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We present computer simulations and experiments on dilute suspensions of superparamagnetic
particles subject to rotating magnetic fields. We focus on chains of four particles and their decay
routes to stable structures. At low rates, the chains track the external field. At intermediate rates,
the chains break up but perform a periodic (albeit complex) motion. At sufficiently high rates, the
chains generally undergo chaotic motion at short times and decay to either close-packed clusters or
novel, more dispersed, colloidal molecules at long times. We show that the transition out of the
chaotic states can be described as a Poisson process in both simulation and experiment.

I. INTRODUCTION

Guiding the assembly of paramagnetic particles by ap-
plying magnetic fields has become a popular technique
for applications in biotechnology, photonics, composites,
and other areas. Under static fields, the particles tend
to form chains aligned along the direction of the applied
field. The current generation of so-called superparamag-
netic particles have very large magnetic susceptibilities
and with very moderate external fields on the order of a
few mT, the chains are strong enough to overcome the
Brownian drive. Early work in the 1990s focused on the
dynamics - breakup and reformation - of these chains
subject to shear flow and their impact on the rheological
properties of the suspensions [1]. More recently, there has
been interest in the effects of time varying fields [2–29].
In general the design space for modulating the external
field to obtain desired structures is quite rich and has
only relatively recently begun to have been explored sys-
tematically [14]. Some driving protocols modulate the
amplitude of the field along a fixed axis, with the ex-
treme case being a pulsed on-off mode [30, 31]. In others
the field is kept at constant magnitude and rotated in a
single plane [7, 8, 15–17, 21–24, 32–38].

When the field rotates in a plane, there is a tendency
for particles to organize into lamellar structures and then
to organize within the lamellae [5, 6, 14, 39]. If the
magnetostatic forces are much larger than the Brown-
ian ones, they will control structure formation. However,
even in the non-Brownian case, one observes a complex
non-equilibrium phase behavior depending on the volume
fraction of particles and the protocol for field rotation. If
the field is left on for some time in some particular direc-
tion, particles begin to form chains. The chains grow and
can coalesce. If the field is then reoriented, at sufficiently
high volume fraction, the chains will collide and inter-
act. At low enough volume fraction, they rotate without
interacting significantly with each other.

Much of the early work on in-plane rotating fields fo-
cused on the breakup of individual chains at low volume
fraction and high rotation rates [7, 8, 15–17, 21–24, 32–
38]. At low rotation rates, a chain rotates with the field
as a rigid body. It assumes a shape which becomes in-
creasingly non-linear as the rotation rate increases [17].
If the field is rotated sufficiently rapidly, the hydrody-

namic forces on the chains will be too large relative to
the magnetic forces and the chain will break up. Pre-
vious work has gone into understanding and quantifying
the initial breakup of the chain [7, 8, 17]. At the other
side of the rotation rate spectrum, it is known that at
very high rotation rates, the particles sample all possi-
ble field orientations before they have a chance to move
appreciably. The magnetostatic interactions become ef-
fectively isotropic in this limit, and the chains collapse
into close-packed planar structures; hexagonal crystals
(or polycrystals) with some vacancies. However, the in-
termediate regime remains poorly understood.

In this paper, we focus on the dynamics of four-particle
chains in the non- Brownian, athermal limit where the
Brownian forces are neglected and the dynamics is con-
trolled by the field rotation rate, Ω, alone. This is the
simplest scenario which gives rise to a rich and non-trivial
dynamics at intermediate filed rotation rates. The rele-
vant material parameters are: the magnetic susceptibil-
ity, the particle size, and the viscosity of the suspending
fluid. The two corresponding dimensionless groups are
the Mason number, Ma = Ωτ0, and the characteristic
dimensionless magnetic energy ǫ0/kbT , where i) τ0, is the
characteristic time scale for viscous relaxation of a pair of
particles in the suspending fluid under the characteristic
(H0- dependent) magnetostatic interaction forces, ii) kbT
is the thermal energy scale from the Brownian bath from
the suspending fluid, and iii) ǫ0 is the (H0-dependent)
characteristic magnetostatic energy for a pair of particles
at contact. For the non-Brownian case, kbT/ǫ0 = 0, we
show that there exist three distinct dynamical regimes,
separated by two well defined bifurcation points, Ma1
and Ma2.

BelowMa1, the chains rotate as a rigid body. The first
transition at Ma1 has been well studied by many other
groups (for chains of various length) [17, 38, 40] and cor-
responds to the initial breakup of the chain due to the
large hydrodynamic forces. For Ma1 < Ma < Ma2,
the chains fragment and reform in a completely periodic
way. While the main chain is fragmented, each of the
two sub- chains performs one complete rotation before
reforming the main chain, and we call this motion a ”do-
si-do” in analogy with American square-dancing. This
periodic breakup and reformation of a single chain, has
already been observed and described in chains of arbi-
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trarily length by Melle and Martin [17]. At very large
Ma, the magnetostatic interactions become effectively
isotropic, and the chains quickly collapse into a close-
packed configuration. This regime of very large Ma is
also relatively well understood.
Our interest in this paper is the regime just above

Ma2. As Ma → Ma2 from below, the dynamics un-
dergoes a saddle-node bifurcation. The frequency of the
do-si-do motion, and the average magnetostatic energy,
< UMS >, as functions of Ma, each develop a cusp at
Ma2, and the periodic do-si-do orbits discovered by Melle
and Martin become unstable. Above the bifurcation, we
observe a complex and completely novel behavior in both
experiments and simulations. The typical behavior of
a trajectory in this regime is as follows. The system
starts with a chaotic-like behavior, characterized by the
transient largest Lyapunov exponent (LLE) defined be-
low, with a broad temporal power spectrum. After some
time (surprisingly long in both experiment and simula-
tion) there is an abrupt transition from transient chaos
into a periodic orbit with a well defined fundamental fre-
quency and essentially zero LLE indicating a return to
non-chaotic dynamics. The structure in the final sta-
ble orbit is typically either: i) a close packed cluster, or
ii) a novel structure with one of the four particles cen-
tered in an equilateral triangle composed of the other
three. We refer to this latter orbit as a colloidal molecule
[14, 27, 41, 42]. Occasionally, we find other more com-
plex periodic orbits with higher energy than either the
close-packed clusters or triangular molecules, and we de-
scribe them in more detail below. Once formed, the final
periodic orbits remain indefinitely stable. In both ex-
periment and simulation, the survival probability of a
trajectory remaining in the chaotic state is an exponen-
tial distribution, indicating that the transition from the
chaotic regime into the final stable orbits can be consid-
ered to be a simple Poisson process.
The rest of this paper is organized as follows. In Sec.

II we describe the model and protocols and the experi-
mental setup. In Sec. III we discuss, qualitatively, the
behaviors of typical trajectories in each of the regimes,
Ma < Ma1,Ma1 < Ma < Ma2, and Ma > Ma2. In
Sec. IV we use the average magneto-static energy in the
final periodic orbit to define a phase diagram and discuss
the transition dynamics out of chaotic states. Finally, In
Sec. V we provide a summary and outlook.

II. NUMERICAL AND EXPERIMENTAL

METHODS

We study the dilute suspension of paramagnetic col-
loids under external rotating magnetic fields. We specif-
ically focus on chains of four particles since that is the
shortest chain which shows a rich and non-trivial dynam-
ics. We are interested in stable final structures at differ-
ent rotation rates and the decay routes to them. We
study the problem both computationally and experimen-

tally. In this section, we describe our computational and
experimental methods.

A. Computational Model

1. Dimensional Analysis

Material parameters are particle size, a, fluid viscos-
ity, η, particle susceptibility, χ, and room temperature,
kbT . Our control parameters are magnetic field strength,
H0, field rotation rate, Ω. One can form a single energy
scale, ǫ0, out of these parameters. We choose it, conven-
tionally, to be the total dipole-dipole interaction energy
at contact: ǫ0 = µ0m

2
0/πa

3 wherem0 = H0(πa
3/6) 3χ

χ+3 is

the dipole moment of a lone particle in the external field
and µ0 is the vacuum permeability. One can then form a
single timescale, τ0 = 2ba2/3ǫ0, out of ǫ0 where b is the
Stokes drag co-efficient. The two dimensionless groups
controlling the response are the so-called Mason num-
ber, Ma = Ωτ0, and the dimensionless Brownian drive,
kbT/ǫ0. In the non-Brownian limit where kbT ≪ ǫ0, we
are free to adjust both the field strength and fluid vis-
cosity to tune τ0, and we typically choose τ0 to be on the
order of a second in the experiments. In the rest of this
paper, we present energies in units of ǫ0, forces in units
of F0 = 3ǫ0

4a , and times in units of 2π/Ω unless stated
otherwise.

2. Equations of Motion

In general, in the over-damped regime, particles in a
suspension must obey:

FM
iα + FC

iα + FH
iα + FR

iα = 0iα (1)

where FM
iα , FC

iα, FH
iα and FR

iα is respectively, the α-th
Cartesian component of the magnetostatic, contact, hy-
drodynamic, and random Brownian force and torque on
the i-th particle. FM , FC and FR depend on the config-
uration of all the particles, and FH depends on both the
configuration of all the particles and the velocities and
rotation rates of all the particles. Requiring the veloc-
ities and rotation rates to satisfy force balance at each
configuration defines, implicitly, a first order dynamical
system which can be integrated in time to calculate tra-
jectories. A full treatment of FM and FH would require
solving the Maxwell and Stokes equations subject to the
appropriate boundary conditions at the particle surfaces,
and approximation schemes have been developed for both
FM and FH [8, 40, 43–47]. Following previous studies
[17], we assume that: i) the particles act magnetostati-
cally as point dipoles with moments slaved to the external
field, independent of the other dipoles. This is a valid as-
sumption at low values of χ where the pair-wise dipole
interactions dominate the multi-body interactions. The
particles that we use in our experiments have a relatively
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low susceptibility (χ=0.512). Therefore,

FM
iα =

N
∑

j 6=i

F0
a4

r4ij
[(3cos2φij − 1)r̂ijα + sin(2φij)θ̂ijα] (2)

where φij is the phase lag between the external field vec-

tor H0 and the separation vector rij , and r̂ijα and θ̂ijα
are the α-th Cartesian component of the radial and tan-
gential unit vectors respectively. ii) the hydrodynamic
drag on each particle is equal to that of an isolated par-
ticle in an infinite medium (i.e. Stokes drag model),
FH
iα = −bviα where b = 3πηa. We ran simulations in-

cluding far-field hydrodynamics and near-field lubrica-
tion interactions which suggested that Stokes drag model
captures the essential physics of the problem. For FC , to
approximate the hard sphere condition, we take a simple
pair-wise power-law repulsion with an exponent of 36,

FC
iα = −F0

∑N
j 6=i(

a
rij

)36r̂ijα. Also, we take FR
iα = 0iα as

we focus on the non-Brownian case. We use the simple
forward Euler method to integrate the velocities. For the
case of Stokes drag, solving for the velocities is trivial and
one has a simple closed-form expression for the velocity
in terms of the configuration. The initial condition is a
straight chain of particles in nominal contact with initial
phase lag of φ0. We systematically vary φ0 at various
Ma to study the dependence on initial conditions.

3. Tangent Analysis of Chaotic Motion

To quantify the chaotic properties of the trajectories,
we integrate the so-called tangent dynamics. Tangent
dynamics, a standard analysis tool in dynamical systems
theory[48], is defined by evolving an infinitesimally per-
turbed copy, x′

iα = xiα + ǫiα, of the unperturbed system,
xiα, according to the velocities obtained by linearizing
the equations of motion about the true trajectory:

d

dt
ǫiα =

∑

jβ

Jiαjβǫjβ (3)

where

Jiαjβ =
∂viα
∂xjβ

(4)

is the first derivative of the velocities with respect to the
configuration, the so-called Jacobian matrix of the under-
lying system, and it is supposed to be evaluated at the
actual underlying solution to the unperturbed system.
In short, J tells us how perturbations to the underly-
ing trajectory would grow in time: in general, positive
eigenvalues of J give rise to diverging trajectories, while
a lack of any positive eigenvalue means that nearby tra-
jectories cannot diverge. For example, in the present case
of non-Brownian Stokes drag, the underlying equations
of motion read viα = 1

b
(FM

iα + FC
iα) and FM

iα + FC
iα is

the configuration dependent magnetostatic plus contact

force. Then the Jacobian entries are simply the deriva-
tives of the potential forces with respect to the particle

positions Jiαjβ = 1
b

∂(FM
iα+FC

iα)
∂xjβ

. We have used an au-

tomated symbolic calculus package, Mathematica 10.0,
to obtain closed form analytical expressions for Jiαjβ ;
they are not enlightening and we do not reproduce them
here. Our algorithm to evaluate Jiαjβ scales like O(N2)
so is no more costly than the algorithm to evaluate the
dipole forces themselves. We simply use forward Euler
to evolve ǫ concurrently with the true underlying trajec-
tory. In chaos theory [49–51], the Lyapunov spectrum
is defined by the long time average behavior of ǫ. In
particular, the largest Lyapunov Exponent (LLE) is de-
fined as the long-time average of the derivative of log(|~ǫ|)
with respect to time. We show below that our trajec-
tories exhibit increasing log(|~ǫ|) during chaotic episodes
before transitioning into stable orbits where log(|~ǫ|) re-
mains fixed. This is reminiscent of so-called transient
chaotic behavior in damped systems [51].

(a)

Hx= H0 Ωtcos( ) H0 Ωtsin( )Hy=
(b)

 Time
 Time

Ω H0

Time

Initial State Chaos Chaos Stable Cluster

FIG. 1. a) Schematic of the experimental setup. Two iron-
core solenoids are used to create a magnetic field with con-
stant magnitude of H0 which rotates in xy plane with angu-
lar velocity of Ω with an optical microscope imaging the xy

plane. b) Snapshots from a typical trajectory in experiments
at Ma > Ma2. In this regime, the short time behavior is
chaotic motion, and the long time behavior is a stable peri-
odic orbit. In this case, the final stable periodic orbit is a
rotating close-packed cluster.

B. Materials and Experimental Set Up

Fig. 1a shows a schematic of the experimental setup.
Magnetic fields are applied using two 4 in. diameter
iron-core solenoids that are placed in x and y direc-
tions creating dynamic magnetic fields Hx = H0cosΩt
and Hy = H0sinΩt respectively. As a result, the resul-
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tant magnetic field has the constant magnitude of H0

and rotates in xy plane with angular velocity of Ω. The
solenoids are fed with current from two 20 − 5M bipo-
lar operational amplifiers (Kepco) controlled with a Lab-
View program. Magnetic fields generated were measured
using 425 gaussmeter (Lake Shore Cryotronics Inc., OH,
USA). The utilized magnetic field is a homogeneous ro-
tating magnetic field that has a magnitude of 10mT .
Dilute suspensions of 2.8µm M − 270 Carboxylic Acid

Dynabeads (Invitrogen, χ = 0.512) were utilized for these
experiments. Magnetic susceptibility indicated was de-
termined using a superconducting quantum interference
device magnetometer (Quantum Design Inc., San Diego,
USA). The particles were initially in aqueous suspensions
and were added volumetrically to water-glycerol solutions
for reaching desired viscosities (η = 0.0446Pa.s).
Optical microscopy (custom column-mounted Nikon,

Zyla Andors CMOS camera) was utilized to image the
bead chains in real time. A fluid cell with a thickness of
500µm was used for observing the bead suspension. Bead
chains that were away from the surface of the substrate
were studied in order to avoid surface interactions. Low
exposure times were used to track particles over time and
videos were taken with 10−20ms time steps. Videos were
analyzed using the particle tracking module of image
analysis software Fiji. The magneto-static energy of the
cluster was estimated by assuming a nominal magnetiza-
tion of each bead and using a dipole approximation (as

in the simulation code), UMS =
∑N

j 6=i
a3

4r3
ij

(1− 3cos2φij).

III. TYPICAL TRAJECTORIES

A. Configurations

We highlight our most significant result before fully
describing the dynamics in different regimes of Ma. Fig.
1b shows snapshots at various times from a typical tra-
jectory in experiments just above Ma2 which is where
the literature lacks a clear description of the dynamics.
It turns out the short time response of the chain is a tran-
sient chaotic motion where symmetry breaks and parti-
cles exhibit an unpredictable motion. However, the long
time response is a periodic and indefinitely stable motion.
In this example, the long time response is a closed-pack
colloidal cluster which rotates like a rigid body in the di-
rection of the field but with an angular velocity different
from Ω.
In Fig.2, we show snapshots at various times for typi-

cal experiment (left) and simulation (right) trajectories.
Ma increases from top to bottom. The first row cor-
responds to Ma < Ma1 where the chain rotates as a
(not quite linear) rigid body [17]. The second row corre-
sponds to Ma1 < Ma < Ma2 where there is a precisely
periodic breakup and reformation of the chain. Each sub
chain roughly follows the orientation of the field before
re-formation of the main chain. Note that in the experi-

ment, particle-to-particle variations in the magnetization
and/or hydrodynamic radius may (and do) cause the pe-
riodic breakup and reformation during the do-si-do to oc-
cur at a site away from the center of the chain. Despite
the broken symmetry, we see a periodic do-si-do regime
for Ma1 < Ma < Ma2 in the experiment. Movies S1a
and S1b of supplementary information correspond to the
do-si-do motion from simulation and experiment respec-
tively.

Chain Chain

Cluster Cluster

Unstable

Molecule

Stable

Molecule

 Experiment

 Time

 Simulation

Do-Si-DoDo-Si-Do

 Time

 F
ie

ld
 F

re
q

u
e

n
c
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FIG. 2. Snapshots from typical trajectories in (left) experi-
ments and (right) simulations. Particles are colored arbitrar-
ily in the simulation to indicate identity. Time increases from
left to right and Ma increases from top to bottom. Filed
direction is shown in the right-most columns.

The third and fourth rows of Fig. 2 correspond to
typical trajectories above Ma2. The bifurcation at Ma2
can be understood in terms of independent stability of
each of the two subchains. If we treat each of the sub-
chains independently, one would expect an instability
above Ma = 1. In practice, we find the location of the
bifurcation point to be near but slightly below Ma = 1
and can attribute this to the interaction between the two
subchains facilitating the breakup. In this Ma > Ma2
regime, the particles initially undergo a chaotic motion
(to be made precise below) which, depending on the value
of Ma, can last for many thousands of field revolutions
before finally settling into a periodic orbit with a non-
trivial orbital period not simply related to Ω. Typical
configurations taken from the final periodic orbits are
shown in the right-most column of Fig. 2. There are two
typical types of periodic orbits (with some exceptional
cases discussed below) found after the chaotic dynam-
ics. First, there is something like a close packed planar
cluster which undergoes topology changes in the contact
network. This is shown in the bottom right row of Fig.
2. In this orbit, there will be periodic neighbor changes
during which the cyan-blue contact will open in favor of
the green-red contact which will close. The cluster also
simultaneously undergoes what is essentially a rigid body
rotation. Movies S2a and S2b of supplementary informa-
tion correspond to the cluster formation from simulation
and experiment respectively. Second, there is a more
open kind of colloidal molecule. This is shown in the sec-
ond row from the bottom of Fig. 2. In this orbit, one
particle (colored blue in the figure) sits in the center and
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three others orbit it forming what is essentially an equi-
lateral triangle. The central particle follows a trajectory
which is approximately an inscribed equilateral triangle.
Each time the external field aligns with one of the three
edges of the outer triangle, the central particle injects it-
self between the two and forms an almost-straight trimer
aligned almost (with a slight lag) along the field axis.
For example, in the configuration shown in the right-
most column of the second to last row, the central blue
particle makes a trimer with the red and green particles
on the outsides, and this trimer is almost aligned along
the field direction but lags slightly behind. Later, the
blue particle will inject itself between the red and cyan
when the field is almost aligned along the red-cyan edge
of the outer triangle. Movies S3a and S3b of supplemen-
tary information correspond to the molecule formation
from simulation and experiment respectively. Although
we observe the transition from a chaotic regime to a sta-
ble periodic orbit in both experiment and simulation, the
only final periodic orbits we have observed in the exper-
iment have been the close packed clusters. We believe
this is due to the relatively high Ma where we currently
operate the experiments and/or the disorder in particles
properties and will discuss this below.
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FIG. 3. a) Magnetostatic energy, UMS , and b) its power
spectrum for a typical trajectory with Ma1 < Ma < Ma2.
c) Magnetostatic energy, UMS , and d) its power spectrum for
a typical trajectory with Ma > Ma2. For the experimental
curves, UMS , is inferred as described in the text and the
Fourier analysis is done only over the chaotic part.

B. Time Series Analysis

In Figure 3, we perform a detailed analysis of the time
series of the instantaneous magnetostatic energy, UMS , in
both the simulation and experiment for non-chaotic do-
si-do states (a and b) at Ma1 < Ma < Ma2, and chaotic
states (c and d) at Ma > Ma2, t = 0 corresponds to
the moment at which the field begins to precess. Note
that below Ma1, UMS is constant in both experiments
and simulations since the chain rotates with a fixed phase
angle relative to the external field. For the do-si-do, UMS

is almost perfectly periodic in both the experiment and
simulation as shown in Fig. 3a and 3b. For the chaotic
case in Figure 3c and 3d, the power spectrum is com-
puted only over the chaotic part of the signal excluding
the periodic response. The power spectrum of both cases
is noisy with no obvious peak. In the simulations, the sys-
tem initially starts in a do-si-do like periodic orbit. How-
ever, we find the initial periodic orbit linearly unstable,
and if we perturb these states with an arbitrarily small
temperature, they revert to an initially chaotic behavior
as seen in the experiments. Very abruptly at the end of
the chaotic regime, both the experiment and simulation
lock into a periodic orbit with non-trivial period.
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FIG. 4. For Ma = 1.253 with φ0 = 0 (simulation result), a)
magnetostatic energy, and b) logarithm of the magnitude of
the configuration space separation, log(|~ǫ|) vs. time.

C. Tangent Dynamics

We find the tangent dynamics a very useful tool in
quantifying the non-linear dynamical behavior and tran-
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sitions into the basin of attraction of a stable orbit. We
perform a tangent dynamics analysis as described above
in Section II. Fig. 4a and 4b show the instantaneous
magnetostatic energy, UMS , and the log of the phase
space distance between the true trajectory and the tan-
gent trajectory, log(|~ǫ|), as functions of time. During the
initial periodic motion, log(|~ǫ|) grows indicating the lin-
ear instability of that periodic orbit. This periodic mo-
tion has a high degree of symmetry and is something like
the do-si-do. After about 40 field revolutions, the sym-
metry breaks down, the trajectory becomes non-periodic,
and log(|~ǫ|) continues to grow. The average slope of the
log(|~ǫ|) vs. time curve can be considered as a transient
measure of the LLE. Eventually the log(|~ǫ|) vs. time
curve becomes completely flat, indicating a zero value
for the LLE, a cessation of the chaos, and an emergence
of periodic motion. The tangent dynamics provides a
useful way to precisely define the transition from chaotic
(where ǫ increases exponentially in time) to periodic mo-
tion (where ǫ remains constant). We determine the mo-
ment of transition into the periodic orbit as follows. At
each t > Tp, if |log(|~ǫ(t)|) − log(|~ǫ(t − Tp)|)| < δ, then
transition time is t⋆ = t − Tp. We take Tp = 200 field
revolutions and δ = 2 which is approximately two times
the amplitude of fluctuations of log(|~ǫ|) in final periodic
regime. Both of these are somewhat arbitrary and we
have verified that our distribution of transition times
(shown below) is insensitive to the precise values.

IV. POPULATION DYNAMICS

At the end of the chaotic state the system finds it-
self in one of the possible final periodic orbits. In figure
5, we show the long-time averaged magnetostatic energy,
< UMS >, vs. Ma corresponding to the final periodic or-
bits. We consider < UMS > to be a kind of order param-
eter indicating what dynamical state the system lives in.
The two bifurcations atMa1 andMa2 are apparent. The
leading non-analytic behavior of < UMS > on approach
to both Ma1 and Ma2 can be described by a saddle-
node bifurcation where U − U1(2) ∝

√

(Ma−Ma1(2))
where U1 (or U2) is the value at the bifurcation point [52].
Above Ma2, there are two branches present. The higher
branch corresponds to the molecule while the lower one
corresponds to the cluster. It is essential to try to un-
derstand the transition rates into and associated pop-
ulations of these branches at various Ma. Our results
indicate that these populations have a very non-smooth
dependence on Ma, and a full study of the populations
at various Ma and the associated transition rates is cur-
rently ongoing.
At very highMa, the only remaining populated state is

the cluster. This is to be expected since, in that regime,
the field precesses many times before the particles are
able to move appreciably, and the magnetostatic inter-
actions average over all angles and become effectively
isotropic.
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FIG. 5. Long time averaged magnetostatic energy, < UMS >,
vs. Ma (simulation result). φ0 is the initial phase lag be-
tween the field direction and the chain orientation. Ma1 and
Ma2 are the first and the second bifurcation points beyond
which the rigid body rotation and the do-si-do motion become
unstable respectively. Above Ma2, the typical dynamics con-
sists of an episode of chaotic motion which eventually decays
into a rotating colloidal cluster or molecule.

There are ranges ofMa where one branch is suppressed
while the other is populated. There are also two special
cases which deserve mention. The first kind of special
case is an island of stability in the Ma range where the
initial do-si-do-like periodic orbits turn out to be stable,
and the system remains in them forever without experi-
encing any chaotic behavior. One such regime is for Ma
between 0.92 and 0.96. The second kind of special case
is simply a third kind of terminal periodic orbit which
competes with the cluster and molecule. For the Ma for
which such a third terminal orbit is observed, the pop-
ulations in each of the three grow exponentially in time
as shown below. In this sense it is essentially no differ-
ent from a cluster or molecule. Structurally, these orbits
consist of two closely coupled dimers, neither of which
ever break, aligned asymmetrically with the field axis
and with a kind of ratcheting motion where the dimers
slide relative to each other while the whole configuration
precesses on average.

As chaotic motion proceeds, fewer and fewer trajec-
tories stay in chaotic state. Fig. 6 a, b, and c show
the populations of trajectories remaining in the chaotic
state at Ma = 1.06 and 1.253 (in the simulation) and
at Ma = 1.5 (in the experiment). The simulations are
performed over an ensemble of 500 different initial orien-
tations of the chain. We run the simulations long enough
(over 2000 field revolutions) that all 500 trajectories even-
tually leave the chaotic state and enter the periodic orbit.
As can be seen in all three cases, the survival probabil-
ity in the chaotic set, Ps, decays exponentially in time
indicating a Poisson process. For the simulations, the
decay time, τ , is on the order of a few hundred field rev-
olutions and is indicated on the plot. We do not know
how to compute this quantity from first principles yet,
but the transition rates are much slower and the chaotic
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lifetimes much longer than we had naively expected. Fig.
6a shows a typical chaotic frequency, Ma = 1.253, where
the ratio of cluster to molecule is approximately 1.5. Fig.
6b shows a chaotic frequency, Ma = 1.06, where in addi-
tion to cluster and molecule, a third final periodic orbit
is also possible. The third final state at Ma = 1.06 is
a second kind special case described above. In experi-
ments, sedimentation limits the observation time. As a
result, we had to focus on very high Ma regime where
the typical characteristic escape times are short (i.e. in
the order of 10 to 100 field revolutions) and only clus-
ters survive. Fig.6c shows the population in the chaotic
state for 13 trajectories whose transitions we were able
to capture during the course of the experiment.

V. SUMMARY AND OUTLOOK

In summary, we presented results on the dynamics of
four-particle chains of superparamagnetic particles sub-
jected to a magnetic field rotating in a plane. We pre-
sented evidence for a new regime of dynamical behavior
in which the particles undergo a chaotic dynamics for a
surprisingly long time before transitioning into a stable
periodic orbit. We showed that the transition out of this
chaotic regime and into the periodic orbit was consistent
with a Poisson process in both experiment and simula-
tion. It is worth noting that we are currently studying
longer chains with a more sophisticated model includ-
ing multi-body magnetic and hydrodynamics interactions
and we observe similar behavior as we increase the num-
ber of particles in the chain.
In the simulation, we typically found either a close-

packed cluster or a colloidal molecule with relatively
high symmerty with some other periodic orbits of lower
symmetry occasionally observed. In the experiment, al-
though we found evidence of some transient configura-
tions with the structure of the molecules seen in the sim-
ulation, the only final periodic orbits we observed were
close packed clusters. We offer two possibilities as to
why this is so. First, we may simply be running the ex-
periment in a Ma regime where the molecules are less
likely but not strictly forbidden. Although we have not
systematically studied the Ma dependence of the tran-
sition rates, it is clear from Fig. 5 that the molecules
disappear in favor of the clusters beyond a Ma of about
1.25. Second, in the experiment there is both particle-
to-particle fluctuation in size and susceptibility and finite
temperature. This disorder could destabilize the highly
symmetric molecular orbit.
We have shown the survival probability distribution

for remaining in the chaotic state for only one Ma in the
experiment and only two Ma in the simulation. It would
obviously be interesting to systematically explore theMa
dependence of the transition rates and, in particular, to
study the relative proportion of clusters and molecules
at various Ma. Also, the final periodic orbits we find in
these kbT = 0 simulations are essentially unconditionally
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FIG. 6. Fraction of trajectories in chaotic and non-chaotic
states vs. time . a) Ma = 1.253 (simulation) and b) Ma =
1.06 (simulation). c) high Ma limit (experiment). For a) the
dark blue curve which decreases monotonically corresponds
to the fraction of chaotic states, the magenta to the fraction
of molecules and the green to the fraction of clusters. For b)
the cyan curve corresponds to the fraction of trajectories in
the second kind of special case orbits described in the text.
In the experiment in c) we observe escape only into clusters.

stable; that is, they persist for as long as we are able to
run the simulations. It would be interesting to check for
the robustness of these periodic orbits at finite temper-
ature. These studies are currently under way, and the
preliminary results show a surprisingly important role
for finite temperature even when kbT is many orders of
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magnitude below the characteristic magnetostatic bind-
ing energy, ǫ0. This might also help explain the absence
of persistent molecular trajectories in the experiment.
We hope this work will stimulate other groups to search

for periodic orbits with novel, molecule-like, trajectories.

The molecular trajectories could find applications in ar-
eas like photonics and mixing, but producing them repro-
ducibly will require a fuller characterization and under-
standing of the Ma dependence of the various transition
rates in the problem.
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