on the substrate molecules, cre-
ated (for example) by a prolonged exposure to an applied
electric field [2–5, 7, 8, 20, 21], or due to internal elas-
tic stresses created by different anchoring properties at
the two boundaries of a confined layer [22]. The (simpli-
fied) physical picture we have in mind is that the surface
substrate molecules (those in contact with the NLC) ex-
perience competing forces: on one hand they are bound
within the substrate; while on the other hand they inter-
act with the molecules of the adjacent NLC. At a nong-
liding surface, the former forces are fully dominant and
the surface substrate molecules remain firmly fixed. At a
gliding surface however, the forces due to the NLC inter-
actions can be significant, and over timescales of minutes
to hours, can reorient the surface substrate molecules,
leading to an attendant change in the direction of the
easy axis.

(a)

0◦0◦

E∗

6.7◦ 8.9◦

Nissan SE 3510

1.5 µm NLC
Gliding under EF

140 hours

SiO film

(b)

8.9◦
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1.5 µm
Gliding after EF turned off

13 days
7.3◦

0◦

SiO film

Nissan SE 3510

NLC

Figure 3: (Color online) Schematic summarizing the
drift of the easy axis (gliding) at the lower substrate
in [6] (a) during the time of application of an electric
field; and (b) after the electric field is turned off.

Anchoring angles in this and following figures are not
drawn to scale.

Figure 3 summarizes the zenithal gliding observed by
Joly et al. [6]. Under prolonged application of an applied
field, these authors tracked the evolution of the easy axis
at the lower surface (Nissan SE 3510), observing that its
angle increases from its initial value (Fig. (3a)). After the
electric field is turned off, the easy axis at this surface is
tracked again, and is observed to glide back almost to its
initial position (Fig. (3b)).

Similarly, Fig. 4 schematizes the experimental proce-
dure of Buluy et al. [10]. An electric field is applied
continuously across a layer, causing the anchoring an-
gle at the lower substrate (PVCN-F) to begin to deviate
(glide) from its preferred orientation. After the electric
field is removed, the anchoring angle glides back toward
its initial position.

(a) E∗
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0◦
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SiO film
Gliding evolution not shown in [9]
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Figure 4: (Color online) Schematic summarizing the
drift of the easy axis (gliding) at the lower substrate
in [10] (a) during the time of application of an electric
field; and (b) after the electric field is turned off. As

indicated, the authors do not provide data on the initial
gliding dynamics under the applied electric field.

Nissan SE 3510

x$ x$

Gliding under EF

Electric
Field

y$

1:4/ 1:9/
y$

Figure 5: (Color online) Schematic summarizing the
drift of the easy axis (gliding) in [12] during the

application of an electric field.

The experiment described in [12] consists of a slightly
different setup, shown in Fig. 5. Here, an electric field is
applied parallel to the bounding plates, at an angle of 85◦

from the x∗-axis. The preferred anchoring angles at the
gliding surface are parallel to the x∗-axis. Upon applica-
tion of the electric field the authors report an immediate
jump of the easy axis, followed by a gradual increase,
attributed to gliding.

We propose two models to describe the gliding behav-
ior observed in Refs [6, 10, 12], assuming in all cases
that gliding occurs at the surface z∗ = 0. In the follow-
ing presentation we assume the zenithal anchoring case,
and later make the natural extension to the azimuthal
case. Both gliding models assume the same basic prin-
ciple: that the direction of the easy axis at the gliding
substrate is determined by how the substrate molecules
are anchored. If we think of the substrate molecules as
able to rotate slowly under torque, then the easy axis can
rotate also (gliding). Considerations of force-balance for
the substrate molecules on the timescales appropriate for
gliding give that the torques acting on them should equi-
librate. We assume two sources of torque: (i) a net force
due to the interactions with the adjacent NLC molecules
which, we posit, should be a function of (α0(t∗)−θ(0, t∗))
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(the difference between the easy axis and the director an-
gles at that surface); and (ii) a resistive force. It is rea-
sonable to assume that the resistive force is an increasing
function of the rate of gliding, dα0/dt

∗; lacking detailed
data to support a better model we assume linear depen-
dence. These considerations lead to a general gliding law

of the form

dα0

dt∗
= f(α0(t∗)− θ(0, t∗)).

We consider two choices for the function f , motivated by
the experimental observations:

dα0

dt∗
= λ∗0[α0(t∗)− θ(0, t∗)]

(
1− |α0(t∗)− α0(0)|

αtol

)n

(Gliding Model I), (10)

and

dα0

dt∗
= λ∗0[α0(t∗)− θ(0, t∗)] exp

(
−|α0(t∗)− α0(0)|

ᾱtol

)
(Gliding Model II). (11)

Both models assume that the gliding force on the sub-
strate molecules is as though they are tethered by springs
to the adjacent NLC molecules: for small displacements
the force is linear in the difference between anchoring
angle and NLC orientation angle, but for larger displace-
ments the driving torque decreases. This is in line with
the experimental data, which strongly suggest that the
degree of gliding that can occur is limited. In the first
model, Eq. (10), we impose a maximal gliding angle αtol,
while in the second model, Eq. (11), we assume the exis-
tence of some angle ᾱtol, below which gliding follows an
approximately linear model, and above which the torque
driving gliding drops rapidly. The exponent n in the first
model allows the degree of nonlinearity to be tuned to fit
the data. As one might anticipate, the two models dis-
play similar behavior as n becomes large as we will see
in Sec. III; indeed, we find that large n is necessary for
the model to fit well the data. The parameter λ∗0 in both
models represents the relaxation rate of the anchoring
angle at the gliding surface z∗ = 0.

We note that the same principles used to derive
Eqs. (10)–(11) can be extended to the azimuthal case. To
model azimuthal gliding, we replace the zenithal anchor-
ing angles α{0,h∗} with the azimuthal anchoring angles
β{0,h∗}, the zenithal director angle θ(·, t∗) with the az-
imuthal director angle φ(·, t∗) and parameters αtol, ᾱtol

with the corresponding parameters βtol, β̄tol.

D. Scaling and Nondimensionalization

We nondimensionalize Eqs. (4)–(6) (zenithal) and
Eqs. (7)–(9) (azimuthal) as follows:

z =
z∗

h∗
, t = λ∗0t

∗, (A,B){0,1} =
h∗

K∗
(A∗,B∗){0,h∗}

(12)

where h∗ is the thickness of the NLC layer which varies
depending on the experimental setup. Note that time is

scaled using the gliding timescale, (λ∗0)−1. This param-
eter will depend on system characteristics such as sub-
strate material, treatment, and the NLC used. We note
also that the applied field may affect not only the orien-
tation of the NLC molecules, but also that of the polymer
molecules in the coating layer (the material used to coat
the gliding surface in [6] is the polyimide Nissan SE 3510,
which has a dielectric constant of approximately 3.0).
Therefore, we allow different values (based on the exper-
imental data) for λ∗0 in “field on” and “field off” cases.
After nondimensionalization, Eqs. (4)–(6) become:

δθt = θzz +D sin 2θ, (13)

δν̃θt = θz −
A0

2
sin 2(θ − α0) on z = 0, (14)

−δν̃θt = θz +
A1

2
sin 2(θ − α1) on z = 1, (15)

and Eqs. (7)–(9) read as:

δφt = φzz +D sin 2φ, (16)

δν̃φt = φz −
B0
2

sin 2(φ− β0) on z = 0, (17)

−δν̃φt = φz +
B1
2

sin 2(φ− β1) on z = 1. (18)

The parameter δ = (h∗2µ∗λ∗0)/K∗ in Eqs. (13)–(18)
represents the ratio between the timescales of the bulk
elastic response of the NLC, given by h∗2µ∗/K∗ and the
gliding response, 1/λ∗0. The parameter ν̃ = ν̃∗/(µ∗h∗)
represents the dimensionless surface viscosity, while D
represents the dimensionless dielectric strength:

D =
h∗2E∗2ε∗0(ε‖ − ε⊥)

2K∗
. (19)

We consider the common case in which the NLC
molecules align parallel to the electric field direction,



6

so the dielectric anisotropy is positive and D > 0
in our model. With the following parameter values:
h∗ ∼ 1.5 − 10 µm (h = 1.5 µm in [6] and h = 10µm
in [10] ), K∗ = 8 × 10−12N, µ̃∗ = 0.1 N s m−2, ν̃∗ ∼
10−10 N s m−1 [23], and relaxation rates in the range
of 0.3 − 3.7 min−1 (based on the experimental data for
zenithal gliding [6, 10]; see later Secs. III B and IIID), we
observe that δ � 1 and ν̃ � 1. Furthermore, since the
anchoring at the upper (non-gliding) boundary is much
stronger than at the lower (gliding) boundary in both
zenithal experiments [6, 10], we assume A1 � 1 (strong
anchoring at the upper boundary). Together these as-
sumptions give, to leading order in δ, ν̃, A−11 :

0 = θzz +D sin 2θ, (20)

0 = θz −
A0

2
sin 2(θ − α0) on z = 0, (21)

θ = α1 on z = 1. (22)

In the azimuthal gliding setup of Faetti & Marianelli,
both bounding surfaces experience gliding. With pa-
rameter values h ≈ 50 µm in [12], K∗ = 8 × 10−12N,
µ̃∗ = 0.1 N s m−2, ν̃∗ ∼ 10−10 N s m−1 [23], and relax-
ation rates λ∗0 = 0.275 min−1 (based on the experimental
data [12]), δ � 1 and ν̃ � 1. Hence Eqs. (16)–(18) be-
come:

0 = φzz +D sin 2φ, (23)

0 = φz −
B0
2

sin 2(φ− β0) on z = 0, (24)

0 = φz +
B1
2

sin 2(φ− β1) on z = 1. (25)

The dimensionless forms of Eq. (10) and Eq. (11) are:

dα0

dt
= [α0(t∗)− θ(0, t)]

(
1− |α0(t∗)− α0(0)|

αtol

)n

, (26)

dα0

dt
= [α0(t)− θ(0, t)] exp

(
−|α0(t)− α0(0)|

ᾱtol

)
, (27)

for zenithal gliding at z = 0, with analogous equations
governing the gliding evolution of β0 and β1 in the az-
imuthal gliding case.

Equations (20)–(22) together with Eq. (26) or Eq. (27)
make up the complete model that describes the evolution
of the easy axis within a NLC layer where the molecules
are allowed to bend and splay in the (x, z)–plane and
where gliding can occur at z = 0. Similarly, Eqs. (23)–
(25) together with the azimuthal versions of Eq. (26) or
Eq. (27) (gliding imposed at both boundaries) make up
the complete model that describes the evolution of the
easy axis within a NLC layer where the molecules are
allowed to twist about the z-axis, while confined to the
(x, y)-plane, and where gliding can occur at both z = 0
and z = 1.

We solve each set of equations numerically by imple-
menting the following procedure: first we solve Eqs. (20)–
(22) (or Eqs. (23)–(25) in the azimuthal case) using the

built-in MATLAB routine BVP4c to obtain a solution
θ(·, t) for the director angle. Then, we use this solution
in Eq. (26) or Eq. (27) (or the corresponding azimuthal
gliding models) to compute the anchoring angle α0 (or
β{0,1}) at the next time step. This process is repeated
until we have simulated the entire duration of the corre-
sponding experiment.

III. RESULTS

In this Section, we first summarize briefly the experi-
mental results presented in [6, 10, 12]. Then, we present
our numerical results obtained by solving numerically
Eqs. (20)–(27) and make direct comparisons with the ex-
perimental data.

A. Overview of experimental results presented in
Ref. [6]

The experimental setup considered in [6] consists of a
NLC layer bounded between two substrates treated such
that the lower substrate exhibits gliding, while anchoring
is strong and planar at the upper boundary. The initial
preferred anchoring orientation at the gliding boundary is
α0 = 6.7◦, measured from the horizontal axis (Figure 3),
before application of the electric field. Joly et al. [6] ob-
serve the easy axis to glide (zenithally) through an angle
of 2.2◦ over the 150 hours during which the electric field
is applied, increasing from its initial angle of 6.7◦ to 8.9◦.
On removal of the electric field, the easy axis direction
glides back towards its initial position. After 13 days,
its angle has decreased to 7.3◦ (0.6◦ larger than its value
before the electric field was first applied). Joly et al. [6]
state that anchoring is “strong” at this gliding boundary
but do not provide precise values for anchoring strength,
only a lower bound on the anchoring extrapolation length
at that boundary. In the absence of firm data, we take
A0 = 1500 for the dimensionless anchoring strength at
the gliding boundary, an order of magnitude larger than
the lower bound suggested by their estimate.

Based on the values reported in [6, 23, 24], we solve
our models with the following parameter values: h∗ =
1.5 µm, ε‖ − ε⊥ ∼ 5 for the dielectric coefficient, giving
D = 69 when E∗ = 5V µm−1. In both gliding Models
I & II (Eq. (26) and Eq. (27) respectively), we use the
parameters αtol, ᾱtol and n (αtol and n in Model I and
ᾱtol in Model II) to fit the experimental results shown
in [6]. The goal of the remaining section is to determine
which values of n and αtol (for Model I) and ᾱtol (for
Model II) most accurately describe the experimental re-
sults. These are the optimal parameters denoted by αopt

tol ,
nopt and ᾱopt

tol respectively.
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B. Comparison of numerical results with data of
Ref. [6]

We solve Eqs. (20)–(22) in conjunction with Eq. (26)
(Model I) and Eq. (27) (Model II) to obtain the evolution
of the anchoring angle, α0(t∗), at the gliding substrate,
and the director angle, θ(0, t∗) there. We quantify how
well each model predicts the gliding behavior observed
in [6] by introducing ||θexp − θnum||2 defined as:

||θexp − θnum||2 =

√∫ t1

t0

(θexp − θnum)2dt (28)

which denotes the norm of the difference between the
experimental data and the numerical results. In each
model, the norm is calculated for both gliding scenarios:
(a) when the electric field is turned on and (b) after it is
turned off. In each scenario, plots of ||θexp − θnum||2 vs.
αtol (not shown here) demonstrate that there exists an
optimal value of αtol (for each n-value; Model I), or ᾱtol

(Model II) that produces the best global fit i.e., the glid-
ing curve with the lowest error. We denote these optimal
values by αopt

tol , ᾱ
opt
tol respectively. In what follows, we dis-

cuss the numerical results obtained from each model in
detail.

1. Gliding Model I: Eq. (26)

We investigate the model behavior as parameters αtol

and n are varied. As discussed in Section IIIA above,
the values of several model parameters have already been
fixed. The remaining parameter, the relaxation rate λ∗0,
is obtained by fitting the early time behavior: we take
λ∗0 = 0.15 hr−1 when the electric field is turned on, and
λ∗0 = 20 hr−1 when the electric field is turned off; the
values of αtol and n mainly affect the intermediate-to-
late time behavior.

Figure 6 presents the lowest norm, min||θexp − θnum||2,
for each n, versus the value of αtol giving this min-
imum, both when an electric field is applied (results
shown by black symbols) and after the electric field is
shut off (red symbols). We observe that the minimized
error, min||θexp − θnum||2, decreases as n increases, for
both electric field on and off cases. Hence, we can con-
clude that highly nonlinear models (high values of n in
Eq. (26)) better describe the gliding behavior in both
electric field on and off scenarios.

The fitting procedure described above assumes both
αtol and n can be varied independently to obtain optimal
results in the field-on and field-off cases. However the
results in Fig. 6 show that in fact there exist “optimal”
modeling scenarios with ||θexp − θnum||2 < 0.1 in both
electric field on and off gliding scenarios, with the value
of αtol fixed. For example, setting αtol ≈ 4.3◦ together
with n = 6 (electric field on) and n = 11 (electric field
off) leads to a gliding curve with error norm ||θexp −

αtol (deg)
2 4 6 8

m
in
(||
θ
ex
p
−
θ
n
u
m
|| 2
)

0.05

0.1

0.15

0.2

0.25
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9
n = 10
n = 11
n = 12

black - EF on 
red- EF off

α
opt
tol = 4.3◦

α
opt
tol = 2.0◦

α
opt
tol = 2.6◦

Figure 6: (Color online) The error
min(||θexp[5] − θnum||2) vs αtol for electric field on and
electric field off scenarios using Model I and the data
of [6]. Each data point represents different n values.

θnum||2 = 0.06, for both electric field on and off cases.
Similar gliding curves with slightly higher errors (norm
values) can be obtained by setting αopt

tol = 2.0◦ and 2.6◦

(and their corresponding values of n, seen in Fig. 6). Note
that we choose to restrict n to integer values in Model I.

A similar conclusion can be reached when fixing n and
varying αtol. Figure 7 illustrates the minimized error,
min||θexp − θnum||2, vs. n for the two gliding scenarios
of Joly et al. [6] (the values of αopt

tol that give the low-
est norm are not shown in the figure) . We observe that
in both gliding scenarios, as the value of n increases, the
minimum error decreases, reaching a plateau value of less
than 0.06 at large n. We obtain the best fit to the ex-
perimental data when n = 12 and αtol = 8.12◦ for the
electric field on case, and n = 12 and αtol = 4.6◦ for the
electric field off case (see Eq. (26)). As in the previous
scenario, the lowest error is achieved by a highly non-
linear model (Eq. (26) with n = 12; though in fact any
n ≥ 5 gives an acceptably small error). Figures 6 and
7 illustrate that we do not need to vary two parameters
αtol and n independently to obtain a good global fit to
the experimental data observed in [6]. Moreover, they
show that higher values of n lead consistently to better
descriptions of the experimental data.

2. Gliding Model II: Eq. (27)

Motivated in part by the strong nonlinearity suggested
by the results just described, we now investigate how
Model II (given by Eq. (27)) predicts the experimental
data observed by [6]. This model has the advantage of
only one variable parameter, ᾱtol. This parameter rep-
resents a threshold below which gliding follows a linear
model and above which the torque driving gliding drops
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Figure 7: (Color online) The error ||θexp[5] − θnum||2 vs
n for electric field on and electric field off scenarios
using Model I and the data of [6]. Each data point
represents a minimum obtained over all relevant αtol

values (the minimizing values of αtol are not shown
here).

rapidly, and we enter a strongly nonlinear regime. As
with Model I, we quantify how well the numerical re-
sults compare with the experimental data by varying the
parameter ᾱtol and measuring the error between the ex-
perimental data and numerical results, ||θexp − θnum||2
(defined in Eq. (28)).

ᾱtol (deg)
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Figure 8: (Color online) The error ||θexp[5] − θnum||2 vs
ᾱtol for electric field on and electric field off scenarios

using Model II and the data of [6].

Figure 8 presents the norm ||θexp − θnum||2 as ᾱtol

varies. We observe that in both gliding scenarios there
exists an optimal value of ᾱtol, ᾱ

opt
tol , such that ||θexp −

θnum||2 is minimized. In the electric field on case,
ᾱopt
tol = 0.63◦ (resulting in ||θexp − θnum||2 < 0.06);

while in the electric field off case, ᾱopt
tol = 0.33◦ (giving

||θexp−θnum||2 < 0.05). Note that Model II is able to de-
scribe the experimental data observed in [6] as accurately
as Model I with only one variable parameter: in both
gliding scenarios, the error norm ||θexp − θnum||2 < 0.06,
similar to Model I.

3. Comparison of models with experimental data

We now illustrate how the best fits for the two models,
obtained as described above, compare to the experimen-
tal results of Joly et al. [6]. Figure 9 shows the gliding
evolution of θ(0, t∗) using Model I (solid black line) and
Model II (dashed red line) plotted on the same axis as the
gliding data obtained in [6] (a) when an electric field is
turned on and (b) after the electric field is turned off. Ex-
perimental data were extracted from [6] (and later from
[10, 12]) using Data Thief III (Ref. [25]). In both cases
we convert our model results to show evolution in dimen-
sional time (hours), since that is how the experimental
data are presented in the original work. In the electric
field on scenario, we use n = 12 and αtol = 8.12◦ to ob-
tain the best fit with Model I and we use ᾱtol = 0.63◦ to
obtain the best fit with Model II. After the electric field
is turned off, the best gliding fit is obtained using n = 12
and αtol = 4.6◦ for Model I and ᾱtol = 0.33◦ for Model
II; these parameters produce gliding curves with the low-
est error: ||θexp− θnum||2 < 0.06 in all cases. We observe
that our numerical results provide an excellent fit to the
gliding evolution observed in [6], with gliding Model II
(Eq. (26)) performing slightly better than gliding Model
I (Eq. (27)).

C. Overview of experimental results presented in
Ref. [10]

Buluy et al. [10] consider a set up similar to that of Joly
et al. [6]. A layer of 5CB is bounded between two parallel
plates, 10 µm apart, treated such that only the lower sub-
strate exhibits gliding. The initial preferred anchoring
orientation is measured to be α0 = 0.8◦ from the horizon-
tal axis, with anchoring strength A∗0 ∼ 0.25×10−3Jm−2,
corresponding to A0 = 312 (Eq. (12) with h = 10 µm).
An electric field of magnitude 1Vµm−1 is applied per-
pendicularly to the substrate for a period of 16 hours,
during which gliding occurs. The field is then removed
and the new easy axis orientation is measured: 3.0◦. The
easy axis then begins to glide back towards its original
orientation, and its evolution is tracked over a period of
1000 hours.

D. Comparison of numerical results with data of
Ref. [10]

We use a similar approach to Section III B where we
compare the experimental results obtained in [10] un-
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Figure 9: (Color online) Experimental results [6] (blue
circles) and the results for θ(0, t∗) using Models I (solid
black line) & II (dashed red line) when the electric field
is (a) on and (b) off. Parameters used to obtain the

numerical results using Model I are: (a) λ∗0 = 0.15 hr−1,
n = 12, αtol = 8.12◦ and (b) λ∗0 = 20 hr−1, n = 12,
αtol = 4.6◦. Parameters used to obtain the numerical

results using Model II are: (a) λ∗0 = 0.15 hr−1,
ᾱtol = 0.63◦ and (b) λ∗0 = 20 hr−1, ᾱtol = 0.33◦.

der zenithal gliding with the numerical results obtained
by solving Eqs. (20)–(22) in conjunction with Eq. (26)
(Model I) or Eq. (27) (Model II). We use the technique
described at the end of Section IID to obtain the glid-
ing evolution of θ(0, t∗) using the following parameters:
A0 = 312, α0(0) = 0.8◦, D = 0 (in [10] the authors only
present data for the gliding after the electric field has
been removed, so we are only able to compare our model
for this regime). As with the experimental data in [6]
(see Sec. III B 1) the relaxation rate λ∗0 is obtained by
fitting the early time behavior of the numerical results to
the experimental data and it is set to λ∗0 = 3.7 min−1.

1. Gliding Model I: Eq. (26)
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Figure 10: (Color online) The error
min(||θexp[9] − θnum||2) vs αtol for electric field off using

Model I and the data of [10]. Each data point
represents different n values.

We investigate the numerical results obtained by solv-
ing Eqs. (20)–(22) together with Eq. (26) and observe (as
in Sec. III B) that for each value of n, there exists an op-
timal value of αtol, α

opt
tol , that produces the best global fit

to the experimental data. Figure 10 shows the smallest
error, min||θexp − θnum||2 plotted against the correspond-
ing value of αtol, for different integers n. We observe that
as n increases, the error between the numerical results
and experimental data decreases at first (when n < 6),
reaching its lowest value (||θexp − θnum||2 < 0.05) when
n = 6 (and αtol = 5.4◦), followed by a slight increase
when n > 6. Hence, we conclude that the parameters
n = 6 and αtol = 5.4◦ in Model I lead to the best global
approximation of the experimental results reported in
Ref. [10] with an error ||θexp − θnum||2 < 0.05. Note
that, as with the zenithal gliding data reported in [6], a
highly nonlinear model (n = 6 and αtol = 5.4◦) is needed
to best fit the experimental data observed in [10].

2. Gliding Model II: Eq. (27)

We now investigate whether Model II given by Eq. (27)
can better describe the gliding data observed in [10]. Fig-
ure 11 shows the norm of the difference between numer-
ical and experimental results plotted against ᾱtol. Here,
as in Fig. 8, we observe that there exists an optimal value
of ᾱtol, ᾱ

opt
tol = 0.75◦ such that ||θexp − θnum||2 is min-

imized (||θexp − θnum||2 < 0.08). Note that although
Model II (Eq. (27)) leads to a slightly “worse” predic-
tion with ||θexp − θnum||2 ≈ 0.079 than Model I (with
||θexp − θnum||2 < 0.05 when n = 6 and αtol = 5.4◦), it
requires only a single fitting parameter, ᾱtol.



10

αtol (deg)
0 0.5 1 1.5 2 2.5 3

||θ
ex
p
−
θ n

u
m
|| 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 11: (Color online) The error ||θexp[9] − θnum||2 vs
ᾱtol for electric field off scenario using Model II and the

data of [10].

3. Comparison of models with experimental data

We now illustrate how the best numerical results for
both models compare to the experimental data of [10].
Figure 12 shows the gliding evolution of θ(0, t∗) using
Model I (solid black line) and Model II (dashed green
line) plotted on the same axis as the gliding data (again
we convert our simulation results to dimensional time,
measured in minutes). The best fit for Model I is ob-
tained when n = 6 and αtol = 5.4◦; while for Model II
it is obtained when ᾱtol = 0.75◦. These parameters lead
to gliding curves with the lowest error: ||θexp− θnum||2 <
0.05 (Model I) and ||θexp − θnum||2 < 0.08 (Model II).
We observe that each model provides an excellent fit to
the gliding evolution shown in [10], with gliding Model I
(Eq. (27)) performing slightly better than gliding Model
II (Eq. (26)).

E. Overview of experimental results presented in
Ref. [12]

The experiment considered by Faetti & Marianelli
in [12] consists of a slightly different setup, designed
to induce azimuthal gliding of the easy axis: a wedge
cell containing NLC is bounded between two substrates
treated such that they both exhibit gliding. The ini-
tial preferred anchoring orientation at each boundary is
β{0,1} = 0◦, measured from the x∗-axis (see Figure 5 and
Eqs. (23)–(25)). Faetti & Marianelli state that anchoring
is “strong” at both boundaries with anchoring strength
values around B∗{0,h∗} ∼ 0.33 × 10−3 Jm−2. An electric
field of magnitude 0.25 V µm−1 is applied parallel to the
lower plate, at an angle 85◦ from the x-axis.

Based on the reported data [12] we solve our model
with the following parameter values: h∗ = 75 µm,
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Figure 12: (Color online) Evolution of θ(0, t∗) using
Models I (solid black line) & II (dashed green line) and
the experimental data of [10] (blue circles; obtained
after the electric field is turned off). Parameters for
Model I are: λ∗0 = 3.7 min−1, n = 6 and αtol = 5.4◦;

and for Model II, λ∗0 = 3.7 min−1, ᾱtol = 0.75◦.

ε‖ − ε⊥ ∼ 13.1, K∗ = 3.93 × 10−12 N, B∗{0,h∗} ∼ 0.33 ×
10−3 Jm−2, and obtain B{0,1} = 4500 and D = 5188
for the dimensionless anchoring strength and dielectric
coefficient respectively when E∗ = 0.25 V µm−1.

As the electric field is turned on, Faetti & Mari-
anelli [12] initially report a jump of the easy axis from 0◦

to 1.4◦ from the x-axis in the first two minutes followed
by a gradual increase to 1.9◦ over approximately 60 min-
utes. We attribute the initial jump to the response of the
NLC molecules to the electric field, and the subsequent
gradual increase to gliding.

F. Comparison of numerical results with data of
Ref. [12]

For these experimental data we present only results ob-
tained from Model II (Eqs. (23)–(25) plus Eq. (27)), since
Model I proves less satisfactory here. Given the param-
eters B0 = 4500, β0(0) = 0◦, D = 5188, determined in
Sec. III E above, we obtain very good agreement with the
data using the value of β̄tol that minimizes ||φexp−φnum||2
(as with our previous examples, the value of λ∗0 is ob-
tained by fitting the early time behavior of the numerical
results to the experimental data: λ∗0 = 0.275 min−1).

Figure 13 illustrates the well-defined minimum of the
error ||φexp − φnum||2 (defined as in Eq. (28)), obtained
at β̄opt

tol = 0.1◦. Figure 14 shows the direct comparison of
numerical results (red curve) and experimental data (blue
circles, [12]) for this value of β̄tol. We use the reported
post-jump value, φ(0, 0) = 1.4◦, as our initial condition,
attributing the fast initial change to the initial response
to the applied field, before any gliding occurs (such a
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Figure 13: (Color online) The error (||φexp[11] − φnum||2
vs β̄tol for electric field on scenario using Model II and

the data of [12].

jump in φ(0, 0) would be observed even at a non-gliding
surface, with finite anchoring strength). As with the pre-
vious cases considered, the fit obtained with Model II is
excellent.
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Figure 14: (Color online) Evolution of φ(0, t∗) using
Model II (solid red line) and the experimental data

of [12] (results obtained under an electric field applied
at time t∗ = 0). Parameters used to obtain the

numerical results are: λ∗0 = 0.275 min−1 and β̄tol = 0.1◦.

IV. CONCLUSIONS

We present two simple models that describe the evo-
lution of the director field within a NLC layer in the
following scenarios: (i) when an electric field is applied
perpendicularly to the plates and zenithal gliding occurs

at one plate; and (ii) when an electric field is applied par-
allel to the plates and azimuthal gliding occurs at both
plates. We investigate in detail the long term evolution
of the easy axis on the gliding surface that occurs both
when the layer is subjected to an electric field, and after
the electric field is turned off. The models that we in-
troduce are based on the assumption that the anchoring
angles, α0 (zenithal gliding) and β0, β1 (azimuthal glid-
ing), reorient at a rate that depends on the difference
between the anchoring angle and the surface director at
the gliding surface. In Model I, given by Eq. (26), glid-
ing persists until the anchoring angle has changed by a
maximal amount, αtol (or βtol in the azimuthal gliding
case), or until the director takes the same value as the
preferred anchoring angle at the boundary. In Model II,
given by Eq. (27), we assume the existence of some an-
gle ᾱtol (β̄tol for azimuthal gliding), below which gliding
follows an approximately linear model, and above which
the torque driving gliding drops rapidly. In each model,
we take advantage of the separation of the time scales
between gliding and the elastic response, and assume a
quasistatic model to describe the evolution of the director
field within the layer. We investigate in detail how the
easy axis evolves in time under the two gliding models,
and compare our numerical results with the experimental
data observed in Ref. [6, 10, 12].

We observe that, given the appropriate parameter val-
ues, αtol(βtol), λ

∗
0 and n for each zenithal (azimuthal)

experiment, both models predict the gliding data ob-
served in [6, 10, 12] extremely well. Model I obtains
a slightly better global fit to the data of [6, 10] (Sec-
tions III B, IIID), but uses two fitting parameters (an
exponent n characterizing the degree of nonlinearity, in
addition to the limiting gliding angle). Model II performs
only marginally worse in terms of overall error, with the
advantage of only a single fitting parameter in the non-
linear regime. The fact that the optimal values for the
fitting parameters are found to be different in field-on
and field-off cases is attributed to the possible effect that
the electric field has on the molecules of the polymeric
bounding substrate itself. Since excellent overall fits are
obtained to all datasets with this model, we suggest that
Model II provides a simple, robust way in which to char-
acterize director gliding, in the presence or absence of an
electric field.

After this work was completed, another study by
Antonova et al. [26] was brought to our attention. This
study shares some similarities with those of [6, 10], in that
the same basic experimental setup is considered (appli-
cation of an electric field across a NLC layer with strong
anchoring at one substrate and gliding at the other; the
same polymer, PVCN-F, was used as in the experiments
of Buluy et al. [10] at the gliding surface), and a tri-
exponential function of the kind used by Joly et al. [6]
is used to fit the data, again confirming the strong non-
linearity of the gliding response. Antonova et al. [26]
however take the work further, repeating the experiment
through several cycles of gliding to study the aging of
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the system. Given that our simulations do not exhibit
full reversibility (on removal of the electric field the easy
axis does not return to its exact value before application
of the field), our model has the potential to capture dy-
namically such system aging. It would be interesting in
future to pursue this direction making direct comparison
to the experimental data of [26].
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