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A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the
host if the cost of deformation is comparable to the cost of elastic deformation of the nematic.
Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the
host. A continuum theory model using finite elements is developed for this system, using mesh
regularization and dynamic refinement to ensure quality of the numerical representation even for
large deformations. From this model, we determine the influence of the shell elasticity, nematic
elasticity and anchoring condition on the shape of the shell and hence extract parameter values
from an experimental realization. Extending the model to multi-body interactions, we predict the
alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which
is found to be in excellent agreement with experiments.

I. INTRODUCTION

An important application of nematic liquid crystals
(LCs) is as guides for self assembly of included colloidal
particles [1–4]. Chemical treatment of the particles may
induce a preferred orientation of the adjacent nematic on
their surface and induce elastic distortions in the bulk
liquid crystal. Elasticity-mediated interactions between
particles cause micron-sized particles to self-organize into
chains or clusters that are strongly (∼ 1000kBT ) bound
together [2, 5–7]. Smaller nanoparticles (NPs) disperse
uniformly in the isotropic phase but can be sculpted into
a variety of structures by kinetic effects as the host under-
goes a transition into a liquid crystalline phase [1, 8, 9].
Self-assembly of nanoparticles in LCs can therefore ex-
ploit nucleation and growth as would occur in an isotropic
fluid [10, 11], but the liquid crystalline order permits ad-
ditional control over the self-assembled structure [9].

Hierarchical structures can be formed by combining
these mechanisms. Two co-authors of this paper (Ro-
darte, Hirst) created nanoparticle shells [12] by cooling a
solution of mesogen-functionalized quantum dots in 5CB
from the isotropic to nematic phase. The nanoparticles
are driven to the boundary of the vanishing isotropic
phase and by a nucleating inner nematic domain; they
aggregate and solidify, leaving behind a shell. As shown
in Fig. 1, shells then migrate to align in long chains due
to the elastic interactions and adopt a more elongated
morphology over time.

In this paper, we develop a model of the elongation and
chaining process by minimizing the elastic free energy
with respect to both the spatially varying orientation of
the liquid crystal and the shape of the shell. We predict
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the LC orientation and the shell shape as a function of
the elastic constants, and determine the orientation of
the chains with respect to the bulk nematic. Results
are compared with experiment and earlier models that
neglect the shape of the particles [6, 13] or use perfectly
ellipsoidal particles [14].
Shape-order optimization problems such as the shells

in this paper are challenging because few analytical re-
sults are available and computational approaches must
maintain the quality of the numerical representation dur-
ing optimization. However, the ability to solve such
problems may provide insight into the origins of com-
plex shapes observed in biological systems [15]. A related
and widely studied problem is to determine the shape of
a tactoid, a droplet of nematic liquid crystal in a host
solvent. While a variety of tactoid shapes is observed
in lyotropic systems [16–18], including some that are not
simply-connected [19, 20] and others that respond to tem-
perature changes [21], thermotropic liquid crystals such
as 5CB generally form spherical droplets because the sur-
face tension between the LC and host tends to be much
larger than the cost of elastic deformations.
For the shells in [12] and considered here, significant

deformation occurs because the surface in question is not
the interface between the LC and a host fluid but rather
the surface of the thin shell that is surrounded inside and
out by the LC. Similar deformations—including elonga-
tion and cusp formation— appear when lipid vesicles are
embedded in a nematic host[22–24], and also in shells
of active nematic whre defects template the formation
of long spindle structures that appear and disappear in
well-defined oscillations [25].
Migration of objects in a host nematic to form chains

has been studied previously with colloidal glass spheres
[2, 26, 27]. These authors observe alignment angles of
∼ 30◦ for particles that produce a quadrupolar distortion
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Figure 1. A Fluorescence microscopy images of quantum dot
microshells [12] show subtly elongated shells that form chains,
here at 27◦ to the alignment axis of the nematic host. B
Schematic of the computational domain. C Fully relaxed
simulation with Γσ = 20, Γκ = 0, and ΓW = 100, shaded
to indicate the relative elastic energy of each mesh face. Two
copies of the computational domain are depicted, one reflected
about the z axis, to assist visualization.

field in the host nematic, such as spheres with planar an-
choring. While far-field theoretical approximations pre-
dict chaining angles between 45◦ and 49◦ [6, 13, 28, 29],
numerical evaluation of the two-dimensional Frank free
energy can successfully predict the observed ∼ 30◦ align-
ment [14]. Additional work has shown that these col-
loidal interactions depend on shape [30] and size [31] of
the particles. Varying the aspect ratios of ellipsoidal par-
ticles allows for realization of alignment angles from 30◦
to 7.5◦, and demonstrates that particles with large as-
pect ratios (& 5) avoid aggregation [14]. Recently, chain-
ing has also been observed in ferromagnetic nanoparticles
[32], although these chaining angles are higher ∼ 54◦ be-
cause of shell-shell interactions other than elasticity.

Because no technique can simultaneously resolve the
molecular scale order of the liquid crystal and the micron-
sized shape of the tactoid, theoretical work requires a
trade off between size and resolution. Prior work in-
cludes Monte Carlo methods that predict elongation
of thermotropic LCs [33] and formation of tetrahedral
smectic vesicles [34], Molecular Dynamics simulations
that show elongation and spontaneous chiral order in

nanoscale droplets [35–38], bead-spring and finite dif-
ference models that achieve tactoid elongation on fixed
meshes [24, 39, 40], and continuum theory [41, 42] that
assumes a rigid idealized shape for the tactoid boundary.
Comparing spherical harmonic expansion and finite el-
ement methods to predict vesicle shapes, Nguyen et al.
found that finite elements handle large deformations well
[43]. Finite elements have also been used to simulate de-
fect fields in frustrated geometries [44] or around colloidal
spheres [45].
Recently, we created a finite element continuum the-

ory model to determine tactoid shape incorporating a
new dynamic mesh control algorithm that ensures the nu-
merical scheme remains accurate and stable during shape
minimization [46]. Unlike other finite element schemes
used to study soft inclusions in liquid crystals, our scheme
incorporates adaptive mesh refinement/coarsening and a
moving mesh with regularization to maintain the quality
of the representation during large shape changes. Here
we will use this strategy to model the shells discussed
above.

II. MODEL

The system comprises a nanoparticle shell with ne-
matic liquid crystal on both the interior and exterior.
The total free energy,

F = Fs + Fn + Fa, (1)

includes three contributions: the elastic energy of de-
forming the shell, the elastic energy of the nematic and
an anchoring term that couples the nematic to the shell.
The shells are composed of nanoparticles stabilized by
ligand-ligand interactions with a short range attraction
[12]. These interactions resist changes in the area of the
shell. Since the shells are only a few nanoparticles thick,
we a priori expect the bending energy to be negligible,
but include it in the energy to determine its effect on the
shape. The shell elastic contribution to (1) is therefore,

Fs = σ

∫
∂S

dA+ κ

∫
∂S

(H −H0)2
dA

where σ is the surface tension, H is the mean curvature
and H0 is a prescribed mean curvature. We stress that
the surface tension σ is intended to capture in an ap-
proximate sense both the effect of the shell elasticity and
the interfacial tension between the shell and the host
nematic. We combine these effects because, to linear
order, they have the same functional form and neither
has been very precisely characterized experimentally for
this system. Since these terms depend only on the shell
shape and not the director, they do not account for any
anisotropic interactions.
Because the shells first form at the interface of an ap-

proximately spherical region at a critical radius R, we
assume the preferred mean curvature H0 is that of the



3

initial sphere (1/R). In practice, we find that H0 and κ
have covariant effects on the final shape, so this choice is
somewhat arbitrary.

The elastic energy of the LC is the Frank energy [47],

Fn= 1
2

∫
S,S?

dV
[
K1(∇·n)2+K2(n·∇×n)2+K3|n×∇×n|2

]
,

(2)
where K1, K2, and K3 are the splay, twist, and bend
elastic constants, and the integral is taken over the entire
simulation volume, i.e. both the interior S and exterior
S? of the shell. The usual local constraint n · n = 1 is
enforced to ensure the director is a unit vector.

Finally, the anchoring term,

Fa = W

2

∫
∂S

(n · ŝ)2
dA, (3)

imposes planar-degenerate anchoring relative to the shell
surface normal ŝ with associated energy W . Because the
shells are ligand-stabilized, we additionally impose a vol-
ume constraint, ∫

S

dV = V0 (4)

We non-dimensionalize the problem by introducing a
lengthscale Λ, which we shall later choose to be a typical
shell radius, changing variables x → Λx′ and dividing
through by K1Λ/2. Hence, the energy (1) becomes

F

K1Λ = Γσ
∫
∂S′

dA′ + Γκ
∫
∂S′

(H ′ −H ′0)2
dA′

+2F ′n/ (K1Λ) + ΓW
∫
∂S′

(n · ŝ)2
dA′. (5)

Here we also introduced dimensionless parameters Γσ =
2σΛ
K1

, Γκ = 2κ
K1Λ , and ΓW = WΛ

K1
, that represent the rela-

tive strengths of the surface tension, mean squared curva-
ture, and anchoring energy relative to the elastic energy.

The functional (5) is discretized as follows. First, we
exploit the apparent cylindrical symmetry of the shells
to work in cylindrical polar coordinates (ρ, φ, z). The
computational domain, shown in Fig. 1B, is the (ρ, z)
plane that must be swept out in φ to recover the full
3D solution and is discretized into triangular elements.
The initially spherical shell surface is specified as a se-
quence of edges terminating at top and bottom on the
ρ = 0 line. The mean curvature H at a given ver-
tex on the shell is calculated using the discrete method
from [48]. Director values are stored on each vertex and
parametrized in cylindrical coordinates, n = (nρ, nφ, nz)
with appropriate derivatives in (2) re-expressed in these
coordinates. We emphasize that, in spite of the chosen
polar coordinate system, directors may freely rotate out
of the (ρ, z) plane. Interpolation of the director between
vertices is performed using a special spherical weighted
average [49] that maintains unit length at all points. The

Frank energy of each element is then computed by gaus-
sian quadrature [50]. The anchoring energy (3) is also
computed along the shell by gaussian quadrature.
Having constructed a finite element approximation to

(5), we minimize it using gradient descent with respect
to both director values and vertex positions from an ini-
tial state with n = nz at all vertices. To maintain a
well-behaved mesh, we supplement the target functional
with auxiliary functionals as described in [46] that pro-
mote equiangular elements and uniform energy density
between adjacent elements. Additionally, local refine-
ment and coarsening is performed to capture adequate
detail in regions of high energy density. Fig. 1C shows
a converged solution in which the local refinement and
energy density reveal the bipolar field adopted by the
nematic. The system is considered to have converged
when the timestep-normalized percent change to the en-
ergy is less than 10−6 over two cycles of steps to relax
both the vertex location and director orientation. We
explicitly test all solutions for stability by computing the
bordered Hessian matrix G and testing that the number
of constraints plus the number of degrees of freedom for
the system is larger than the negative index of inertia
plus the corank of G.

III. RESULTS

A. Shell shape

We ran a series of simulations varying the coefficients
Γσ, Γκ and ΓW to determine how the final shape of the
shell depends on these parameters and hence identify
the space of accessible shell shapes. We use parameter
values for the 5CB host K1 = 6.3 pN, K2 = 4.3 pN,
K3 = 9.6 pN [51]. The natural choice for the lengthscale
Λ is the shell radius as described earlier; however the
experimental results show significant polydispersity. We
therefore select the radius of a typical shell and choose
2Λ = 6.3 µm. The explored ranges of the Γα corre-
spond to σ = 1 to 1000 µJ/m2, κ = 0 to 10 aJ, and
W = 1 to 2000 µJ/m2.
One measure of the final shape is the aspect ratio a,

which is displayed in Fig. 2 as a function of surface ten-
sion for three values of mean squared curvature strength.
The high aspect ratios obtained indicate that the mesh
regularization procedure described permits large physical
deviations from the initial shape. The inset of Fig. 2C
shows a distribution of experimental shell aspect ratios
as a function of shell radius. The plot reveals a weak neg-
ative trend as might be expected because larger values of
Λ effectively increase Γσ, resulting in aspect ratios closer
to unity regardless of ΓW and Γκ. However, the scatter
about this trend is large due to the stochastic nature of
the shell formation mechanism.
The simulations reproduce aspect ratios similar to

those observed experimentally (1.0 ≤ a ≤ 1.3) un-
der three different scenarios: first, systems dominated
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Figure 2. A-C Aspect ratio for simulated shells as a function of surface tension for Γκ = 0, Γκ = 0.1, and Γκ = 1.0. The
shading of each data point tells the value of ΓW as indicated by the labels in panel A. The gray region denotes the 90th
percentile of the range of aspect ratios observed in the experimental data, with the darker line indicating the median of 1.07.
The inset plot in panel C shows the experimental aspect ratios as a function of average shell radius. Inset graphics visualize
the shells for selected points with ΓW = 100.

by mean squared curvature; second, systems dominated
by surface tension; and, third, if the anchoring is very
weak. Either of these cases suggests, as we expect,
that the interactions between ligands of the nanoparticles
are considerably stronger than interactions between LC
molecules. Indeed, the experimental shells remain sta-
ble even when the surrounding nematic phase is heated
to isotropic above 34◦C and remain stable up to about
100◦C. We address and dismiss the third possibility, sys-
tems with very weak anchoring, later on using polarized
optical microscopy.

Looking in more detail at the shells displayed in the in-
sets of Fig. 2 there are two distinct morphologies: Surface
tension dominated shells form a characteristic cusp at
the poles; conversely mean squared curvature dominated
shells favor smooth poles. The fluorescence microscopy
image shown in Fig. 1A shows evidence of cusps, and so
we conclude that the shell elasticity is dominated by sur-
face tension. This is justified by a classic result from shell
elasticity: the ratio of bend energy to stretching energy
is of order (R/h)2 where R is the shell radius and h is the
shell thickness [52]. We estimate the shell thickness to be
10 to 100 times smaller than the radius, which suggests
that Γσ/Γκ lies between 100 to 10,000.
Fig. 2 therefore allows us to predict the shapes that

would result from changing the experimental system. For
example, use of a LC with larger elastic constants would
decrease Γσ, resulting in more elongated shells. Similarly,
decreasing (increasing) the concentration of nanoparti-
cles in the initial system would result in smaller (larger)
shells [12], which as discussed above will elongate more
(less). The shapes in our system, and their behavior with
respect to changing parameters, resemble the those of gi-
ant unilamellar vesicles (GUVs) with nematic inside and
outside reported in [40] and [24]. However, our shells
appear to have a lower bending modulus, as they more
readily form cusps without volume loss. Our adaptive
moving mesh suits these shells well, as it resolves the

2μmA B

C

D

Figure 3. A An experimental crossed-polarizer image of a
shell imaged close to the central plane. B-D Simulated
crossed-polarizer images for three shells with different anchor-
ing strengths (ΓW = 10, 50, and 100) and aspect ratios equal
to the median aspect ratio observed experimentally. The di-
rector field superimposed over the simulated images shows
stronger anchoring conditions leading to more curvature in
the nematic field.

shape and field at the cusps of the shells more easily
than a fixed finite difference mesh.
We now turn to the configuration of the liquid crystal

around and inside the shell. To facilitate a comparison
with experiment, an approximate crossed-polarizer mi-
croscope image is generated from each configuration. A
very simple optical model is used, treating the LC as a
single anisotropic layer in the y = 0 plane between two
crossed-polarizers above and below the LC. Thus, at a
given point the intensity I = cos2 φ sin2 φ, where φ is
the angle of the director off of the z axis. We emphasize
that using a 2D slice is a crude approximation of a true
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crossed-polarizer image. Moreover, the optical properties
of the NP shell itself are unknown, however motivated by
the experimental images, we assume that no light passes
through the pixels that lie directly on the shell boundary
at y = 0.

Results are displayed in panels B through D of Fig.
3 that show simulated microscope images with different
anchoring strengths but aspect ratios all within 2% of
the median experimental aspect ratio. In spite of the
very simple optical model, the simulated images repro-
duce the main features of the experimental image shown
in Fig. 3A: dark bands indicate alignment with one of
the polarizers, while bright regions show distortions from
a uniform field to match the shell’s anchoring preference.
The similarity between the two strongest anchoring cases
and the experimental image suggests an anchoring pa-
rameter of at least ΓW = 50. This corresponds to a
value of W of order 100 µJ/m2, consistent with charac-
terizations of strong anchoring [26, 53]. That cases with
strong anchoring require Γσ ≥ 500 to achieve aspect ra-
tios of 1.07 is also consistent with the surface tension-
dominated system.

B. Shell-shell interactions and chaining

After formation, the NP shells migrate over the course
of minutes to form chains aligned at some angle to the
host nematic (Fig. 1A). We measure this angle to be
between 25◦ and 35◦, which agrees well with the ∼ 30◦
angles reported by previous studies using particles that
produce a quadrupolar distortion field [2, 14, 26, 27, 31].
Mondiot et al. measure a series of angles decreasing be-
low 30◦ for stiff ellipsoids with increasing aspect ratios
and predict these values with a numerical model [14].

Because our shells are non-ellipsoidal, we continue to
rely on simulation methods to predict chaining angles.
Also, our simulations allow shells to continuously seek
out their preferred alignment angles, as opposed to re-
peated numerical calculations over a range of discrete
values. Here, we will adapt the shape evolution tech-
nique developed above to include two shells that migrate
to locate an equilibrium state. Because the shells com-
posing these chains do not share axes of symmetry, the
cylindrical domain above cannot be used. Instead, we
develop a two-dimensional model that includes only the
projections of the shells onto the y = 0 plane.

Minimization of elastic deformations in the host ne-
matic drives the alignment of the shells. However, the
results in section IIIA indicate that these elastic forces
are weak compared to the surface tension and anchoring
forces that define the shapes of the shells and the LC
orientation at the shell-nematic interfaces. Therefore, we
fix the shapes of the shells and anchoring conditions, so
only the elasticity term of (1) is minimized with respect
to the shape of the host nematic domain.

To initialize the simulation, shell shapes and LC direc-
tor fields at the LC-shell interface are taken from final
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Figure 4. A-C Simulation snapshots of two shells with aspect
ratio = 1.18 relaxing from θ0 = 70◦ to θp = 30◦. The shells
repel initially, before finding their preferred alignment angle
and attracting one another. D Preferred alignment angle θp
as a function of shell aspect ratio for all of the simulated cases
shown in Fig. 2. The black series contains cases with strong
anchoring (ΓW ≥ 50) while the red series contains cases with
weaker anchoring (ΓW < 50). The gray region denotes the
range of aspect ratios and angles observed in the experimental
data, with the darker lines indicating the medians of 1.07 and
30◦.

states of the simulations described in section IIIA. We
place two such shells, offset so that their centers form an
angle θ0 with the z axis, and take gradient descent steps
as previously described. As the anchoring of the LC to
the shell is fixed, the interior regions of the shells can be
excluded from the computational domain.
Results from a typical run are shown in Fig. 4. Panels

A through C show selected snapshots from a simulation
where the starting alignment angle θ0 = 70◦. Initially,
the shells repel each other, before rotating around to find
a preferable angle and then collapsing together. This
behavior of repulsion at angles close to 0◦ or 90◦ and
attraction at intermediate angles is well-documented ex-
perimentally [26, 27].
Fig. 4D displays the simulated chaining angle as a

function of the aspect ratio of the NP shells with strong
(black) and weak (red) anchoring. As aspect ratio in-
creases, the chaining angle is reduced. Noise in the plot
is due to variations in the anchoring condition and bend
modulus from the initial configuration. For shells with
aspect ratios in the range observed experimentally, we
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see preferred angles mostly from 28◦ to 36◦, which is in
very good agreement with the chains seen experimentally.
Furthermore, extrapolation of the strong anchoring data
in the limit of a → 1, i.e. spherical colloidal particles
with rigid anchoring, implies θp = 34◦, which agrees well
with the 30◦ reported by other authors.
Compared to Fig. 4D, [14] shows a similar trend

but finds a steeper slope. This is expected because our
sharply-pointed shells mimic the curvature of lower as-
pect ratio ellipsoids away from the shell cusps. In fact,
shell bending modulus could be tuned to select the de-
sired regime of alignment angles for a given shell aspect
ratio.

The results presented agree with previous studies of
analogous systems, but represent a significant relaxation
of the assumptions inherent in such models. Ideally, one
would minimize Eq. (5) in 3D with respect to arbitrary
variations of n, the shell shapes and positions. Of the
previous studies on chaining of which we are aware, only
one 3D model [31] uses non-spherical particles (sphero-
cylinders) of fixed shape, while all other non-spherical
shapes are simulated with 2D models [14] and [39]. None
of these existing studies (2D or 3D) consider shells of ar-
bitrary shape, or allows the shape to vary. Our approach
is readily generalized to 3D, a topic of future work.

IV. CONCLUSION

We present a continuum theory finite element model
for deformation and two body interactions of flexible
shells in a nematic liquid crystal. The model features
dynamic mesh remodeling utilizing auxiliary function-
als to maintain accuracy despite large deformations from
the initial configuration. The model is used to simu-
late experimentally observed elongation and chaining of
mesogen-functionalized nanoparticle shells that form as
LCs are quenched into the nematic phase. Because the
elastic behavior of these shells is unknown, the model en-
ables us to extract the contributions of shell elasticity, ne-
matic elasticity and anchoring from the observed shapes.
By comparing simulations with experimental images, we
determine surface tension and anchoring dominate the
system.

Extending the model to incorporate multiple shells, we
predict the chaining angles attained by the shells, and de-

termine the dependence of chaining angle on shell aspect
ratio, which matches within reason previous results re-
ported on a similar system. Furthermore, our model pre-
dicts the chaining angle of spherical particles with strong
planar anchoring in a nematic LC more accurately than
far-field theoretical treatments.
Our simulations cover a wide range of parameter space,

so information from these results enables us to design sys-
tems with particular shell sizes, shapes, and alignment
angles. This ability to control and tune particle shape
by a scalable self-assembly method is valuable as part of
designing hierarchical processes. Furthermore, the sim-
ulation methodology presented is computationally cheap
and readily adapted, with little modification, to a wide
variety of shape-order problems involving soft materials.
We caution that the NP shells in a nematic back-

ground presented in this paper differ considerably from
nematic shells in a double emulsion [54–56]. Possessing
two nematic-water interfaces with strong surface tension,
these shells do not tend to deform, and owing to the iso-
lated nematic region composing each shell, more elabo-
rate defect structures often form. However, future model
applications include nematic shells, as well as other sys-
tems in which a nematic background surrounds a thin
elastic shell such as a domain wall or defect loop. Fur-
thermore, the variable-domain nature of our model makes
it well-suited to investigate phase transition and shear
flow phenomena in liquid crystals. Lastly, deformation
results given by the model could be compared with theo-
retical approximations that attempt to capture large de-
formations [57].
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